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Abstract: The adoption of detailed mechanisms for chemical kinetics often poses two types
of severe challenges: First, the number of degrees of freedom is large; and second, the
dynamics is characterized by widely disparate time scales. As a result, reactive flow solvers
with detailed chemistry often become intractable even for large clusters of CPUs, especially
when dealing with direct numerical simulation (DNS) of turbulent combustion problems.
This has motivated the development of several techniques for reducing the complexity
of such kinetics models, where, eventually, only a few variables are considered in the
development of the simplified model. Unfortunately, no generally applicable a priori recipe
for selecting suitable parameterizations of the reduced model is available, and the choice of
slow variables often relies upon intuition and experience. We present an automated approach
to this task, consisting of three main steps. First, the low dimensional manifold of slow
motions is (approximately) sampled by brief simulations of the detailed model, starting from
a rich enough ensemble of admissible initial conditions. Second, a global parametrization of
the manifold is obtained through the Diffusion Map (DMAP) approach, which has recently
emerged as a powerful tool in data analysis/machine learning. Finally, a simplified model
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is constructed and solved on the fly in terms of the above reduced (slow) variables. Clearly,
closing this latter model requires nontrivial interpolation calculations, enabling restriction
(mapping from the full ambient space to the reduced one) and lifting (mapping from the
reduced space to the ambient one). This is a key step in our approach, and a variety of
interpolation schemes are reported and compared. The scope of the proposed procedure is
presented and discussed by means of an illustrative combustion example.

Keywords: model reduction; data mining; combustion

1. Introduction

The solution of detailed models for chemical kinetics is often dramatically time consuming, owing
to a large number of variables evolving in processes with a wide range of time and space scales.
As a result, fluid dynamic flow solvers coupled with detailed chemistry still present a challenge, even for
modern clusters of CPUs, especially when dealing with direct numerical simulation (DNS) of turbulent
combustion systems. Here, a large number of governing equations for chemical species (a few hundred
for mechanisms of standard hydrocarbon fuels) are to be solved at (typically) millions of distinct
discretization points in the computational domain. This has motivated the development of a plethora
of approaches aiming at reducing the computational complexity of such detailed combustion models,
ideally by recasting them in terms of only a few new reduced variables. (see, e.g., [1] and references
therein). The implementation of many of these techniques typically involves three successive steps.
First, a large set of stiff ordinary differential equations (ODEs) is considered for modeling the temporal
evolution of a spatially homogenous mixture of chemical species under specified stoichiometric and
thermodynamic conditions (usually fixed total enthalpy and pressure for combustion in the low Mach
regime). It is well known that, due to the presence of fast and slow dynamics, the above systems are
characterized by low dimensional manifolds in the concentration space (or phase-space), where a typical
solution trajectory is initially rapidly attracted towards the manifold, while afterwards, it proceeds to
the thermodynamic equilibrium point, always remaining in close proximity to the manifold. Clearly,
the presence of a manifold forces the ODEs state to visit mostly a low dimensional region of the entire
phase-space, thus offering the premise for constructing a consistent reduced description of the process,
which accurately retains the slow dynamics along the manifold, while neglecting the initial short transient
towards the manifold. In a fluid dynamic simulation, stoichiometry and thermodynamic conditions may
vary throughout the computational domain. Hence, when implementing reduction techniques, the second
step consists of parameterizing and tabulating the manifolds arising in the homogeneous reactor for
a variety of stoichiometric and thermodynamic conditions. Finally, as a third step, the fluid dynamic
equations are reformulated in terms of the new variables, with the latter tables utilized to close the
new reduced set of equations (see, e.g., [2]). It is worth stressing that the above description briefly
outlines only one possible approach for coupling a model reduction method to a flow solver: the case
where the low dimensional manifolds of the homogeneous problem are identified in advance in the entire
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phase-space. For completeness, it is important to mention that, due to the rapidly increasing difficulty
in storing and interpolating data in high dimensions, this approach remains viable in cases with a few
reduced variables. As an alternative to this global method, techniques have been introduced for locally
constructing the low dimensional manifold only in the (tiny) region of interest in the phase-space, as
demanded by a reacting flow code during simulations [3–5]. Local constructions can certainly cope
with higher dimensional manifolds. However, their usage seems computationally advantageous only
in combination with efficient algorithms for adaptive tabulation, where data is computed when needed,
stored and re-utilized if necessary (see, e.g., [6]).

In this work, we focus on the global construction and parameterization of slow invariant manifolds
arising in the modeling of spatially homogeneous reactive mixtures. In particular, upon identification
of the slow manifold, we propose a generally applicable methodology for selecting a suitable
parameterization; we also investigate various interpolation/extrapolation schemes that need to be used
in the solution of a reduced dynamical system expressed in terms of the variables learned. This latter
step, and its integration with the previous two in an overall computer-assisted approach, constitute the
methodological novelty of the paper.

The manuscript is organized as follows. In Section 2, Diffusion Maps are briefly reviewed.
In Section 3 and the subsections therein, we discuss the computation of points on the manifold, their
embedding in a reduced (here, two-dimensional) space, the formulation of a reduced set of equations
and their solution through several interpolation/extension techniques. Results are reported and discussed
in Section 4, where the proposed approach is applied to a reactive mixture of hydrogen and air at
stoichiometric proportions with fixed enthalpy and pressure. The reader may prefer a quick glance at
Section 4 before the detailed presentation of the procedure in Section 3. Finally, we conclude with a
summary and brief discussion of open issues in Section 5.

