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Abstract: Microorganisms in nature form diverse communities that dynamically change in 
structure and function in response to environmental variations. As a complex adaptive 
system, microbial communities show higher-order properties that are not present in 
individual microbes, but arise from their interactions. Predictive mathematical models not 
only help to understand the underlying principles of the dynamics and emergent properties 
of natural and synthetic microbial communities, but also provide key knowledge required 
for engineering them. In this article, we provide an overview of mathematical tools that 
include not only current mainstream approaches, but also less traditional approaches that, in 
our opinion, can be potentially useful. We discuss a broad range of methods ranging from 
low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, 
we highlight the integrative approaches that synergistically combine disparate methods.  
In conclusion, we provide our outlook for the key aspects that should be further developed to 
move microbial community modeling towards greater predictive power. 

Keywords: microbial communities; mathematical models; dynamics; integrative  
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1. Introduction 

Microbes are virtually ubiquitous on earth; they can be found in almost all aquatic and terrestrial 
environments, and are associated with all species of plants and animals. By some estimates, the total 
microbial biomass in the biosphere may nearly equal that of higher plants [1]. Microorganisms have a 
profound impact upon natural and engineered ecosystems, serving as key catalysis of biogeochemical 
reactions which are needed to sustain a robust and diverse biosphere. At a time in human history when 
the Earth appears to undergo a rapid change in climate, understanding the control mechanisms whereby 
microbial communities determine ecosystem function is particularly relevant. 

The role of microorganisms is significant also in human health and disease. With approximately  
16 million humans dying from infectious diseases each year [2], there is an increasing appreciation for 
the role of the “human microbiome” in conditions ranging from metabolic diseases [3], aging [4], and 
central nervous system disorders [5]. Microorganisms also play key role in a variety of industrial 
processes, including food production, mining, pulp and paper processing, and waste water treatment, as 
well as energy, biomaterials, and drug manufacturing [6]. 

Nonetheless, it is less appreciated that, in virtually in all of these settings, microbes do not function 
in isolation but rather as members of communities. Microbial communities are defined as multi-species 
assemblages, in which organisms live together in a contiguous environment and interact with each  
other [7]. Their complexity may range from dozens of “species” in extreme environments [8], to many 
hundreds (for example, on specific habitats on humans [9]) to tens of thousands per gram of soil [10]. 
Such complexity constitutes a major challenge for studying the relationships between the physiological 
behavior of individual species and ensuing interactions, which give rise to higher-order properties such 
as stability, productivity, and resiliency. 

In the analysis of microbial communities, important challenges include quantification of fluxes 
through pathways for nutrient resource and energy, identification of interactions of populations with 
each other and their environment, and inference of system’s higher-order properties. For example, 
metabolic diversity and functional redundancy are thought to increase robustness to environmental 
perturbations, as extreme conditions are less likely to kill all species performing a particular ecological 
function. However, there is less understanding of the mechanisms that maintain diversity in microbial 
communities [11], which ostensibly are a key to the functional stability of the inhabited ecosystem. 

This perspective suggests that microbial communities can be considered “complex adaptive systems”. 
That is, they are comprised of a network of spatially distributed agents that respond concurrently to the 
actions of others. The coherent behavior of the system then can arise from a variety of interactions 
between agents as well as with their local environment. Microbial populations and communities often 
exhibit much larger changes in biomass, composition, and activity than do plant and animal populations. 
These complex, nonequilibrium dynamics are driven by the temporal frequency of changes in both 
important environmental factors, the physiological responses of individual cells, and also the interactions 
among cells. The characteristic time for these processes can vary over 9 orders of magnitude from an 
enzymatic reaction to seasonal community succession (Figure 1). Systems with this level of complexity 
require simulation models to codify our current level of understanding of system dynamics. In the 
literature, there are a variety of mathematical approaches. In general, the level of complexity and details 
of models would be determined based on the goal of simulation and the time and length scales of target 
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systems. Thus, the suitable choice of a framework requires the correct understanding of the strength and 
limitation in its application. 

Figure 1. Characteristic time and length scales for various biological processes. 

 

In this article, we review various mathematical approaches developed for simulating microbial 
community dynamics. While a number of published studies have offered insightful perspectives on this 
subject (e.g., [12–18]), the present review is unique in the following aspects. First, instead of being 
confined to specific applications, we cover a wide range of frameworks developed for modeling diverse 
systems such as biofilms, biogeochemical cycling (in soil or ocean), human microbiota, biotechnology 
processes, etc. Second, this review is focused on comparatively understanding methodologies. Thus,  
we discuss the structural characteristics of various frameworks including top-down methods, bottom-up 
formulations, and their integration. Third, beyond the frameworks most frequently used for microbial 
community modeling, our discussion extends to those that are less common but potentially useful; the 
latter include population balance models, thermodynamically-based models, and cybernetic modeling 
approaches. Finally, we provide a systematic understanding of various modeling frameworks by 
classifying them according to modeling units and the ability to describe heterogeneity. Thus, we organize 
this article as follows. After providing brief backgrounds (Section 2), we discuss different forms of 
modeling frameworks: Supra-organismal approaches (Section 3), population-based models (Section 4), 
formulations to account for spatial and population heterogeneity (Section 5), and advanced simulations 
based on model integration (Section 6). 

Despite their usefulness, some mathematical methods could not be included in this review. To say a 
few, they include (i) tools for studying the processes and factors controlling microbial colonization and 
community assembly on a macro-scale (e.g., the approach by Stegen et al. [19]) and (ii) models for 
simulating cell-to-cell communication (such as quorum sensing) on a micro-scale (e.g., as described  
in [20]). 

2. Background Information 

Before embarking on a detailed discussion of individual approaches, we define modeling units for 
classifying models into different categories and symbolic notations to be used throughout this article. 
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2.1. Modeling Units and Model Classification 

Modeling units represent the basic entities that are modeled as interacting with each other within the 
microbial communities and their environment (or host). Predicted outcomes of interactions between the 
modeling units are community-level functions and properties. In this regard, we may call modeling units 
as “interacting units”. Depending on the choice of these units, the community dynamics can be simulated 
at different resolutions. Below, we address various modeling units commonly used in the literature: 
Individual cells, species (or taxa), functional guilds, or the community as a whole. 

At a coarse level, some researchers have chosen the microbial community as a modeling unit, 
whereby a microbial community is treated as a supra-organism (or also called super-organism) 
performing various functions. From this angle, the microbial community can be viewed as a collection 
of genes and reactions, rather than a set of distinct species; consequently, models based on this concept 
describe the dynamics of microbial communities in terms of interactions between genes/reactions, rather 
than between species. The same abstraction has been used in comparative metagenome analyses that 
examine the entire set of genes of the community without identifying the gene’s species of origin [21]. 

More frequently, the dynamics of microbial communities have been simulated in terms of interactions 
between species (or taxa), whose functions can be distinct or redundant each other. Work in this area has 
been accelerated by the capacity to determine community composition and species abundance using 
advanced metagenomics and bioinformatics techniques. Many researchers take advantage of these 
species or taxa-level information for modeling. Alternatively, a group of species that possess functional 
similarities can be taken as the modeling unit. Metabolic functions of species are similar in each 
functional guild, but distinct from those of other groups. For example, in biogeochemical modeling based 
on this concept, functional guilds represent various metabolic groups associated with distinct electron 
donors and acceptors, e.g., catabolizers of polysaccharides, proteins, and monomeric organic C, and 
respiratory guilds of different types. 

Emergent properties of microbial communities would be best studied by considering interactions at a 
single-cell level. Taking individual cells as the modeling units is justified considering that internal states 
and phenotypic traits of individual bacterial cells can be highly heterogeneous in populations, even in 
isogenic ones [22]. For example, a recent experimental study [23] showed that the internal state (i.e.,  
the level of internally stored nutrients) of cells can vary significantly in a population. 

In summary, supra-organismal approaches take the whole community as the modeling unit that 
interacts with environment. In population-based approaches, species (or taxa)/functional guilds are taken 
as interacting units. Variation in the population can be accounted for by using more rigorous frameworks 
such as population balance model (PBM) [24] and individual-based model (IbM) [25]. The most 
pronounced difference between them is that PBMs treat each population as a continuous phase, while 
IbM describes it as a collection of discrete particles. Figure 2 shows a broad classification of 
mathematical models based on the modeling (or interacting) units addressed above. 
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Figure 2. Classification of community models depending on interacting units. Individual 
shapes represent independent interacting units. Variance of state and functions across interacting 
units is represented by different colors. Color gradient in population balance model implies 
the heterogeneity in states and functions within the interacting unit. Representation of 
microbial communities using a fish shape is inspired by Scheffer et al. [26]. 

 

2.2. Mathematical Notations 

For a systematic discussion, we define symbolic notations that are consistently used across different 
mathematical models. Notations unlisted below will be explained individually, wherever appropriate. 

Vectors and matrices: 

• 1 2[ , , , ]Ic c c=c  : The vector of concentration of J  extracellular metabolites (such as substrates 

and produced metabolites) in environment 
• 1, 2, ,[ , , , ]

kk k J kr r r=kr  : The vector of kJ  fluxes (or reaction rates) for species k  

• kS : ( )k kI J′ ×  Stoichiometric matrix of species k  
• 1 2[ , , , ]Kx x x=x  : The vector of relative abundance or biomass concentration of K  species 

Indices: 

• [1, 2, , ]I=I  : Indices of I  metabolites in environment 
• [1, 2, , ]k kI′ ′=I  : Indices of kI ′  intracellular metabolites for species k  
• [1, 2, , ]kJ=kJ  : Indices of kJ  fluxes for species k  
• [1, 2, , ]K=K  : Indices of K  species 

Scalars: 

• ,i kY : The yield of metabolite i  for species k  
• ,x kY : The biomass yield of species k  
• μk : The growth rate of species k  
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3. Supra-Organismal Approaches 

Supra-organismal approaches focus on the interactions of the whole community with the environment 
without considering cell boundaries. These models have been applied to many domains of life [27] 
including insect colonies and viruses, as well as microbial species, and are particularly applicable for the 
analysis of large-scale complex communities, such as those found in human, soil, and marine 
microbiomes, the number of whose member species is tremendous. An important advantage of taking 
supra-organismal approaches is that diverse modeling approaches developed for analyzing single 
organisms are readily applicable [28], which include stoichiometric [29,30] and dynamic modeling 
frameworks [31,32], as discussed below. 