2. Diffusion Maps

The Diffusion Map (DMAP) approach has emerged as a powerful tool in data analysis and dimension
reduction [7–9]. In effect, it can be thought of as a nonlinear counterpart of Principal Component
Analysis (PCA) [10] that can be used to search for a low-dimensional embedding of a high-dimensional
point set {y1,...,yM}, if an embedding exists. For completeness, we present a simple description of
the DMAP process. The points, yi, could exist in some n-dimensional Cartesian space (as they are in
our combustion example) or they could be more abstract objects, such as images. What is important
is that there exists a dissimilarity function, dij = dji, between any pair of points, yi and yj , such
that the dissimilarity is zero only if the points are identical (in those aspects that are important to the
study) and gets larger the more dissimilar they are. Although, for points in <n, an obvious choice for
dij is the standard Euclidean distance, this is not necessarily the best option. For instance, a weighted
Euclidean norm may be considered when different coordinates are characterized by disparate orders of
magnitude. As discussed below, this is indeed the case encountered in many combustion problems, where
the data are composition vectors in concentration space and major species (i.e., reactants and products)
are characterized by much higher concentrations compared to minor species (i.e., radicals). From dij ,
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a pairwise affinity function wij = w(dij) is computed, where w(0) = 1 and w(d) is monotonically
decreasing and non-negative for d > 0. A popular option is the heat kernel:

wij (dij) = exp

[
−
(
dij
ε

)2
]

(1)

The model parameter, ε, specifies the level below, whose points are considered similar, whereas points
more distant than a small multiple of ε are, effectively, not linked directly. For this presentation, we will
assume that d is a distance measure in (suitably scaled) Cartesian coordinates, so that each point, yi, is
specified by its coordinates, yi,α with α = 1, ..., n, in n-dimensional space.

In the DMAP approach, starting from the M × M (not n × n, as in PCA) symmetric matrix
W = {wij}, a Markov matrix, K, is constructed through the row normalization:

K = D−1W (2)

with the diagonal matrix, D, collecting all the row sums of matrix W. Owing to similarity with a
symmetric matrix, D−1/2WD−1/2, K has a complete set of real eigenvectors, {φi}, and eigenvalues,
{λi}. Moreover, a projection of the high-dimensional points {y1,...,yM} into an m-dimensional
space (hopefully, m << n) can be established through the components of m appropriately selected
eigenvectors (not necessarily the m leading ones, as in PCA). Specifically, let the eigenvalues be sorted
in decreasing order: 1 = λ1 ≥ |λ2| ≥ ... ≥ |λM |. The diffusion map, Ψt, is defined based on the right
eigenvectors of K, Kφl = λlφl, with φl = (φ1,l, ..., φM,l), for t > 0, as follows:

Ψt (yi) =


λt1φi,1

λt2φi,2
...

λtMφi,M

 (3)

and it assigns a vector of M new coordinates to each data point, yi. Here, K represents a (unit time)
application of a diffusion process on the data points, so that t (in Kt) indicates the length of time over
which this process is applied. Notice that all points have the same first coordinate in Equation (3), since
φ1 is proportional to the all-ones vector (with eigenvalue one). Notice that the diffusion map coordinates
are time-dependent; using longer times in the diffusion process damps high frequency components, so
that fewer coordinates suffice for an approximation of a given accuracy. However, in order to achieve
a drastic dimension reduction, for a fixed threshold 0 < δ < 1, it is convenient to define a truncated
diffusion map:

Ψδ
t (yi) =


λt2φi,2

λt3φi,3
...

λtm+1φi,m+1

 (4)

where m + 1 is the largest integer for which |λm+1|t > δ. Below, we will consider only
the eigenvector entries (i.e., take t = 0) and will separately discuss using the eigenvalues (and
their powers) to ignore noise.
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Figure 1. Data manifold, dimensionality and independence of DMAP eigenvectors (a) 2000
uniformly random points initially placed in a unit square are stretched and wrapped around
three-fourths of a cylinder; (b) the entry in the first non-trivial eigenvector of the Markov
matrix, K, vs. the first cylindrical coordinate, θ, for each data point; (c) entry in the second
non-trivial eigenvector of K vs. the first one; the quasi-one-dimensionality of the plot implies
strong eigenvector correlation; (d) entry in the third non-trivial eigenvector of K vs. the first
one. The evident two-dimensional scatter implies that a new direction on the data manifold
has been detected.

If the initial data points, {y1,...,yM}, are located on a (possibly non-linear) low dimensional manifold
with dimensionm, one might expect (by analogy to PCA) that a procedure exists to systematically select
m diffusion map eigenvectors for embedding the data. If the points are fairly evenly distributed across
the low-dimensional manifold, it is known that the principal directions of the manifold are spanned
by some of the leading eigenvectors (i.e., those corresponding to larger eigenvalues) of the DMAP
operator [11,12]. In the illustrations below (Figure 1), the corresponding eigenvalues are approximately:

λ = 1− δ[kπd/Lα]2 (5)

where δ ≈ exp(−d/ε2), d is the typical spacing between neighbors and Lα is the length of the
α-th principal direction. Here, k = 1, 2, · · · indicates the successive harmonics of the eigenvectors.
(This approximation can be obtained by considering the regularly-spaced data case, assuming that ε
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is comparable to d and that δ is small enough, so that higher powers can be ignored.) Section 2.1
below discusses how to ignore eigenvectors that are harmonics of previous ones by checking for
dependence. Equation (5) provides a tool for deciding when to ignore the smaller eigenvalues. Suppose,
for example, that we know that our data accuracy is approximately a fraction, γ, of the range of the
data. This range roughly corresponds to the longest principal direction, say L1. There is little point in
considering manifold directions of the order of γL1, since they are of the order of the errors in the data.
Hence, by applying Equation (5), we should ignore any eigendirections whose eigenvalue is less than
1− (1− λ2)γ−2, where λ2 is the first non-trivial eigenvalue.

2.1. Issues in the Implementation of the Algorithm

While the formulas above appear to provide a simple recipe, a number of important,
problem-dependent issues arise, having to do with the sampling of the points to be analyzed, the choice
of the parameter, ε, etc.; we now discuss these issues through illustrative caricatures. Consider 2000
uniformly random points initially placed in a unit square, then stretched and wrapped around three
fourths of a cylinder of radius one and length two (see Figure 1a). In Figure 1b, the first non-trivial eigen-
vector, ψ2, is reported against the first cylindrical coordinate, θ: the i-th component of this eigenvector
is plotted against the θ angle of the i-th point. The clearly apparent one-dimensional nature of the plot
confirms that ψ2 parametrizes this principal geometric direction. However, a plot of ψ3, the eigenvector
corresponding to the next leading eigenvalue, against ψ2 clearly shows a strong correlation: ψ3 is not
representative of a new, independent direction on the data manifold. In Figure 1d, the two-dimensional
scatter of the plot of the entries of the fourth eigenvector vs. the entries of the second one indicates
independence between ψ2 and ψ4; ψ4 does represent a new, independent direction along the data manifold
and becomes our second embedding coordinate. Visually testing independence between two DMAP
eigenvectors is relatively easy: we can agree that Figure 1b,c appear one-dimensional and Figure 1d
appears two-dimensional. However, testing independence in higher dimensions (for subsequent DMAP
eigenvectors) becomes quickly visually impossible and even computationally nontrivial. Subsequent
eigenvectors should be plotted against previous important ones (in the example just considered, against
ψ2 and ψ4), and the dimensionality of the plot should be assessed; this is still visually doable for, say, ψ5,
and the plot appears as a 2D surface in 3D: ψ5 is not a new data coordinate. Beyond visual assessment
(and in higher dimensions), one can use the sorted edge-length algorithm for dimensionality assessment:
a log-log plot of the graph edge-length vs. edge number is constructed, with the manifold dimension
being the slope in the middle part of the plot. Algorithms for detecting the dimension of attractors in
chaotic dynamical systems can also find use here [13,14].

The irregularity of sample points can be easily seen to lead to problems in this simple example.
Consider, however, an additional case where 1600 points are initially randomly placed in each of the
40 by 40 array of small squares, forming the unit square, and, afterwards, bent around the cylinder
(Figure 2a). As clearly visible in Figure 2b–d, these time dependencies between eigenvectors are very
well defined.
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Figure 2. More on the effect of data sampling: noise. (a) One thousand six hundred points
are initially randomly placed in each of the 40 by 40 array of small squares, forming the unit
square, and, afterwards, bent around a cylinder; (b) entry in the first non-trivial eigenvector
of the Markov matrix, K, vs. the first cylindrical coordinate, θ, for each data point; (c) entry
in the second non-trivial eigenvector of K vs. the first one; (d) entry in the third non-trivial
eigenvector of K vs. the first one.

While the first non-trivial eigenvector, ψ2, always characterizes the principal direction on the
manifold, no general recipe can be formulated for an a priori identification of the subsequent uncorre-
lated eigenvectors parameterizing other dimensions. We have already seen that eigenvectors in Equation
(3) are often dependent; this implies that they do not encode new directions along the data manifold; in
this sense, they are redundant for our embedding. In order to obtain more insight into eigenvector depen-
dency (and, in other words, in how diffusion is linked with manifold parametrization), consider, as our
domain of interest, a narrow two-dimensional stripe, or, in our case, data points densely sampled from it.
Figure 3a reports the solution to the discretized (through the finite element method, FEM) eigenvalue
problem ∇2φ = λφ with Neumann boundary conditions. The first non-trivial eigenfunction is
analytically given by cos(x̄), where x̄ denotes the horizontal space direction, and is very well
approximated by the FEM numerics; the point to notice is that cos(x̄) is one-to-one with x̄ between
zero and 2π; so, the first nontrivial diffusion eigenvector parameterizes one manifold direction (the x̄).
Several subsequent eigenfunctions still correlate with the x̄ direction: they are simply higher harmonics
(cos(2x̄), cos(3x̄),...). We have to go as high as the seventh eigenfunction (which analytically is cos(ȳ))
to find something that is one-to-one with the second, independent, vertical direction, ȳ (see Figure 3b,
where the first non-trivial eigenfunction is plotted against both the fourth and seventh eigenfunction at
scattered locations). A more complex two-dimensional geometry is considered in Figure 3c. Similarly
to the above example, the first non-trivial eigenfunction parameterizes one of the manifold “principal
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dimensions” (the angular coordinate), while the next (seventh) uncorrelated eigenfunction can be used
to parameterize the other relevant (radial) coordinate (it is just an accident that we had to go to the
seventh eigenfunction in both cases). In practical applications, only a discrete set of sample points on
the manifold in question is available as an input. Starting from those points, the Diffusion Maps create a
graph, where the points are the graph nodes and the edges are weighted on the basis of point distances,
as described above. Noticing that the (negatively defined) normalized graph Laplacian, L, is given
by [15]:

L = D−1W − I (6)

with I being the M × M identity matrix, we immediately recognize the link between the
eigenvalue problem in Figure 3 and mapping Equation (3) based on the spectrum of Markov matrix
Equation (2).