3.1. Stoichiometric Model-Based Analysis 

A metabolic network contains a set of metabolites, their physical transport (into and out of an 
organism or a cell), and intracellular enzymatic biochemical conversions. The network can be 
represented as a graph that shows the connection of all metabolites (nodes) through reactions (links or 
arrows) or as a list of mass balance equations around metabolites (see Figure 3 as a tutorial example). 

Figure 3. Graphical and mathematical representations of metabolic reactions occurring in  
a cell. 

 

At steady state, the mass balances of intracellular metabolites (i.e., 1m  and 2m  in Figure 3) are given 

as a set of algebraic equation as follows (Figure 3): 

=Sr 0  (1) 

where S  is the ( )I J′×  stoichiometric coefficient matrix and r  is the column vector of J  fluxes. 
Without loss of generality, we assume that 0,jr j≥ ∈J  (by splitting reversible reactions into 

irreversible pairs). Together, the mass balances given in Equation (1) along with appropriate flux bounds 
are called stoichiometric models. Metabolic network models are often represented in a standard format 
called the Systems Biology Markup Language (SBML). 

As I J′ <  in general, the solution vectors r  satisfying Equation (1) form a convex polyhedral cone 
in a flux space (thus, called flux cone). Using stoichiometric model-based methods such as flux balance 
analysis (FBA) [29] and elementary mode (EM) analysis [30], it is possible to estimate a specific 
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metabolic state of an organism through the identification of relevant metabolic pathways presumably 
active in a given steady state. Figure 4 shows how FBA and EM analysis perform differently. FBA 
assumes metabolism in a single microbe to be represented by an optimal pathway that maximizes the 
production of biomass (or any other metabolites including ATP). FBA obtains an optimal pathway by 
solving a linear programming (LP) problem subject to Equation (1) and inequality flux bounds. On the 
other hand, EM analysis identifies edge vectors (i.e., EMs) of the flux cone because convex combinations 
of all edge vectors can represent any feasible solutions within or on the cone. The full set of EMs is 
simultaneously computed using nullspace-based methods (e.g., [33]), but it is also possible to sequentially 
enumerate them using mixed integer linear programming (MILP) [34], a standard method for solving 
optimization problems in which some of the variables are constrained to be integers. Recent advances in 
numerical implementations [35,36] led to the computation of up to millions of EMs. A minimal set of 
EMs that represents a specific metabolic state can systematically be chosen using the methods reported 
in [37,38]. Nonhomogeneous constraints can be accounted for not only in FBA calculations, but also in 
EM analysis [39]. 

Figure 4. A schematic illustrating the concept of flux balance analysis (FBA) and elementary 
mode (EM) analysis. 

 

Stoichiometric modeling approaches addressed above can be applied for the analysis of a  
microbial community based on the supra-organismal concept if a metabolic network is reconstructed for 
the whole community. A community-level metabolic network can be reconstructed as described by  
Greenblum et al. [40] in their in silico study of the human gut microbiome. Using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database, metagenomic sequence reads were annotated 
to identify enzymes, the entire set of which found in any sample was then used to construct community-level 
metabolic networks for different conditions. While they focused on topological analysis as the resulting 
networks were noisy and inaccurate, community-level networks obtained as such are readily amenable 
to stoichiometric model-based analyses such as FBA or EM analysis. 

Taffs et al. [41] provided an example of analyzing a community-level network based on EM analysis. 
The community considered therein contains three functional guilds, including unicellular cyanobacteria 
related to Synechococcus spp., filamentous anoxygenic phototrophs related to Chloroflexus and 
Roseiflexus spp., and sulfate-reducing bacteria. As individual networks for guilds were previously 
available, the community-level network was generated by superimposing them. This method (named as 
a pooled approach) formulating a set of functional guilds as a single network was compared with two 
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other (i.e., compartmentalized and nested) approaches that consider individual networks separately. While 
the latter two approaches allow more detailed analysis on a microbial community by providing information 
on inter-guild interactions, the pooled approach is also useful for initial and exploratory analyses of complex 
or poorly understood communities as addressed by the authors. 

3.2. Metabolic Function-Based Dynamic Modeling 

Stoichiometric analysis of metabolic networks helps to estimate the flux distribution within the 
community in a given environment. Simulation of the dynamic response of the community to 
environmental variations requires the use of modeling frameworks that dynamically adjust to the 
environment. For example, one would develop an adaptive model of a supra-organism based on primary 
metabolic functions performed by the community without knowing who provide those capabilities.  
A metabolic network of the community can be constructed with a focus on those primary metabolic 
functions catalyzed by a set of functional genes of interest (Figure 5). 

Figure 5. Function-based dynamic modeling. 

 

For the toy system considered in Figure 5, the dynamics of the community as a supra-organism can 
then be modeled as follows: 

3

,
1

x j j
j

dx x Y r
dt =

= ∑  (2) 

3

,
1

, 1, ,5i
i j j

j

dc x Y r i
dt =

= =∑   (3) 

where ,x jY  and ,i jY  denote the yields of biomass and extracellular metabolite ic  through jr .  

By focusing on a small number of key metabolic functions only, this approach reduces the difficulty of 
model identification generally arising when one considers a detailed structure of a metabolic network. 

Along this line, Reed et al. [42] recently presented a gene-centric approach where they accounted for 
the dependence of reactions 'jr s  on the level of functional genes, including the dynamic response of the 

function of each respective gene. That is, in the above example, 
max ( 1, 2,3)j

j j j
j j

c
r k e j

K c
= =

+
 (4) 
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max
, ( 1, 2,3)j j

E j j
j j

de c
k e j

dt K c
λ= − =

+
 (5) 

where je  represents the abundance of functional gene that catalyzes jr  and λ  denotes the mortality rate 

constant of a gene. In the case study of nitrogen cycling in the Arabian Sea, they developed a model 
based on eight functional genes associated with various metabolic functions such as aerobic respiration, 
nitrate reduction, nitrite reduction, dissimilatory nitrite reduction to ammonium, sulfate reduction, 
sulfide oxidation (coupled to nitrate reduction), aerobic sulfide oxidation, aerobic ammonia oxidation, 
anaerobic ammonium oxidation, and aerobic nitrite oxidation. Biomass yields were estimated from 
thermodynamic energy information, while stoichiometric coefficients of other metabolites were 
determined from elemental and electron balances. 

It is challenging to apply the functional gene-centric approach to complex ecological systems 
containing diverse sets of electron donors and acceptors that represent alternative choices for 
exploitation by microbial communities. Their competitive relationship is often shown as a sequential 
consumption pattern. In many cases, including Reed et al., those patterns are simulated by designing the 
kinetics of rj’s as complex forms and/or additionally considering inhibition terms, but the incorporation 
of cellular regulatory actions would facilitate model development in a more systematic way. In this 
regard, while not applied yet, the cybernetic approach developed by Ramkrishna and coworkers [43] is 
well suited for simulating the community dynamics based on functional gene-centric approach. The 
cybernetic approach hypothesizes that cellular metabolism is optimally regulated to achieve a certain 
objective function that is related to actual rates rather than yields. Based on optimal control theory,  
the cybernetic approach then provides accurate predictions of cellular responses to environmental and 
genetic perturbations, without relying on mechanistic details of regulation (see [44–49] for examples of  
cybernetic modeling). 

The successful application of the gene-centric approach addressed above requires known associations 
between functional genes and reactions. This can be a limitation because some of potentially important 
functions may be missed due to metagenomic coverage. Nevertheless, the dynamic simulation of microbial 
communities based on a supra-organismal concept is an attractive alternative when it becomes difficult to 
perform the full dynamics analysis at an individual species level. 

4. Population-Based Models 

Most commonly, the microbial community dynamics have been simulated at the level of individual 
populations of species or guilds. In these population-based modeling approaches, the internal states and 
phenotypic functions are assumed to be homogeneous across cells within each population. One of the 
main issues therein is how to account for interspecies (inter-guild) interactions in a direct or indirect 
(i.e., through environment) way for the prediction of community structure and functions. This section 
presents (i) static methods for inferring interspecies interactions and (ii) approaches for predicting 
community structure in a given condition and its dynamic change in response to perturbations. For the 
sake of simplicity, we confine our discussion to well-mixed environments. The issue of spatial 
heterogeneity is handled in a follow-up section. 
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4.1. Inference of Microbial Interactions 

In a community, microbes may exert a positive, negative, or neutral impact on each other. The positive 
(negative) impact of the species A on the species B implies that B grows better (worse) in the presence 
of A. The relationships between species can be bidirectional, if the impact is mutually positive 
(mutualism if obligatory, or synergism if nonobligatory), mutually negative (competition), or positive 
on one side but negative on the other (antagonism); unidirectional, if the impact on one of the two is 
neutral, regardless of whether the impact on the other is positive (commensalism) or negative 
(amensalism); non-directional, if the impact on each other is negligible or insignificant (neutralism) 
(Table 1) [50]. Neutralism is rarely found in natural microbial communities [51]. 

Table 1. Forms of microbial interactions: The positive, negative, and neutral impact of one 
species on another is represented by ⊕, ⊖, and ⊙, respectively. 

Relation Examples 

B
id

ire
ct

io
na

l 

Mutualism or 
synergism 

⊕⊕ 

 Biofilm formation to confer antibiotic resistance to the 
community members [52,53] 

 Syntropy (or cross-feeding): Hydrogen transfer between sulfate 
reducers and methanogens [54] 

Competition ⊖⊖ 
 Species with similar niches: Paramecium aurelia and 

Paramecium caudatum [55] 

Antagonism ⊕⊖ 
 Predation: Ciliates feeding on bacteria [50] 
 Parasitism: Bacteria and bacteriophages [50] 

U
ni

di
re

ct
io

na
l Commensalism ⊕⊙ 

 Acetobacter oxydans oxidizing mannitol to produce fructose, 
which is used by other species such as Saccharomyces 
carlsbergensis that can metabolize fructose, but cannot 
mannitol (http://www.eoearth.org/view/article/171918/) 

 Mycobacterium vaccae metabolizing cyclohexane to 
cyclohexanol, which is subsequently used by Pseudomonas 
species (http://www.eoearth.org/view/article/171918/) 

Amensalism ⊖⊙ 

 Lactobacilli producing acids that lower the pH of the 
surrounding environment [50] 

 The bread mold Penicillium secreting penicillin that kills 
bacteria [56] 

N
on

-
di

re
ct

io
na

l 

Neutralism ⊙⊙ 

 Growth of yogurt starter strains of Streptococcus and 
Lactobacillus in a chemostat [51]: The populations of these 
strains do not change much regardless of whether cultured 
separately or together 

The nonrandom co-occurrence patterns of species observed in ecosystems may be interpreted that the 
community structure is shaped primarily by microbial interactions [57]. Basic microbial relationships 
can be studied by comparing the growth rates (or biomass concentrations) from individual-growth and 
co-growth environments, respectively. Experimental identification is often ineffective, however, due to 
the difficulty in isolating individual organisms for axenic growth experiments. Alternatively, we may 
use theoretical tools such as network inference methods or metabolic network analyses. 
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4.1.1. Network Inference 

Advanced metagenomics and bioinformatics techniques allow for the identification of member 
species in the community and estimates of their relative abundances and functional capabilities [58]. 
“Shotgun” methods survey genomic content of a microbial community directly from the natural 
environment, without having to isolate individual species for lab cultivation. Sequence data can be 
segregated into bins representing distinct Operational Taxonomic Units (OTU), which may mean an 
individual organism or species, or a group that shares a certain set of observed characters. Two classes 
of binning processes include similarity-based (or align-based) and composition-based strategies [59]. 
Similarity-based binning searches for sequence similarities between samples and reference genomes in 
existing public databases. Composition-based methods cluster metagenomic sequences into different 
bins using intrinsic, organism-specific characters of the DNA sequence, such as GC content, dinucleotide 
frequencies, and codon usage bias. Bins can be analyzed to provide information about community 
composition and member abundances. In some case, near-complete genomic information can be 
recovered for some member populations. 

Microbial relationships can be inferred from species abundance data. Based on the traditional 
perceptions, we may refer to the relationship of a pair of organisms as competitive (or negative) if their 
abundances across samples are anti-correlated despite they share environmental niches; as cooperative 
(or positive) if they show similar abundance pattern. The network of microbial associations can be 
predicted in a systematic way using the techniques termed as network inference. Similarity-based 
methods infer pairwise relationships by analyzing the co-occurrence/exclusion patterns of two species 
based on similarity scores. More complex interactions between more than two species can be captured 
using other techniques such as regression-based and rule-based methods. Regression-based methods 
represent the abundance of a certain species as a function of the abundances of other species. Rule-based 
methods initially enumerate all logically possible rules for the coexistence/exclusion of species as 
supported by presence-absence data sets. Only significant rules are retained through the subsequent 
filtering processes. Faust and Raes [50] provides an excellent review on this subject. 

The identified relationships between the member species can be represented as a (microbial 
association) network composed of nodes (or vertices) and links (or edges). Nodes and links represent 
species (or taxa) and their interactions, respectively. The relationships between species are often 
asymmetric, i.e., the presence of one species can impact on the population of another, but not vice versa. 
The direction and strength of microbial interaction can be represented by an arrow and its thickness, 
respectively. Environmental variables can also be incorporated into the network by treating them as 
additional species. This expanded network reveals the relationship between species and environmental 
traits. For example, consistent co-occurrence between certain species and nutrients (e.g., nitrites and 
nitrates) indicates the involvement of specific microbes in biogeochemical cycles [60]. 

Like other robust networks (including World Wide Web, protein-protein interactions, cellular 
metabolic systems, and human social networks), microbial association networks are scale-free [50]. The 
scale-free network is characterized by a majority of species with only a few links (i.e., low-degree nodes) 
and a few hub species with many links (i.e., high-degree nodes). The degree distribution of a scale-free 
network follows a power law, a semi-log plot of which gives a straight line [61,62]. Scale-free networks 
are robust against random deletion of nodes, but this tolerance comes at the cost of extreme vulnerability 
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to targeted removal of hubs [63]. This implies that a microbial community may malfunction when losing 
a hub species, but may perform normally after the loss of a functionally less-connected species. A group 
of species that are densely connected with each other may be interpreted as having overlapping  
niches [50]. An interesting and unresolved issue is the ecological role of hub and non-hub species. 

Using the methods addressed above, microbial relationships can be systematically inferred from 
species abundance data. Microbial associations derived as such are condition-specific, meaning that 
information on microbial relationship obtained from one condition may not valid in another condition, 
as the structure and properties of microbial association networks can significantly be changed according 
to environmental conditions. Also, they do not provide biological reasons why certain species interact 
in a specific way while others do not. To gain a more mechanistic understanding, we need  
physiology-based tools such as the ones described in the following. 

4.1.2. Stoichiometric Modeling of Multiple Species 

Stoichiometric metabolic network-based analyses not only provide mechanistic insights on species 
interactions with each other and with their environment, but also estimate flux distributions within 
individual species and the community. Stoichiometric model-based analysis discussed in Section 3.1 can 
be used to model individual species/taxa in microbial communities. Figure 6 summarizes the process of 
developing a stoichiometric model for a multispecies system. 

Figure 6. Procedures of developing a stoichiometric model for a simple microbial 
consortium. The metabolic networks and stoichiometric models for individual species are 
reconstructed based on species-level genes assigned through the binning process. The size 
of the resulting community stoichiometric model is increasing in proportion to the number 
of species. 

 

In the pioneering work by Stoylar et al. [64], FBA was applied to analyze syntrophic  
relationship between sulfate-reducing bacteria (Desulfovibrio vulgaris) and methanogens  
(Methanococcus maripaludis). The community metabolic network combines individual species 
networks by treating them as internal compartments. They estimated interspecies metabolite flows, 
together with intracellular flux distributions in each organism by maximizing the weighted sum of 
species biomasses. Freilich et al. [65] used the method of Stoylar et al. [64] to predict metabolic 
interactions between two species for the 6903 pair-wise combinations of 118 genome-scale metabolic 
models of bacteria. They compared the biomass production rates between co-growth (CG) and sum of 
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individual growth (SIG) to classify the interactions as competitive (if CG < SIG), cooperative  
(if CG > SIG), or neutral (if CG ≈ SIG). They also determined winners and losers for competitive pairs 
and givers and takers for cooperative pairs, along with the level of competition and cooperation. 

Klitgord and Segre [66] extended the method by Stoylar et al. (by artificially introducing additional 
compartment that represents environment shared by different species) to explore interspecies metabolite 
exchanges for various pairwise combinations of seven bacterial species. Their algorithm not only 
recapitulated known cross-feeding interactions, but also discovered new sets of metabolites potentially 
exchanged. They also showed how to computationally identify culture media that lead to commensalism 
or mutualism for a given set of organisms. Wintermute and Silver [67] developed a computational 
framework based on the minimization of metabolic adjustment (MOMA) [68] to investigate the 
interactions in synthetic pairs of 46 Escherichia coli auxotrophs. As a result, they observed synergism 
in 17% of 1035 computationally identified pairs. Beyond microbial consortia, these joint stoichiometric 
modeling techniques have also been applied to simulate metabolic interactions between different organs 
in human [69] or between different cell types in an organ [70]. 

FBA-based formulation was applied to microbial communities under the name of community flux 
balance analysis (cFBA) [71]. Zomorrodi and Maranas [72] proposed a generalized computational 
platform for implementing cFBA. Their framework termed OptCom formulates a bi-level optimization 
problem where both community-level and individual cell-level objectives are maximized/minimized. 
Metabolic fluxes are estimated from the tradeoffs of those objective functions at individual species and 
whole community levels. Experimental data for the community (such as composition) and organisms 
(such as uptake rate), if available, can be incorporated to improve the quality of predictions.  
Zomorrodi et al. [73] recently developed a dynamic version of OptCom (called d-OptCom), which we 
discuss in Section 6.3. 

The compartmentalized approach of Taffs et al. [41] used the same type of expanded networks  
(i.e., containing individual networks as compartments) for the EM analysis. The computational burden 
significantly increases, however, as the number of EMs undergoes combinatorial explosion with the 
network size. Thus, they alternatively suggested the nested approach, which first analyzes each of 
individual networks (which is computationally less demanding), and subsequently, examines the 
potential interactions between individual networks based on ecologically relevant pathways. 

It will be difficult to extend metabolic network-based analysis to complex ecological systems 
containing lots of uncharacterized species, whose genetic and metabolic information are not well known. 
Analysis of an expanded community network constructed by combining genome-scale networks  
of individual species becomes also computationally demanding when the number of species is 
significantly large. This is true with the LP-based cFBA as the expanded number of reactions leads to 
huge memory requirement. While the current practice of these bottom-up analyses is therefore limited 
to simple consortia composed of a few species/guilds, their extension to more complex systems  
will be feasible in the future with the rapid progress of metaomics technologies and related  
experimental/computational methods. 
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4.2. Nonlinear Regression Models 

In general, the dynamics of microbial communities are simulated using differential equation-based 
models. However, if one’s interest is to predict how microbes are assembled in a given environment and 
how the community composition changes across different conditions, non-differential equation-based 
approaches would also be useful. One approach along this line is to develop algebraic relationships 
between species abundances and environmental conditions using nonlinear regression techniques. 
Abundance of each species in the community can then be formulated either as a function of environmental 
variables only or in terms of both environmental factors and the abundance of other species. 