Figure 3. The analogy between traditional diffusion on domains and diffusion on graphs
from sampled data. (a) The solution to the finite element method (FEM) formulation of the
PDE (partial differential equation) eigenvalue problem ∇2φ = λφ with no flux boundary
conditions is reported for a narrow two-dimensional rectangular stripe. The second and
seventh eigenfunctions are found to be uncorrelated and suitable to parametrize the two
relevant dimensions of the manifold; (b) Entries in the first non-trivial eigenfunction of the
problem in figure (a) vs. entries in the fourth eigenfunction (sampled at scattered locations
of the computational domain) reveals a strong correlation between those two functions: the
fourth eigenvector (which we know corresponds to the third harmonic, cos(3x̄)) does not
encode a new direction on the data manifold. Right-hand side: Entries in the first non-trivial
eigenfunction of the problem in (a) vs. entries in the seventh eigenfunction (at the same
scattered locations) confirms that the seventh eigenvector (which we know corresponds to
cos(ȳ), encodes a new, second direction; (c) A different domain, but the same premise: The
solution to the finite element method (FEM) formulation of the PDE (partial differential
equation) eigenvalue problem ∇2φ = λφ with no flux boundary conditions is reported
for a two-dimensional manifold with a complicated boundary. The second and seventh
eigenfunctions are found to be uncorrelated and suitable to parametrize the two relevant
dimensions of the manifold (an “angular” and a “radial” one).



Processes 2014, 2 120

Diffusion on this graph (i.e., obtaining the spectrum of the graph Laplacian) approximates, at the
appropriate limit [7], the usual diffusion in the original domain; it provides an alternative, different from
our FEM, irregular mesh-discretization of the Laplace equation eigenproblem in the original domain,
and asymptotically recovers the spectrum of the Laplace operator there.

3. The Proposed Approach

We demonstrate the feasibility of constructing reduced kinetics models for combustion applications,
by extracting the slow dynamics on a manifold globally parameterized by a truncated diffusion map.
We focus on spatially homogeneous reactive mixtures of ideal gases under fixed total enthalpy H and
pressure P . Such a set-up is relevant for building up tables to be used in reactive flow solvers in the low
Mach number regime. In such systems, a complex reaction occurs with n chemical species {A1,...,An}
and q chemical elements involved in a (typically) large number, r, of elementary steps:

n∑
p=1

ιspAp→←
n∑
p=1

κspAp, s = 1, ..., r (7)

where ιsp and κsp represent the stoichiometric coefficients of the p-th species in the s-th step. Time
evolution of chemical species can be modeled by a system of ordinary differential equations (ODEs)
cast in the general form:

dy

dt
=

r∑
s=1

γsΩs (y, T ) (8)

with γs = (κs1 − ιs1, ..., κsn − ιsn), while the reaction rate function, Ωs, is usually expressed in terms
of the concentration vector, y, by mass action laws and Arrhenius dependence on the temperature, T .
Clearly, a constraint on a thermodynamic potential is required in order to close the system Equation (8),
thus providing an additional equation for temperature. Below (without loss of generality), we consider
reactions under fixed total enthalpy, H .

The first step of our method consists in the identification of a discrete set of states lying in a
neighborhood of the low-dimensional attracting manifold. While many possible constructions have been
suggested in the literature (see, e.g., [1,4,5,16]), here, in the spirit of the equation-free approach [17,18],
we assume that we have no access to the analytical form of the vector field; instead, we only have access
to a “black box” subroutine that evaluates the rates, f(y), and, when incorporated in a numerical initial
value solver, can provide simulation results.

3.1. Data Collection

To start the procedure, we need an ensemble of representative data points on (close to) the manifold
we wish to parametrize. To ensure good sampling, our ensemble of points comes from integrating
Equation (8) starting from a (rich enough) set of random states within the admissible phase-space
(a convex polytope defined by elemental conservation constraints and concentration positivity). After
sufficient time to approach a neighborhood of the manifold, samples are collected from each such
trajectory. As a result, a set of points {yi, i = 1, ...,M} in <n (hopefully dense enough within the region
of interest) becomes available for defining the manifold. To construct the required initial conditions,
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we first search for all vertices of the convex polytope defined by a set of equalities and inequalities
as follows:

n∑
α=1

yαcαβ/W̄α =
n∑

α=1

yeqα cαβ/W̄α, ∀β = 1, ..., q

yα > 0, ∀α = 1, ..., n
(9)

where cαβ and W̄α denote the number of atoms of the β-th element in the species α and the molecular
weight of species α, respectively, while the state vector y = (y1, ..., yn) expresses species concentration
in terms of mass fractions. The selection of random initial conditions is performed by convex linear
combinations of the v polytope vertices, {ypoli }:

yin =
v∑
i=1

w̄iy
pol
i (10)

with {w̄i} being a set of v random weights, such as
∑v

i=1 w̄i = 1. Clearly, owing to convexity,
Equation (10) always provides states within the admissible space. In combustion applications, the
phase-space region of interest goes from the fresh mixture conditions to the thermodynamic equilibrium,
yeq; hence, in Equation (10), we consider a subset of the polytope vertices, {ypoli }, based on their vicinity
to the mean point of the mixing line connecting the fresh mixture point to equilibrium. Due to a disparity
of the magnitudes of species concentrations, dij is taken as the Euclidean distance between properly
rescaled points y′i and y′j , with y′i = Ryi using the fixed diagonal matrix R = {rββ}, rββ = 1/max(yβ).
Here, max(yβ) represents the largest β-th coordinate among all available samples. Below, distances
in the concentration space are intended in this sense. It is worth noticing that, upon the choice of v
random numbers {w̃i, i = 1, ..., v} uniformly distributed over the range 0 ≤ w̃i ≤ 1, weights might be
straightforwardly obtained by normalization: w̄i = w̃i/

∑v
j=1 w̃j . However, such an approach leads to

poor sampling in the vicinity of the polytope edges and, at the same time, to oversampling within its
interior. Therefore, in order to achieve a more uniform sampling in the whole phase-space region of
interest, the weights are chosen as follows:

w̃i = [− ln (zi)]
p , w̄i = w̃i/

v∑
j=1

w̃j, i = 1, ..., v (11)

with zi representing random values uniformly distributed within the interval 0 ≤ zi ≤ 1 and 1 ≤ p ≤ 2

a free parameter (see also Figure 4).
It is worth stressing that Equation (9) always defines a convex polytope; hence, all samples computed

by Equation (10) necessarily belong to the admissible domain, and no sample rejection is needed at any
time. Clearly, such a procedure is only one possible approach for uniformly sampling a high-dimensional
convex polytope. While a detailed study of alternative methods are beyond the scope of this work,
we remind that other algorithms are also possible, such as Gibbs or hit-and-run sampling [19,20].
Trajectories starting at the random initial conditions, yin, computed by Equation (10) are evolved for
τf , after which, samples are collected as they proceed towards the equilibrium point, yeq. Samples
from the same trajectory are retained if their distance exceeds a fixed threshold. We would like the
sample to be as uniform as possible in the original space (which we will call the ambient space), because
doing so yields a better parameterization with Diffusion Maps [21,22]. However, such a condition is
not naturally fulfilled by samples of time integration: the trajectories (hence, also, our sampled points)
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often show a tendency to gather in narrow regions (especially close to the equilibrium point, governed
by the eigenvalue differences in the linearized dynamics). Hence, we also performed an a posteriori data
filtering (subsampling), where neighbors within a minimum distance, dmin, are removed.

Figure 4. On sampling initial conditions in a convex polytope in <3 with vertices
A = (1.8, 0.5, 0), B = (1, 0, 3), C = (0, 1, 1.5) and D = (0.2, 0, 0). (Left) Five
hundred points are generated by Equation (10) with uniformly random values 0 ≤ w̃i ≤ 1

and w̄i = w̃i/
∑4

j=1 w̃j; notice the poor sampling close to the boundaries; (Right) Five
hundred points are generated by Equation (10) with uniformly random values 0 ≤ zi ≤ 1,
w̃i = [− ln (zi)]

1.5 (i.e., p = 1.5) and w̄i = w̃i/
∑4

j=1 w̃j . The latter approach generates a
more uniform sampling of the polytope interior.
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The Diffusion Map approach is performed as outlined in Section 2, whereas the parameter, ε, in
Equation (1) can be chosen as a multiple of the quantity, maxj mini 6=j dij [21–23]. A better choice for ε
is to make it a multiple of what we will call the critical diffusion distance: the maximum edge length such
that, if all edges of at least that length are deleted in the distance graph, the graph becomes disconnected.
The reason this distance is important is that if ε is much smaller than this, the diffusion map will find
disjoint sets.

The Diffusion Map process provides a mapping from each point, yi, in the ambient space to the
reduced representation ui = [ψi,2, ψi,3, ..., ψi,m+1]T in the m-dimensional reduced space. We will refer
to this as the u-space. The manifold, Ω, in the ambient (y) space is known only by the finite set of
points, {yi}, on Ω, and its mapping to u-space is known only up to the mapping of that set of points
to the corresponding set, {ui}. Clearly, we can use any interpolation technique to compute y for any
other value of u. Let us call this y = Θ(u). If u is in an m-dimensional space, this mapping defines
an m-dimensional manifold in y-space, Ωc. If we chose an interpolation method, such that yi = Θ(ui),
then Ωc contains the original set, {yi}, but is an approximation to the slow manifold, Ω.

We will also assume that we can construct a mapping in the other direction, u = ψ(y), where
ui = ψ(yi) for all i. Finally, in the third step, we need to conceptually recast Equation (8), which
has the form dy/dt = f(y), into the reduced space as:

du

dt
= g (u) (12)
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In other words, given a value of u, we need a computational method to evaluate g(u); yet, all we have
available is a method to compute f(y). To do this, we have to execute the following three sub-steps:

1. Compute the y on Ωc corresponding to the current u (using whatever form of interpolation we
chose earlier);

2. Compute dy/dt = f(y);
3. Compute the equivalent du/dt.

Since Ωc is only an approximation to Ω, it is highly unlikely that dy/dt lies in the tangent plane of Ωc

at the point, y. (If it did, the problem of computing an equivalent du/dt would be straightforward.) Two
possible solutions to this dilemma are: (i) project dy/dt onto the tangent plane; or (ii) extend the mapping
u = ψ(y) to include a neighborhood of Ωc (a many-to-one map). If we do the latter, we can write:

du

dt
=
∂ψ

∂y

dy

dt
(13)

These two approaches are really the same, since a local extension of ψ to a neighborhood on Ωc implies
a local foliation, and Equation (13) is simply a projection along that foliation. If an orthogonal projection
is used, we simply write:

du

dt
=
(
JTJ

)−1
J
dy

dt
(14)

where J = ∂Θ
∂u

and ψ(y) is possibly needed only for initializing Equation (13) in the case initial
conditions are available in the ambient space.

3.2. Interpolation/Extension Schemes

In the following, we will review a number of possible extension (in effect, interpolation/
extrapolation) schemes that might be adopted for solving system Equation (13) on a learned low
dimensional manifold.