Suppose that we have collected sets of species abundance data across different locations characterized 
with specific environmental traits. Alternatively, we may gather data on the temporal change of 
microbial community composition (at a fixed location) driven by seasonal climate variations. These data 
provide an opportunity to build a predictive model that combines species occurrence (or abundance) and 
environmental conditions. In the case that mechanistic information on microbial assemblage in response 
to external stimulations is unknown or difficult to collect, the relationship between species and 
environmental factors can be established through nonlinear algebraic equations. That is, for the 
community composed of K  members, the abundance of the thk  member ( kx ) may then be represented 

as follows:  

, ( , ), 1, ,k a kx f k K= =c p   (6) 

where the vectors c  and p  denote environmental variables and parameters. Once the functional forms 
of fa,k’s and the set of parameters p  are suitably identified, it becomes possible to predict species 
abundance in a new condition by providing environmental factors therein. Bioclimatic models often use 
this approach to predict the species abundance as a function of environmental conditions and its variation 
across a landscape, and are also called different names including ecological niche models and species 
distribution models [74]. 

Larsen et al. [75] proposed an extended form by incorporating biotic interactions, i.e., 

, ( , , ; ), 1, ,k a k kx f x k K= ∉ =x c p x   (7) 

Here, the abundance of species k  is described as being dependent on the abundances of other species, 
as well as environmental factors. They reported improved predictions of community structure in 
comparison to the cases excluding biotic interactions. 

In general, sufficiently large datasets may be required to develop nonlinear regression models. Major 
challenges in developing them such as the one in Equation (7) include (i) the handling of a large number 
of potential interactions between species and environmental factors, which will be more problematic for 
complex communities; and (ii) the suitable formulation of nonlinear regression equations for each 
species. To focus on key interspecies reactions, the methods discussed in Section 4.1 (i.e., network 
inference and/or stoichiometric model analyses) would be critically useful. The design of appropriate 
functional forms can be facilitated by the use of specially designed software package such as Eureqa 
developed by Schmidt and Lipson [76]. Given sets of experimental data, Eureqa is able to identify the 
simplest form of a mathematical function that can best describe their correlation using symbolic 
regression method. 
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4.3. Thermodynamically-Based Models 

Thermodynamically-based models potentially provide more mechanistic predictions on the change 
of community structure across conditions. Most researchers are familiar with the use of kinetic 
approaches, but thermodynamic modeling differs in the following several ways. Kinetics deals with 
absolute concentrations, while thermodynamics deals with relative concentrations. In kinetic models, 
time is modeled parametrically while in thermodynamic models, time can sometimes be modeled  
non-parametrically; that is, under certain assumptions thermodynamics can provide information on the 
rank order of reactions as they occur in time. 

In most applications of thermodynamics to mixed microbial systems (including biorefineries, water 
systems, marine systems and biogeochemical remediation sites), the focus has been to predict or 
understand product formation without explicitly modeling all details of the chemical transformations 
that lie between initial environmental compounds and oxidized metabolites excreted by the environment. 
This is a task that thermodynamics is well suited for, since the thermodynamic functions of free energy 
and entropy are state variables whose values are independent of the path taken between initial reactants 
and final products. Biogeochemists, for example, typically use databases of geochemical reactions to 
model geochemical processes. Since biological oxidation and reduction can also occur, it makes sense 
to supplement databases of geochemical reactions with reactions mediated by microbial communities. 
Istok et al. [77] supplemented tables of geochemical reactions with thermodynamic-based growth 
equations of microbes and then predicted laboratory and field interventions for the bioreduction of 
uranium. Likewise, Larowe et al. [78] used thermodynamic modeling to evaluate and compare the 
driving forces responsible for microbial anaerobic methane oxidation across representative marine 
ecological sites and different consortia. The analysis showed that consortia with significant coupling to 
sulfate-reducing organisms have sufficient thermodynamic driving forces for methane oxidation. 

The ability to predict product yields from models is also an important goal for biotechnology 
applications. Rodriguez et al. [79] used thermodynamically-based models to predict product yields from 
glucose fermentation in mixed cultures. While the nature of the modeling did not distinguish boundaries 
between individual species, the approach differed from those mentioned above in that intermediate 
reactions of metabolism were modeled and not just summary reactions. This approach is becoming 
popular for modeling situations in which only a metagenome is available. 

The modeling of metabolism in detail for communities of organisms using thermodynamics is 
increasing and it is worthwhile to elaborate on the methods and assumptions used in these models.  
For an isolated reaction 

1

1

k
k

A B
−





 (8) 

the relationship between thermodynamics and flux has been inferred to be [80], 
1

1

log JG RT
J
+

−

∆ = −  (9) 

where G , R , and T  denote Gibbs free energy, ideal gas constant, and temperature, and 1J+  and 1J−  

are forward and reverse flux values of the reaction as defined below, i.e., 

1 1 1 1[ ],   [ ]J k A J k B+ − −≡ ≡  (10) 
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Some authors appreciate that this stated relationship is an approximation based on reversibility and 
the validity of the use of Equation (9) depends on the context in which it is used. If one assigns flux 
values based on an experimentally or computationally determined free energy change, 

1

1

G
RTJ e

J
−∆

+

−

=  (11) 

then one is using the assumption of detailed balance. This relationship is only strictly valid at equilibrium 
for an isolated system. Even for an individual reaction with no change in free energy in a coupled reaction 
system at non-equilbrium, there is no physical requirement for the reaction to obey detailed balance. 
Likewise, if one assigns free energy values based on observed fluxes from a non-equilibrium system 
using Equation (9), then the calculated free energy values will not be correct. 

Even though the relationship does not strictly hold for non-equilibrium systems, the assumption of 
detailed balance can be a useful tool if used carefully. A case in point, Noor et al. [81] have used  
Equation (11) as a framework for evaluating flux statistics at individual reactions. They pointed out that 
reactions near equilibrium act as kinetic bottlenecks in pathways that are overall far from equilibrium. 
This is a valid use of the assumption of detailed balance in that reactions at equilibrium in an otherwise 
nonequilibrium system are those for which the assumption is not severe. 

Another widely used thermodynamic concept in metabolic modeling, whether single organisms [82] 
or communities of organisms [83], is entropy production. In flux-based modeling, entropy production is 
used as a constraint to reduce the solution space to a set of reactions that are more likely to be feasible 
ones. Using the net flux of a reaction, for example 1 1netJ J J+ −= −  in the example above, the constraints are 

generally stated as, 

0netJ G∆ ≤  (12) 

The concept is that that entropy production for a spontaneous process must be positive, or analogously 
as stated above that the rate of free energy production must be nonpositive. Strictly speaking, while the 
concept that entropy production for a spontaneous process must be positive is correct, we know from 
statistical mechanics that it applies to the overall process and not necessarily to individual reactions. 
Fluctuations that decrease entropy production are well known and are an active area of research. 
Nevertheless, just as in the case of Equation (11), the assumption that Equation (12) applies to individual 
reactions can be a useful tool when used with care. 

The concept of thermodynamics as the basis for natural selection has considerable theoretical and 
empirical justifications [84–89], and consequently modeling approaches have been developed that use 
maximum entropy production as either an optimization goal or simulation master equation. Zhu et al. 
have developed a flux-based approach that uses entropy production as the optimization goal [82]. While 
several flux-based applications include constraints based on Equations (9) to (12), this approach selects 
the thermodynamically most optimal solution as the most likely one. 

Taking this concept a step further, new methods have been reported [90,91] that use statistical 
thermodynamics directly to solve a thermodynamic master equation similar to the kinetic master 
equation approach developed by Gillespie [92] and others. The kinetic master equation is a stochastic 
equation giving the probability of a state as a function of time. In the thermodynamic master equation, 
if the rates of the reactions are such that the system is thermodynamically optimal, then time can be 
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modeled non-parametrically (e.g., rank ordering of time-dependent reactions). The master equation is 
based on an open system with the probabilities of individual reactions being determined by changes in 
the chemical potentials. The advantage of this approach over a flux-based approach that contains 
thermodynamic constraints is that approximations such as Equations (9) to (12) are not required and 
metabolite concentrations and energy requirements of pathways can be determined directly. The caveat, 
as mentioned above, is that if one does not have rate constants to work with, then some applications may 
need to assume that the rates of the reactions are such that the system is thermodynamically optimal. 

4.4. Trait-Based Modeling 

While species are considered the most natural units to describe the diversity and dynamics of 
microbial communities, taxonomic or phylogenetic distinction among species can become obscure as 
microorganisms often undergo rapid genetic changes through gene loss and gene acquisition via 
horizontal gene transfer. Thus, trait-based ecology characterizes organisms in terms of their functional 
properties by mapping organism-based information into a functional space [93]. The dynamics of 
microbial communities is then analyzed by focusing on the traits as the entities that mediate the microbial 
interactions with each other and the environment. Microbes can be classified by various traits such as 
morphological, behavioral, and biochemical similarities. The trait-based classification is thus taxon 
independent, i.e., it may lead to the combination of different species as the same group or the separation 
of the same species (if traits vary therein) into different groups. As modeling units, therefore, trait-based 
models often take a group of organisms (such as functional guilds) that share similar traits. The direct 
link of biological traits to environments makes trait-based models widely applicable to modeling 
behavior of a variety of living organisms in ecosystems [94]. 

Trait-based models have been used for the steady state and dynamic analyses of diverse ecosystems. 
For example, this methodology was used to predict the relative abundance of species for plant 
community assemblies in given environmental conditions. The review by Laughlin and Laughlin [95] is 
an excellent source regarding this subject. They compared two frameworks: The maximum entropy 
(Maxent) model (or Community Assembly by Trait Selection, CATS) [96,97] and the Traitspace  
model [98]. In both approaches, the community-level trait is represented as the sum of individual species 
trait. This generally leads to underdetermined systems with more unknowns (i.e., abundances) than 
equations (i.e., algebraic relations of traits between the community and individual species). The Maxent 
model estimates the relative abundance of species by maximizing the evenness (quantified as the entropy 
function) of their distribution. Thus, the Maxent solution has a tendency of broadening the distribution 
of species abundance. In contrast, the Traitspace that is based on Bayesian theory predicts an extremely 
low probability of abundances for functional groups that do not pass through so-called environmental 
filters. Thus, the resulting Traitspace solution contains a minimal number of species for a given condition. 
These approaches were used for the analysis of plant community assembly, but the concepts per se are 
interesting enough to be applicable to microbial communities as well. 

Trait-based dynamic models, which consist of differential equations that represent the rates of change 
of nutrients, organic matter pools, populations of functional guilds, etc., have been applied to large-scale 
ecosystems, e.g., for studying ocean or subsurface biogeochemistry. In situations where phenotypic traits 
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are distinct among functional guilds, the change of community composition in time can be predicted 
from the following population growth equations for K  functional guilds, i.e., 

, , 1, ,k
k x k k

dx x Y r k K
dt

= = 

 (13) 

where kr  denotes the nutrient uptake rate of functional guild k  and 
,x k kY r  means its growth rate. Note 

that the reaction rate kr  is a function of environmental variables, implying that Equation (13) describes 

species interactions as being made through the environment by competing for the nutrients or 
cooperating through metabolite exchanges. Balances of environmental variables are basically the same 
as Equation (3), i.e.,  

,
1

, 1, ,
J

i
i j j

j

dc x Y r i I
dt =

= =∑   (14) 

Along this line, Jin and Roden [99] developed a biogeochemical model of batch sediment slurry to 
examine the influence of metabolic degradation of ethanol on the chemistry of anoxic subsurface 
environment. They grouped microorganisms into eight functional groups based on their metabolic 
capability of utilizing electron donors (ethanol and its intermediate products including acetate and H2) 
and acceptors (such as nitrate, ferric iron, sulfate, and bicarbonate). Thy then modeled twelve redox 
reactions that could contribute to ethanol degradation as being catalyzed by specific functional groups. 

Bouskill et al. [100] introduced a microbial community trait-based modeling framework (MicroTrait) 
to study the nitrification (i.e., the process of oxidizing ammonia to nitrite and then nitrate) in the  
microbe-mediated nitrogen cycle. They simulated the nitrification process based on the eleven functional 
guilds: Seven Betaproteobacterial ammonia oxidizing bacteria (AOB), three nitrite-oxidizing bacteria 
(NOB), and one ammonia-oxidizing archaea (AOA). The model was then used to predict the diversity 
of nitrifying functional guilds and the rates of ammonia oxidation and nitrous oxide production across a 
range of environmental conditions. 

4.5. Lotka-Volterra Model 

The use of Lotka-Volterra (LV) type of models is an interesting alternative to simulate microbial 
population dynamics. The model was initially proposed by Lotka to analyze the predator-prey dynamics, 
while Volterra independently investigated the equations to explain oscillations in fish populations in the 
Adriatic. In addition to animal ecology, this model has been used to characterize the microbial population 
dynamics resulting from competitive and mutualistic interactions [101]. The generalized LV (gLV) 
equations are able to describe various possible relationships between arbitrary numbers of species. The 
gLV model represents the population growth dynamics of species k  as follows: 

1
μ , 1, ,

K
k

k k kk k
k

dx x a x k K
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 = + = 
 

∑   (15) 

where kka ′  denotes the interaction strength between species k  and k′ . Unlike trait-based models 

discussed in the previous section, the gLV model directly considers the impact of the presence of other 
species on the growth of a certain species. The coefficients ija  can be positive or negative or zero 
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depending on the relationship between the two species. One the other hand, the gLV model above does 
not consider indirect species interactions through metabolite sharing or exchange. 

Recently, the gLV equations were used to investigate microbial interactions in the human gut  
(e.g., [102,103]) and in a cheese microbial community [104]. In the study of the dynamics of intestinal 
microbiome structure, Stein et al. [103] extended the gLV equations by adding additional term 
describing the effect of environmental variations, i.e., 

,
1 1

μ , 1, ,
K I
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k k kk k i k i

k i

dx x a x b c k K
dt ′ ′

′= =

 = + + = 
 

∑ ∑   (16) 

where the last term on the right hand side of Equation (16) represents the impact of external variations 
on the growth of species k . 

4.6. Evolutionary Game Theory 

Classical game theory analyzes situations where the success of one’s choice (i.e., strategy) is 
influenced by the choices of other players. Fundamentally, this strategic game requires the players to 
make optimal choices by rationally analyzing all probable outcomes that would result from different 
combinations of strategies. A typical example for such strategic games is the prisoner’s dilemma. This 
concept of rationality has been used for the analysis of economic and social systems. 

Without relying on the rationality of players, evolutionary game theory founded by the work of 
Maynard Smith and others [105] simulates the dynamic evolution of a certain strategy in a competing 
population, and evaluates how good it is. The success of a strategy is not only determined by its own 
quality, but also determined by the frequency (i.e., relative abundance) of other competing strategies in 
the population. This frequency-dependent selection concept implies that the fitness landscape is altered 
as the population structure and member abundance change with time [106]. 

Selection dynamics are typically represented using the following replicator equation, i.e.,  

, ( ) ( ) , 1, ,k
k g k g

dx x f f k K
dt

 = − = x x 

 (17) 

where kx  is the frequency or relative abundance of species k , ,g kf  is the fitness of species k , and gf  is 

the average fitness represented as follows: 

,
1

K

g g k k
k

f f x
=

≡∑  (18) 

Equation (17) implies that the relative abundance of species k  increases (decreases) if its fitness ( )kf x  
is greater (less) than the average fitness of the population ( )gf x . Interestingly, the replicator equation is 

mathematically equivalent to the gLV equation: A replicator equation with n strategies can be 
transformed into a gLV equation with 1n −  species [105]. 

To provide an understanding of how evolutionary game-theoretic models are formulated, we consider 
a simple game between two strategies–say A and B. Figure 7 shows how fitness functions for players A 
and B, and the average fitness can be represented from the payoff matrix. The four entries in the payoff 
matrix are interpreted as follows: The player A gets payoff AAc  when playing against A and ABc  when 
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playing against B; the player B gets payoff BAc  when playing against A and BBc  when playing  

against B. 

Figure 7. A simple game between players A and B: In evolutionary game theory, payoff is 
equated with fitness. 

 

As the summation of frequencies is unity, the substitution of Bx  with ( )1 Ax−  leads the replicator 

equation given in Equation (17) as the following single nonlinear differential equation, i.e., 

( ) ( )1 1A
A A A A B A

dx x x d x d x
dt

= − − −    (19) 

where ( )A AB BBd c c≡ −  and ( )B BA AAd c c≡ −  denote the relative benefit of A playing against B and the 

relative benefit of B playing against A, respectively. Five different scenarios were discussed depending 
on Ad  and Bd  [105,107]: (i) A dominates B if 0Ad >  and 0Bd <  (harmony); (ii) B dominates A if 0Ad <  
and 0Bd >  (prisoner’s dilemma); (iii) A and B are bistable if 0Ad <  and 0Bd <  (coordination); (iv) A and 
B stably coexist if 0Ad >  and 0Bd >  (snowdrift); and finally (v) A and B are neutral if 0A Bd d= = . 

Following a similar idea, diverse dynamics of simple microbial consortia can be systematically analyzed. 
The analysis of interactions between the wild type and mutant Saccharomyces cerevisiae strains 

growing on sucrose studied by Gore et al. [27] provides a real biological example. As the yeast cannot 
assimilate disaccharides, sucrose should be hydrolyzed into monosaccharides (such as glucose and 
fructose) by invertase, which is produced from the wild type strain at a certain cost, but not from the 
mutant. Only a fraction of the hydrolyzed monosaccharides (i.e., 1%) are assimilated into the wild type 
cell and most of them diffuse away (i.e., cooperative behavior). Taking advantage of the invertase 
production from wild type strains, mutant strains grow on monosaccharides without paying any cost 
(i.e., behavior as a cheater). Contrary to our intuition, two strains coexist over a wide range of conditions 
as observed in well-mixed culture experiments. The relationship of these cooperators and cheaters was 
analyzed using snowdrift game theory. While the fitness ,g kf  is formulated most often as a linear 
function of kx , Gore et al. formulated them as a nonlinear function based on the experimentally observed 

concave dependence of the growth rate on glucose concentration, i.e., 
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where players A and B denote the cooperator (i.e., wild type yeast) and the cheater (i.e., mutant), 
respectively, ε is the efficiency of capturing monosacchrides by A, c means the cost for the production 
of invertase, and the exponent α is a parameter dictating the degree of nonlinearity (which was 
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experimentally determined as 0.15 therein). A phase diagram on the space of c and ε generated by the 
nonlinear formulation given in Equation (20) clearly showed the domain of coexistence of two strains, 
which was not detected when typical linear fitness functions were used. Figure 8 provides the payoff 
matrix, from which linear and nonlinear fitness functions are derived. 

Figure 8. Linear and nonlinear fitness functions derivable from the payoff matrix for the 
system considered by Gore et al. [27]. 

 

Synthetic fungal-bacterial consortium that shows cooperator-cheater dynamics as studied by  
Minty et al. [108] using kinetics modeling and experiments may offer itself as another good example 
that could be analyzed in a similar fashion. While it is not straightforward how to design payoff matrix 
and fitness functions for given microbial communities as exemplified above, evolutionary game theory 
is a promising mathematical framework that is able to describe the richness of biological reality. 

5. Tools for Simulating Heterogeneity 

The frameworks dealt with in the foregoing sections are population-level models which are 
formulated as a set of ordinary differential equations (ODEs) based on two major assumptions: (1) well 
mixed populations or spatial homogeneity (i.e., cells and environmental variables are uniformly 
distributed in space) and (2) homogeneity in cellular state within each population of species (or guilds) 
(i.e., internal state of cells in the same population is identical). These assumptions are invalid in most 
cases because, in reality, cells are exposed to different local concentrations of environmental variables 
(such as nutrients, temperature, light, pH, etc.) and these environmental gradients often lead to the  
non-uniform distribution of cell’s internal states and their location in space. Even in well-mixed 
conditions, individual cells in a population can be distinct with respect to their phenotypic functions 
(e.g., growth rate) or internal (e.g., metabolic and genetic) states. Well-mixed population-level models 
cannot address such variation among cells over the spatial and internal state space, which should be 
simulated using more sophisticated frameworks based on partial differential equations (PDEs).  
This section therefore focuses on those frameworks that can suitably model heterogeneity in  
cell populations. 