3.2.1. Nyström Extension

An established procedure for obtaining the α-th DMAP coordinate, ψα, at an arbitrary state, y ∈ <n,
is the popular Nyström extension [24]:

ψα = λα
−1

M∑
i=1

k (yi, y)ψi,α

k (yi, y) =

(
M∑
j=1

w (yj, y)

)−1

w (yi, y)

w (yi, y) = e−(di/ε)
2

, di = ‖y′i − y′‖

(15)

where λα and (ψ1,α, ..., ψM,α) are the α-th eigenvalue and eigenvector of the Markov matrix, K,
respectively. For the combustion case below, the di denote the Euclidean distances between rescaled
points (y′ = Ry, y′i = Ryi). The Jacobian matrix at the right-hand side of Equation (13) can be obtained
by differentiation of Equation (15) as follows [22,25]:

∂ψα
∂yβ

= λ−1
α

(
M∑
i=1

w (yi, y)

)−2 M∑
i,j=1

w (yj, y) ∂w(yi,y)
∂yβ

[ψi,α − ψj,α]

∂w(yi,y)
∂yβ

= 2ε−2r2
ββw (yi, y) (yi,β − yβ)

(16)
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where, in the case of point rescaling, rββ is computed as specified above, otherwise rββ = 1,∀β. The
Nyström extension can be utilized for implementing the restriction operator, as well as for computing its
Jacobian matrix.

3.2.2. Radial Basis Functions

Both lifting and restriction operators may be also obtained by local interpolation through radial basis
functions. Let u be a new state in the reduced space; the corresponding point in the full space y = Θ (u)

can be generally expressed by the following summation:

yβ =
nn∑
i=1

αi,βφ̄ (‖u− ui‖) , β = 1, ..., n (17)

over the nn nearest neighbors of u with the radial function, φ̄(•), only depending on a distance ‖•‖.
In this work, we focus on the following special form of Equation (17):

yβ =
nn∑
i=1

αi,β ‖u− ui‖p, β = 1, ..., n (18)

where p is an odd integer, while ‖•‖ denotes the usual Euclidean distance in the reduced space.
The coefficients, αi,β , are computed as:

[α1,β, ..., αnn,β]T = Λ−1 [y1,β, ..., ynn,β]T , Λ (i, j) = ‖ui − uj‖p , i, j = 1, ..., nn (19)

Similarly, restriction can be expressed in the form:

ψβ =
nn∑
i=1

αi,β ‖y′ − y′i‖
p
, j = 1, ..., k (20)

where data in the full space have been possibly rescaled (y′ = Ry, y′i = Ryi). The Jacobian matrix at
the right-hand side of Equation (13) can be obtained by differentiation of Equation (20) as follows:

∂ψβ
∂yγ

= pr2
γγ

nn∑
i=1

αi,β

[
n∑

ω=1

(
y′ω − y′i,ω

)2

] p
2
−1

[yγ − yi,γ] (21)

3.2.3. Kriging

Kriging typically refers to a number of sophisticated interpolation techniques originally developed
for geostatistics applications. Provided a function, f , known on scattered data, its extension to a new
point is performed via a weighted linear combination of the values of f at known locations. A noticeable
feature of Kriging is that weights may depend on both distances and correlations between the available
samples. In fact, one possible disadvantage of schemes only based on the quantities ‖•‖ (e.g., radial
basis functions) is that samples at a given distance from the location where an estimate is needed are all
equally treated. In contrast, Kriging offers the possibility of performing a weighting that accounts for
redundancy (i.e., sample clustering) and even sample orientation. This is done by choosing an analytical
model that best fits the experimental semivariogram of the dataset. More details on Kriging can be found
in [26]. In this work, both interpolated points and derivatives are computed by the readily available
Matlab toolbox, DACE [27].



Processes 2014, 2 125

3.2.4. Laplacian Pyramids

Laplacian Pyramids are a multi-scale extension algorithm, where a function only known at M
(scattered) sample points can be estimated at a new location. Based on a chosen kernel and pair-wise
distances between samples, this algorithm aims at generating a sequence of approximations with different
resolutions at each subsequent level, l [28]. Let y be a new point in the full space. The α-th coordinate
of the corresponding state in the reduced space u is evaluated in a multi-scale fashion as follows:
ψα ≈ s

(0)
α + s

(1)
α + s

(2)
α + ..., with:

s
(0)
α =

M∑
i=1

k(0) (yi, y)ψi,α for level l = 0

s
(l)
α =

M∑
i=1

k(l) (yi, y)d
(l)
i,α otherwise

(22)

and the differences:
d

(1)
α = ψα − s(0)

α for level l = 1

d
(l)
α = ψα −

l−1∑
i=0

s
(i)
α otherwise

(23)

are updated at each level, l. The functions, kl, in Equation (22) are:

k(l) (yi, y) = q−1
l w(l) (yi, y)

ql =
∑
j

w(l) (yj, y)

w(l) (yi, y) = exp
[
−‖y′i − y′‖

2 /σl
] (24)

In Equation (24), a Gaussian kernel is chosen, where the parameter σl = σ0/2
l decreases with the level,

l, σ0 is the fixed coarsest scale, while y′i and y′ denote the rescaled states (y′ = Ry, y′i = Ryi). A
maximum admissible error can be set a priori, and the values, s(l)

α , are only computed up to the finest
level, where:

∥∥∥ψα −∑k s
(k)
α

∥∥∥ < err. The use of Laplacian Pyramids for constructing a lifting operator,

yα ≈ s
(0)
α + s

(1)
α + s

(2)
α + ..., is straightforward and only requires the substitution of ψi,α with yi,α in