5.1. Simulation of Spatial Heterogeneity Using Population-Based Models 

Spatial distribution of cells is often described in relation to their ability to move through the space. 
Cellular motion can be modeled as random and/or directed motions. Random motion of cells is a 
Brownian motion-like process, while directed or purposeful motion driven by environmental cues is 
called taxis (derived from the Greek tassein meaning “to arrange” but used to imply “movement” in 
biology [109]). Various types of taxis are observed depending on the source of environmental stimulus, 

 



Processes 2014, 2 732 
 
e.g., chemotaxis (chemical signal), phototaxis (light), geotaxis (gravitational force), and aerotaxis (air). 
Chemotaxis, for example, denotes the motion towards spatial regions of high or low concentration of a 
certain chemical. When cells move toward the source of the signal, the type of motion and the signal are 
called positive motion and attractant, respectively; in the opposite case, called negative motion and 
repellent [110]. 

For microbial communities distributing along one-dimensional space, the population equation of 
species k that account for both random and chemotactic motions can be given in the following form 
(known as Keller-Segel model of chemotaxis [111]), i.e.,  

1 1 1 1

μ α β , 1, ,k k
k k k k

x x sx k K
t z z z z

   ∂ ∂∂ ∂ ∂
= + − =   ∂ ∂ ∂ ∂ ∂   



 (21) 

Where 1z  is a spatial coordinate, αk  and βk  are the motility coefficient and chemotactic coefficient of 

species k , respectively, and s  is the concentration of a signal chemical. In the Keller-Segel model of 
chemotaxis, βk  is generally considered as a function of kx  and s . The three terms on the right hand side 

of Equation (21) represent growth rate, random motion, and chemotactic motion. The plus sign on the 
second term means that cells diffuse toward locations of lower population density. Depending on the 
sign of βk , the third term may represent positive chemotaxis and s  is the chemoattractant, if β 0k > ; 
negative chemotaxis and chemorepellent, if β 0k < . The growth rate μk  depends on environmental 
variables 'ic s  (including s ), the balance of which is also written over space and time as follows: 
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Equations (21) and (22) can be generalized into a three-dimensional form by considering the change 
of variables across other spatial directions 2z  and 3z . In principle, dynamic models discussed earlier 

(including supra-organism models and trait-based models) can be reformulated using PDEs as in 
Equations (21) and (22) to simulate the change of the population density in space as well as time. 

5.2. Individual-Based Modeling 

Population heterogeneity can rigorously be investigated using individual-based models (IbMs)  
(also known as entity- or agent-based models). IbMs view individual cells as discrete autonomous 
entities that interact with each other as well as with the continuous surrounding phase. Thus, it is common 
that IbMs jointly model physical transport of nutrients (and other environmental variables, e.g., 
temperature and light intensity), along with behaviors of each individual cell such as uptake, secretion, 
growth, reproduction, etc. The discrete phase of individual cells and the continuous environmental phase 
are coupled by hybrid simulation techniques, e.g., based on Eulerian-Lagrangian approaches [25]. 

While there is an overlap, IbMs differ from cellular automaton (CA): CA approaches are based on 
the spatial grids with a focus on predicting geometric patterns formed from the local interactions; on the 
other hand, IbMs account for individual diversity (in the spatial grids) to predict their collective  
behavior [112]. An underlying view of IbMs (and also CA) is that higher-level, global, and complex 
properties of a whole population emerge from the lower-level, local, and simple interactions of 
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individual entities. While the traditional application of IbMs in ecology is mostly for modeling higher 
tropic organisms (such as animals), they have been increasingly used for microbes as well. 

As an obvious advantage, IbMs can introduce the details of microbial behavior and interactions at an 
individual cell level. For example, IbMs can incorporate the motility of cells that includes both active 
motion (such as chemotaxis of bacterial using flagella or migration of phytoplankton using buoyancy 
control) and passive motion by advection (e.g., in activated sludge wastewater treatment plants) or 
diffusion. Accounting for different forms of cellular interactions is another merit. These include  
not only indirect interactions through environment such as competition for nutrients and cooperation by 
sharing metabolites, but also more direct cell-to-cell interactions such as shoving, predation,  
and self-shading [25]. 

As a drawback, simulation of IbMs is computationally demanding, particularly when one models 
microbial communities composed of a considerably large number of cells. Consequently, modelers often 
reduce the details contained within the description of microbial behavior (e.g., see [113]).  
Two basic approaches to reduce the computational burden are i) confinement of computational domain 
to a small representative space and ii) the use of the super-individuals concept. For example, one can 
reduce the number of cells for simulation by focusing on a small area of a biofilm or a lake. The scale-up 
to a large space based on this approach becomes difficult when spatial heterogeneity in systems is 
significant. Currently, IbMs for microbial communities are confined to scales of micrometers to 
centimeters [114]. Alternatively, one can simulate based on super-individuals which represent a group 
of individual cells [26]. An arising issue is then how to consistently define super-individuals for a given 
system under study because defining super-individuals to contain a large number of cells will eventually 
weaken the intrinsic strength of IbMs that are able to account for the dynamics of every individual cell. 
Along with these methods, the development of efficient numerical schemes and implementation 
frameworks is essential. As a promising example, Kang et al. [115] reported a significant reduction in 
computational time (from a week to an hour) by the use of an efficient parallel computation scheme. As 
building community models based on the IbM framework is not straightforward, it is also of great 
importance to develop efficient simulation tools that require only moderate programming efforts. In this 
regard, the use of those tools such as iDynoMICS [116] (replacement of BacSim [117]) and Biocellion 
(http://biocellion.com/) will facilitate rigorous simulation of microbial community dynamics based on 
IbM frameworks. 

5.3. Population Balance Modeling 

Population balance models (PBMs) consider the distribution of cell populations over internal space, 
as well as external space [118]. Thus, cells are discriminated by their internal and external coordinates. 
The external coordinate of a cell indicates its physical location as represented by ( )1 2 3, ,z z z≡z , while 
the internal coordinate ( )1, , Zz z ′′ ′ ′≡z 

 denotes those (other than location) that characterize traits of cells. 

Internal states of cells most frequently considered in PBMs include the variables such as cell mass, age, 
and morphology that should be specified to determine birth and death processes or the rate of change of 
certain variables of interest [118]. For bacterial population reproducing via binary fission, simulation of the 
dynamic change of the number of cells required defining cell age as an internal state due to its influence 
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on the birth rate. An example for a morphology parameter is the location of nuclei within the cell because 
cell division occurs when a divided nucleus in the interior of the cell migrates to the cell’s boundary. 

A general mathematical form of PBMs is represented as a partial integro-differential equation  
as follows: 

( ) ( ) ( ) ( ), , , , , , , , ,p z p z pf t f t f t h t
t ′
∂ ′ ′ ′ ′ ′+∇ ⋅ +∇ ⋅ =
∂

z z Z z z Z z z z z c   (23) 

where ( ), ,pf t′z z  is the population density, ( ), , ,h t′z z c  is the rate of net generation of cells, and z∇  and 

z′∇  denote partial divergence operators. In general, the above equation is solved by coupling to the 

conservation equation of environmental variables as shown in Equation (22). In conditions where cells 
are uniformly distributed in space and characterized only by an internal state z′ , the PBM reduces to 

( )( , ) ( , , ) ( , ) ( , , )p pf z t Z z c t f z t h z c t
t z
∂ ∂′ ′ ′ ′ ′+ =

′∂ ∂
  (24) 

The conservation equation of environmental variable y  is given as follows:  

0
( ) ( , , ) ( , )p

dc k z Z z c t f z t dz
dt

∞
′ ′ ′ ′ ′= −∫   (25) 

Equation (25) relates the reduction of the concentration of c with the total growth of cells using the 
growth rate parameter ( )k z′ . 

For modeling a microbial community, the above formulation can be rewritten by expanding  
Equation (24) for K species, i.e.,  

( ), ,( , ) ( , , ) ( , ) ( , , ), 1, ,p k p k kf z t Z z c t f z t h z c t k K
t z
∂ ∂′ ′ ′ ′ ′+ = =

′∂ ∂


  (26) 

No change is required for Equation (25). 
In general, the solution of PBMs is obtained by numerically solving a large set of ordinary differential 

equations obtained by discretizing the derivative and integral terms. It was pointed out that 
computational burden increases if the intracellular state of cells should be specified by a number of high 
dimensional vectors (e.g., concentrations of intracellular metabolites) [119]. Most commonly, however, 
PBMs consider only a single internal state (such as cell age or cell mass). With appropriate formulation, 
therefore, PBMs can be considered as an alternative to IbMs in simulating population heterogeneity. In 
advanced simulations, stochastic events such as gene regulatory processes were incorporated into PBMs. 
For example, Shu et al. [120] applied the PBM framework to investigate the effect of bistability of cells 
(represented as two distinct levels of PrG protein concentration) on biomodal distributions of the 
population. Spatial heterogeneity can also be accounted for through coupling PBMs with a  
reactive-transport model, e.g., using computational fluid dynamics (CFD) [121]. Despite such 
usefulness, modelers have yet to actively expand the scope of PBMs to microbial communities as a tool 
for simulating interspecies interactions. 
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6. Integrative Modeling Strategies 

While we discussed various mathematical frameworks so far, a single approach alone cannot 
comprehensively describe the dynamic nature of microbial communities. For example, constraint-based 
approaches such as cFBA can simulate interspecies metabolic interactions, but they cannot predict 
interactions under dynamic environmental conditions. Conversely, gLV models are able to simulate 
community dynamics well but do not provide direct mechanistic interpretations on the microbial 
interactions that vary in space and time. In this regard, synergistic integration of different mathematical 
tools appears to be a promising strategy. Integrative use of more than two approaches can be attempted 
at three different levels: (i) information feedback; (ii) indirect coupling; and (iii) direct coupling. 
Information feedback is the weakest form of integration, through which one can take advantage of 
information generated from different approaches without coupling in order to facilitate model 
development. Indirect coupling implies that the dynamic simulation of a model uses the outputs of 
another model that are previously generated through independent simulations; on the other hand, in 
direct coupling, different modeling frameworks are merged into an expanded single platform.  
This section provides examples of the current practices of integrative modeling approaches. 

6.1. Information Feedback 

Information on interspecies interactions can be obtained either from network inference methods 
(Section 4.1.1), stoichiometric model-based metabolic network analysis (Section 4.1.2), or transporter 
analysis. These approaches are complementary as they provide the same output (i.e., microbial 
interactions) at different levels from diverse sources (i.e., species abundance data, genome-scale 
metabolic networks, as well as transporter genes/proteins). For example, stoichiometric modeling may 
serve as a tool not only for confirming known cross-feeding links, but also for potentially identifying new 
interactions that are not easily detected by species abundance data or transporter analysis alone [66]. While 
the use of metabolic network models would be limited to relatively simple consortia as addressed earlier, 
their interactive use with network inference and transporter analysis for identifying microbial 
interactions is an example of information feedback. Figure 9 shows how the development of predictive 
models such as nonlinear regression (Section 4.2), gLV model (Section 4.5), and evolutionary game theory 
(Section 4.6) can benefit from information on microbial links identified as such. 

A prior knowledge of interspecies interactions helps to structure those models properly. For example, 
if a microbial association network identifies the link between two species (say, A and B) through a third 
one (say, C), the gLV model is able to simulate such indirect interaction between them by formulating 
the population growth equation of species A (or B) to contain the A-C pair (or B-C pair), but not the  
A-B (or B-A) pair. Such information also helps to avoid overparameterization (i.e., a situation where 
many of the parameters cannot accurately be determined due to the lack of data) by focusing on the key 
interspecies interactions. 
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Figure 9. The use of network analysis tools for the construction of predictive models and 
the feedback loop for the subsequent revision through model validation processes. Solid 
arrows represent information flows. The dotted arrow indicates that nonlinear regression can 
be used as a tool for network inference. 

 

The validity of pre-identified interspecies interactions is assessed through the comparison of model 
predictions with species abundance data collected across samples. Model validation provides an 
opportunity to revise a microbial association network. Due to this loop between analysis tools and 
predictive models, the overall process of model development is also seen as the integrative approach 
based on information feedback. The development of a nonlinear regression model by Larsen et al. [75] 
can serve as an excellent example for this type of integration. The process of developing a gLV model 
through the construction of microbial association network was explained in Faust and Raes [50]. 

6.2. Indirect Coupling 

Model integration is referred to indirect coupling if the outputs obtained from the “independent” 
simulation of one framework are fed into another model during its simulation. A good example is the 
integration of a genome-scale network with a reactive transport model by Sheibe et al. [122] for the 
study of in situ uranium bioremediation by Geobacter species (i.e., Geobacter sulfurreducens). In this 
system considering a single organism, they repeatedly ran FBA to generate a look-up table that provides 
the nutrient uptake and growth rates in various possible environmental conditions. Then, the resulting 
look-up table was referenced at every time step and every grid cell throughout the dynamic simulation 
of a reactive-transport model. The prediction of condition-specific biomass yield was predicted using 
FBA by constraining the uptake rates of the three nutrients (acetate, Fe (III), and NH4) that limit the 
species growth. In order to generate a look-up table, they chose 10 different concentration levels of these key 
nutrients, and for each of 1000 combinations, they performed FBA. Consequently, they could successfully 
predict acetate concentration and U (VI) reduction rates in a field trial of in situ uranium bioremediation. 
Obviously, this indirect coupling results in reduced computation time in comparison to direct coupling 
that runs both FBA and reactive-transport simulation for their interaction at every time step. As 
environmental conditions were discretized over coarse meshes, interpolation within the look-up table is 
required to get the rates between pre-specified conditions. While performing this interpolation process 
at every time step/grid will be time-consuming, particularly in case of field-scale simulations, one can 
minimize the look-up table by containing the fluxes of key metabolites only, instead of the full flux 
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vector. Figure 10 illustrates the concept of indirect coupling between FBA and a reactive-transport 
model. In principle, the same approach can be applied to microbial communities, although the look-up table 
generation using cFBA and the interpolation would require substantially higher computational power. 

Figure 10. Indirect coupling between a reactive-transport model with FBA for the dynamic 
simulation of a single organism growth. One should first generate a look-up table through 
the repeated running of FBA with a large number of different sets of nutrient uptake rates 
(which is 1000 in total in this example) generated by discretizing the range of each uptake (top). 
During the dynamic simulation of the reactive-transport model, the growth rate and metabolite 
production rates are updated at each time/location from the look-up table (bottom). 

 

The integration of FBA with dynamic modeling can be considered in a much simpler  
context—well-mixed conditions—using the framework called dynamic FBA (dFBA) [123]. In a study 
of bioprocesses that produce bioethanol from glucose and xylose, Hanly and Henson modeled simple 
consortia composed of two organisms that are (i) non-interacting [124] and (ii) indirectly interacting [125]. 
The non-interacting consortium was composed of wild-type S. cerevisiae that consumes glucose only 
and mutated E. coli capable of consuming xylose alone. The indirectly interacting model included  
(wild-type) S. cerevisiae and Pichia stipites (also known as Scheffersomyces stipitis) that consume both 
glucose and xylose. In the latter, there were two types of competition–interspecies and intraspecies. While 
interspecies competition for glucose could be described simply by Michaelis-Menton kinetics, the authors 
had to incorporate glucose inhibition to describe intraspecies competition between the consumptions of 
glucose and xylose in P. stipitis (Figure 11). dFBA has also been used in other applications, e.g., for 
exploring bacterial diversity and their metabolic interactions [126]. In balanced growth conditions where 
uptake rates change in time but the biomass (and other metabolites) yield from a substrate is constant, 
the dFBA can be implemented as a form of indirect coupling by referring to the pre-calculation of an 
FBA solution, without having to solve the LP problem at every time step. 
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Figure 11. Uptake kinetics for the dynamic FBA (dFBA) simulation of the dynamics of  
non-interacting (left) and indirectly interacting (right) consortia. Glc and Xyl denote  
the concentrations of glucose and xylose, respectively. For the sake of simplicity, product  
(i.e., ethanol) inhibition term is neglected. 

 

Modeling microbial consortia using indirect coupling can also be done by integrating EM analysis 
with a dynamic framework such as cybernetic models. The framework called hybrid cybernetic model 
(HCM) [127,128] identifies a relevant subset of EMs as metabolic options for accommodating  
the metabolic shift in individual species. Geng et al. [129] applied HCM to model a situation  
where the culture medium contains four sugars (i.e., glucose, xylose, mannose, and galactose)  
which are competitively consumed by three yeast strains (i.e., S. cerevisiae, P. stipitis, and  
Kluyveromyces marxianus). Consumption patterns of these sugars vary depending on the organism.  
S. cerevisiae consumes glucose, mannose, and galactose, but not xylose. Among three hexoses 
fermentable by S. cerevisiae, galactose is the least preferred substrate, while glucose and mannose are 
preferably consumed. On the other hand, P. stipitis and K. marxianus ferment all four sugars, the 
consumption of which starts with the pair of glucose and mannose, followed by the pair of xylose and 
galactose. Without having to incorporate empirical inhibition terms, the competitive consumption of 
four sugars by each organism was modeled in a simpler form based on the cybernetic control variables 
(Figure 12). 

The integration of dynamic population-based models (e.g., gLV model) with cFBA would be another 
possible form of indirect coupling, yet we could not find an appropriate example in the literature. As an 
input, cFBA requires information of species abundance, the dynamic change of which can be provided 
from the independent simulation of a gLV model. Thus, this integration enables the prediction of the 
change of flux distributions at each time step within individual species and the community.  
These predictions are beyond the level achievable using gLV model or cFBA alone. 
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Figure 12. Uptake kinetics for the hybrid cybernetic model (HCM) simulation of the 
consortia composed of three yeast strains (Saccharomyces cerevisiae, Pichia stipitis, and 
Kluyveromyces marxianus) growing on four different carbon sources. Glc, Man, Gal, and 
Xyl denote the concentrations of glucose, mannose, galactose, and xylose, respectively. The 
symbols e and v represent enzyme level and its activity. For the sake of simplicity,  
self-substrate inhibition term is neglected. 

 

6.3. Direct Coupling 

In complex systems containing multiple interacting species and many constraining environmental 
variables, simulation of microbial community dynamics using look-up tables to indirectly couple FBAs 
and dynamic models will become unattractive. Fang et al. [130], therefore, applied a “direct” coupling 
of a genome-scale metabolic network with a reactive-transport model. A reactive-transport model 
dynamically interacts with FBA at each time step to obtain reaction rates required for solving differential 
equations (Figure 13). 

Figure 13. Implementation of direct coupling between FBA and a reactive-transport model. 

 

In contrast to dFBA-based approaches which assume quasi-steady state on intracellular metabolites, 
King et al. [131] coupled a reactive transport model with a dynamic model of intracellular kinetics based 
on a simplified network. Resat et al. [113] also considered intracellular dynamics (using an even simpler 
network) to describe the cellular dynamics using an IbM framework (similar to BacSim [117]). An IbM 
was directly coupled with a three dimensional reactive-transport model. 

Direct coupling examples addressed above were focused on a single organism, while Resat et al. [113] 
also considered the simulation of two species. The framework developed by Zhuang et al. [132], on the 
other hand, demonstrated the extended application of dFBA to ecological settings. Instead of directly 
obtaining substrate uptake rate as determined by kinetic equations, they use kinetic equations as upper 
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bounds of uptake rates [133]. To simulate the dynamic change of Rhodoferax and Geobacter species, 
which are acetate oxidizing Fe (III)-reducers competing in anoxic subsurface environments, they 
identified uptake kinetics for metabolites that affect the growth of species, including acetate, ammonia, 
and Fe (III) for two species and imposed them as upper bounds in respective FBA implementations. 
They termed this method as the Dynamic Multispecies Metabolic Modeling (DyMMM) framework. The 
same method has also been applied to the community of Geobacter and sulfate-reducing bacteria 
(7SRBs) [134]. Figure 14 shows the procedures of implementing DyMMM. 