Equations (22) and (23), while Euclidean distances in the reduced space are adopted for the kernel in
Equation (24). Based on the resemblance of Equation (22) with the Nyström extension Equation (15),
it follows that:

∂s
(0)
α

∂yβ
=

(
M∑
i=1

w(0) (yi, y)

)−2 M∑
i,j=1

w(0) (yj, y) ∂w(0)(yi,y)
∂yβ

[ψi,α − ψj,α]

∂s
(1)
α

∂yβ
=

(
M∑
i=1

w(1) (yi, y)

)−2 M∑
i,j=1

w(1) (yj, y) ∂w(1)(yi,y)
∂yβ

[ψi,α − ψj,α]− ∂s
(0)
α

∂yβ

∂s
(2)
α

∂yβ
=

(
M∑
i=1

w(2) (yi, y)

)−2 M∑
i,j=1

w(2) (yj, y) ∂w(2)(yi,y)
∂yβ

[ψi,α − ψj,α]− ∂s0α
∂yβ
− ∂s1α

∂yβ

...

(25)

with:
∂w(l) (yi, y)

∂yβ
= 2σ−2

l r2
ββw

(l) (yi, y) (yi,β − yβ) (26)



Processes 2014, 2 126

and the Jacobian at the right-hand side of Equation (13) is given by:

∂ψα
∂yβ

=
∑
l

∂s
(l)
α

∂yβ
(27)

Similarly to RBF, LPcan be applied to a subset of the sample points, where, in the above procedure,
only nn nearest neighbors of the state, y (u), are considered for restriction (lifting).

A brief explanatory illustration of the use of Laplacian Pyramids for interpolating a multi-scale
function at four different levels of accuracy is given in Figure 5; in Figure 6, the same scheme provides
an extension of the function f(ϑ) = cos(3ϑ), defined on the circle in <2 given by X2 + Y 2 = 1 with
ϑ = arctan(Y/X).

Figure 5. Illustrating Laplacian Pyramids for a multiscale target function (see the text).
The sample dataset is formed by 2000 points evenly distributed in the interval [0, 10π].
(Top) Laplacian Pyramids used as an interpolation procedure at levels 2, 5, 8 and 11 with
σ0 = 30; (Bottom) The difference between the true function values and the Laplacian
Pyramids estimates.

Figure 6. The function f = cos(3ϑ), with ϑ = arctan(Y/X), is extended to the
plane (X, Y ) by Laplacian Pyramids (with the finest level l = 10 and σ0 = 10). The
sample set, {y1, ...,yM}, is given by M = 350 points randomly selected on the unit
circle black symbols).
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3.2.5. Geometric Harmonics

This is an alternative multi-scale scheme for extending functions only available at M scattered
locations, inspired by the Nyström method, and making use of a kernel, w [29]. Let W be the symmetric
(M ×M) matrix, whose generic element reads as:

W (i, j) = exp
[
−d2

ij/ε0

]
, i, j = 1, ...,M (28)

with {φα=1,...,M} being its full set of orthonormal eigenvectors sorted according to descending
eigenvalues {λα=1,...,M}. For δ > 0, let us define the set of indices Sδ = {α such that λα ≥ δλ0}. The
extension of a function, f , defined only at some sample points in Z ⊂ Z̄ to an arbitrary new point in Z̄
is accomplished by the following projection step (depending on the purpose, Z̄ can be either the ambient
space, y, or the reduced one, u):

f → Pδf =
∑
α∈Sδ

〈f, φα〉φα (29)

and the subsequent extension of Pδf :

Ef =
∑
α∈Sδ

〈f, φα〉Ψα (30)

where 〈•, •〉 denotes the inner product, while Ψj reads:

Ψα = λ−1
α

M∑
i=1

w (yi, y)φi,α, α ∈ Sδ (31)

wherew (yi, y) is computed as indicated in Equation (15). The above is only the first step of a multi-scale
scheme, where the function, f , is initially projected at a coarse scale with a large value of the parameter,
ε0, in Equation (28). Afterwards, the residual f − Pδf in the initial coarse projection is projected
at a finer scale, ε1, and so forth at even finer scales εl>1. A typical approach is to fix ε0 and then
project with εl = 21−lε0 at each subsequent step l till a norm of the residual f − Pδf remains larger
than a fixed admissible error. Clearly, both our restriction and lifting operators can be based on
Geometric Harmonics.

Similarly to RBF and LP, Geometric Harmonics (GH) can be applied to a subset of the sample points,
where, in the above procedure, only nn nearest neighbors of the state, y (or u), are considered for
restriction (or lifting).

Figure 7 provides an illustrative multi-scale example, where the Geometric Harmonics approach is
used for interpolation purposes for the same multiscale function used in Figure 5. As expected, in
the region with low-frequency components, a few steps are sufficient for accurately describing the true
function, whereas more iterations are required in the high frequency domain.

We also illustrate the use of Geometric Harmonics in extending the function f(ϑ) = cos(3ϑ), defined
on the circle in <2, given by X2 + Y 2 = 1 with ϑ = arctan(Y/X) in Figure 8.
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Figure 7. Geometric Harmonics on a multiscale target function (see the text). The sample
dataset is formed by 2000 points evenly distributed in the interval [0, 10π]. (Top) The
Geometric Harmonics (GH) scheme is used as an interpolation procedure with ε0 = 3;
(Bottom) The difference between the true function values and GH estimates. From left to
right: Results corresponding to one, two and eight steps are reported.