Figure 14. Implementation of the Dynamic Multispecies Metabolic Modeling (DyMMM) 
framework proposed by Zhuang et al. [132] for the dynamic simulation of microbial consortia. 

 

Zomorrodi et al. [73] proposed a general framework for the dynamic simulation of microbial 
community by extending OptCom. In contrast to DyMMM that considers a community-level objective 
alone, d-OptCom solves a bi-level optimization problem for which both species- and community-level 
objectives should be specified. d-OptCom also considers uptake kinetics as upper bounds of fluxes, 
similarly to DyMMM. If species-level objectives are eliminated from the bi-level optimization 
formulation, the structure between d-OptCom and DyMMM becomes similar while the former solves 
nonlinear dynamic programming based on an implicit Euler discretization. 

7. Summary and Recommendations 

So far, we have discussed various forms of mathematical models useful for the analysis and prediction 
of microbial community dynamics. Table 2 summarizes typical sets of experimental data  
(or information) for model identification, and inputs and outputs for simulation. 
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Table 2. An overview of mathematical models discussed throughout the present article. Symbols denote modeling units (_cell: Individual cells, 
_spe: Species or functional guilds, _tot: Whole community), dependent variables (c: Concentration of extracellular metabolites, e: Abundance 
of functional genes, rin: Uptake fluxes, r: Full flux vector including intracellular and exchange fluxes, x: Abundance of modeling units) and 
independent variables (t: Time, z: Spatial location). 

Approach 
Data for Parameter 

Identification 
Inputs for Simulation 

Outputs from 
Simulation 

Remarks 

Flux balance analysis  
(FBA) ([64]) 

N/A (FBA has no parameters 
to tune) 

x_spe and rin_tot in a certain 
condition 

r_spe in the  
given condition 

• Assumes an yield-based (community-level) metabolic 
objective (such as maximization of biomass yield) 

• Is currently limited to simple consortia 
• Can handle genome-scale metabolic networks 

Elementary mode (EM) 
analysis ([41]) 

N/A (no parameters  
to tune) 

Information on x_spe and 
rin_tot in a  

certain condition 

r_spe in the  
given condition 

• May not be extended to complex consortia 

• Does not need to specify hypothetical metabolic objective 

Gene-centric  
approach ([42]) 

e_tot(t,z), x_tot(t,z), and c(t,z) 
upon (designed) perturbations 

e_tot(0,z), x_tot(0,z), c(0,z)  
(i.e., initial distributions) 

e_tot(t,z), x_tot(t,z),  
c(t,z), r_tot(t,z) in any  

new conditions 

• Is applicable to complex communities 

• Does not provide species-level information 

Nonlinear  
regression ([75]) 

x_spe and c across 
conditions/times/locations 

c at a specific condition/ 
time/location 

x_spe in the given 
condition/time/location 

• Is applicable to large eco-scale settings (such as continents 
or marines) as well as small scale systems 

Trait-based  
model ([99]) 

x_spe(t) and c(t) upon 
(designed) perturbations 

x_spe(0) and c(0)  
(i.e., initial conditions) 

x_spe(t) and c(t) 
• Simulates the dynamic species-species and  

species-environment interactions 
• May contain a large number of parameters (to determine) 

Generalized  
Lotka-Volterra (gLV) 

model ([103]) 

x_spe(t) and c(t) (to model the 
growth rate as a function of c(t)) 

x_spe(0) and c(0) x_spe(t) 
• Simulates the dynamic change of populations by accounting 

for interspecies interactions as well as its own growth (in the 
absence of other species) 

Evolutionary game  
theory ([27]) 

Understanding or knowledge 
on the interspecies 

relationship 

x_spe(0) and assumed 
parameter values 

x_spe(t) 
• Models the population to grow/decay by the difference 

between individual fitness and the community average 
• Is mathematically equivalent to gLV formulation 
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Table 2. Cont. 

Approach 
Data for Parameter 

Identification 
Inputs for Simulation 

Outputs from 
Simulation 

Remarks 

Thermodynamically-based 
model ([77]) 

Information on chemical 
potentials (or reaction  

rate values) 
x_spe(0) and c(0) 

x_spe(∞) and c(∞)  
(i.e., values after 

sufficiently enough time) 

• Predicts the change of species abundance and 
environmental chemicals by iteratively updating them 
based on the substrate conversion and microbial growth 
equations 

Population balance model 
(PBM) ([120]) 

x_spe(t), c(t), and 
information on population 

heterogeneity 

x_spe(0), c(0),  
and initial  

population heterogeneity 

x_spe(t), c(t), and 
population heterogeneity 

(evolving with time) 

• Accounts for heterogeneity in populations over external 
physical and internal state spaces 

Individual-based model (IbM) 
([113]) 

x_cell(t,z) and c(t,z) x_cell(0,z) and c(0,z) x_cell(t,z) and c(t,z) 
• Simulates emergent behaviors of a community by 

considering individual cells as discrete autonomous 
entities 

Dynamic FBA  
(dFBA) ([125]) 

x_spe(t) and c(t) x_spe(0) and c(0) 
x_spe(t), r_spe(t),  

and c(t) 
• Couples FBA with kinetics: Nutrient uptake fluxes are 

given from pre-identified kinetics 

Cybernetic model ([129]) x_spe(t) and c(t) x_spe(0) and c(0) 
x_spe(t), r_spe(t), e_spe, 

and c(t) 

• Assumes a rate-based metabolic objective of species  
(such as maximization of their uptake rates) 

• Accounts for cellular regulation based on optimal 
control theory 

Dynamic multispecies 
metabolic modeling  
(DyMMM) ([132]) 

x_spe(t) and c(t) x_spe(0) and c(0) 
x_spe(t), r_spe(t),  

and c(t) 
• Is similar to dFBA, but uses uptake kinetics for setting 

upper bounds 

Dynamic OptCom  
(d-OptCom) ([73]) 

x_spe(t) and c(t) x_spe(0) and c(0) 
x_spe(t), r_spe(t),  

and c(t) 

• Is similar to DyMMM, but flexibly incorporates data and 
knowledge on species interactions with dual objectives (i.e., 
at species- and community-levels) 

Indirect coupling FBA with 
transport ([122]) 

x_spe(t,z) and c(t,z) x_spe(0,z) and c(0,z) 
x_spe(t,z), r_spe(t,z)  

and c(t,z) 

• Solves a reactive-transport model where nutrient uptake 
and species growth rates are obtained (at each time and 
location) by referring to a look-up table (generated 
through independent FBA simulations) 
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Based on the work of Song et al. [31], we provide general guidelines for the selection of an 
appropriate modeling framework (among various candidates) for a given problem. Above all, the choice 
of a specific model should be based on modeling goals, which can be (i) understanding the characteristics 
of microbial association under specific settings; (ii) predicting their dynamics in new conditions;  
(iii) controlling microbial communities to perform desirable functions, or all of them. Then, one may 
initially consider a couple of candidate frameworks (or more) that could potentially meet modeling goals. 
For this purpose, it is important to have a sound understanding of the simulation scope of modeling 
frameworks, for example as summarized in Table 2. Another recommendation is to minimize the 
complexity of model structure. Therefore, following the principle of Occam’s razor, one would prefer 
the simplest model (i.e., with the smallest number of parameters and variables) in case that all candidate 
models perform similarly in data-fitting. Information theoretic tools enable a systematic, quantitative 
comparison of candidate models in this regard. Statistical merits often used for such comparison include 
Akiake Information Criterion (AIC) [135] and Bayesian Information Criterion (BIC) [136]. 

8. Conclusions and Outlook 

Considering the complexity of microbial communities, it is not surprising to find a vast number of 
mathematical tools and frameworks in the literature. The successful application of models will depend 
on many factors: (i) how flexibly they incorporate computational and experimental tools to improve their 
predictive power; (ii) how effectively they resolve the problems of academic, industrial, and social 
interest; and (iii) how significantly they outperform rival models. While one may prefer a specific model 
to others, it is advantageous to take an integrative approach that selectively combines multiple relevant 
methods, as discussed in the foregoing section. 

Other than the strength of model integration, there are other specific issues that need to be considered 
in the future modeling efforts. First, while the PBM is a popular framework used for modeling particulate 
systems, its application to microbial communities is rare. Unless a large number of internal state variables 
need to be considered for modeling, PBM’s capability to describe population heterogeneity at a reasonable 
computational cost offers an attractive compromise between population-based models and IbMs. Second, 
despite the potentially significant role in determining the member interactions and the overall community 
behavior, the consideration of dynamic metabolic shifts in individual species is limited in current 
modeling practices. Incorporation of this feature into modeling will make it possible to reveal even richer 
behavior of microbial communities in response to environmental perturbations as adaptive complex 
systems. While empirical rules are conceivable for this purpose, mechanistic description of metabolic 
shift will allow for more realistic predictions across different conditions. In this regard, the incorporation 
of the cybernetic control laws into population-based models or IbMs is a possible route along the line. 
Third, ability to leverage increasingly available meta-omics data (e.g., transcriptomic, proteomic, 
metabolomics data) within the context of community models will improve the prediction accuracy. 
Finally, an important challenge for the modeling of microbial communities is the ability to encompass 
different scales. Microbial communities are multiscale systems: The results of microbial community 
activity at the fine scale can have profound effects on the physical and chemical characteristics at the 
macroscopic level of an aquatic or terrestrial ecosystem, or a human being. Multiscale modeling has 
been restricted, however, in practical efforts. 
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Despite these challenges, the predictive power of microbial community models will grow along with 
rapid advancement in experimental and computational technologies. Therefore, mathematical models in 
the future are expected to provide a more profound understanding of microbial community dynamics 
with an ultimate aim to engineering them. 
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