Figure 8. The function f = cos(3ϑ), with ϑ = arctan(Y/X), is extended to the plane,
(X, Y ), by Geometric Harmonics using ε0 = 0.25 (top) and ε0 = 0.5 (bottom). The
sample set, {y1, ...,yM}, is given by M = 350 points randomly selected on the unit circle
(black symbols).
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4. Application to an Illustrative Example: Homogeneous Combustion

We employ our proposed approach described in Section 3 above to search for a two-dimensional
reduced system describing the combustion of a mixture of hydrogen and air at stoichiometric proportions
under fixed total enthalpy (H = 300(kJ/kg)) and pressure (P = 1[bar]). We assume that the detailed
chemical kinetics is dictated by the Li et al. mechanism [30], where nine chemical species (H2, N2,
H , O, OH , O2, H2O, HO2, H2O2) and three elements (H , O, N ) are involved in the reaction. As
shown in Figure 9, the manifold is described by 3810 points and parameterized with respect to the two
diffusion map variables, ψ2 and ψ3. This two-dimensionality is also consistent with the two slowest
stable eigenvalues of the linearization in the neighborhood of the equilibrium point, that are followed by
a sizeable gap before the third, much faster stable eigenvalue; this indicates a separation of time scales
and suggest a two-dimensional stable submanifold close to the equilibrium.

Figure 9. Homogeneous reactive mixture of hydrogen and air at stoichiometric proportions
with fixed enthalpy (H = 300[kJ/kg]) and pressure (P = 1[bar]). Two dimensional
Diffusion Map (DMAP) parameterization of 3810 points in terms of the two nontrivial
leading eigenvectors, ψ2 and ψ3, of the Markov matrix, K. Colors represent mass fractions,
while the black filled circle and the black diamond represent the fresh mixture condition and
equilibrium state, respectively.
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Figure 10. (Top) Projection of the manifold onto the ψ2−ψ3 plane, where colors refer to the
mass fraction of H2O (left-hand side) and OH (right-hand side). From the three dimen-
sional views reported in the insets, we can infer that a two-dimensional reduced description is
suitable for most of the domain. (Bottom) Projection of the manifold onto the ψ2−ψ3 plane,
where colors refer to the mass fraction of HO2 (left-hand side). A three-dimensional view
(right-hand side) highlights that in the zoomed region, a higher dimensional description
is needed.

It is worth stressing that this two-dimensionality does not persist over the entire phase space.Judging
from the sample density in the Diffusion Map space, the considered cloud of points clearly lies on a
manifold with different dimensions in different regions. As expected, indeed, low temperature regions
(e.g., T < 1000 [K]) require a larger number of reduced variables (m > 2) to be correctly described
(see Figures 10 and 11) [4]. Therefore, in the example below, we only utilize the portion of the manifold
with high temperature (say T > 1200 [K]). Coping with manifolds with varying dimension is beyond
the scope of this paper and should be addressed in forthcoming publications. We mention, however, that
attempts of automatically detecting variations of the manifold dimension in the framework of Diffusion
Maps have been also recently reported in [23].
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Figure 11. (Top) A sample detailed transient solution is shown in the plane, ψ2 − ψ3.
Restriction is done by the Nyström method, while colors refer to the temperature (Kelvin)
of the gas mixture; (Bottom) Time evolution of the absolute deviation between detailed and
reduced solution trajectories (in the reduced space)

∥∥ψred − ψdet
∥∥. Numbers in the legend

correspond to the first six methods in Table 1.
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Table 1. Comparison of reduced and detailed solution trajectories (with initial condition
u = [0, 0] and 0 ≤ t ≤ t̄ = 1 × 10−4[s]) corresponding to several schemes
implementing lifting and restriction operators (see the text). ‖δψ‖ indicates the mean
deviation between the reduced and detailed solution trajectory (in the reduced space):
‖δψ‖ = t̄−1

∫ t̄
0

∥∥ψdet − ψred
∥∥dt, with ψdet, ψred and ‖•‖ denoting the restricted detailed

solution, the reduced solution and the Euclidean norm, respectively. Similarly, |δyα| is the
mean deviation for species α (in the ambient space): |δyα| = t̄−1

∫ t̄
0

∣∣ydet
α − yred

α

∣∣dt.
Method ‖δψ‖ |δy1| |δy3| |δy4| |δy5| |δy6| |δy7| |δy8| |δy9|

1 2.28 × 10−4 2.07 × 10−5 8.52 × 10−6 3.58 × 10−5 4.39 × 10−5 1.80 × 10−4 3.16 × 10−4 2.48 × 10−6 1.15 × 10−5

2 5.66 × 10−5 4.09 × 10−6 1.31 × 10−6 5.53 × 10−6 1.03 × 10−5 3.78 × 10−5 8.59 × 10−5 2.18 × 10−6 9.65 × 10−6

3 8.11 × 10−4 6.90 × 10−5 2.58 × 10−5 1.04 × 10−4 1.62 × 10−4 6.86 × 10−4 8.00 × 10−4 2.33 × 10−6 9.98 × 10−6

4 2.64 × 10−4 2.83 × 10−5 9.44 × 10−6 5.37 × 10−5 1.35 × 10−4 2.88 × 10−4 2.71 × 10−4 1.86 × 10−6 7.64 × 10−6

5 1.27 × 10−4 1.26 × 10−5 4.23 × 10−6 2.16 × 10−5 4.29 × 10−5 1.17 × 10−4 1.47 × 10−4 2.08 × 10−6 8.63 × 10−6

6 7.31 × 10−5 8.38 × 10−6 2.30 × 10−6 9.15 × 10−6 1.78 × 10−5 6.76 × 10−5 9.46 × 10−5 5.70 × 10−6 2.68 × 10−5

7 7.39 × 10−4 7.25 × 10−5 2.86 × 10−5 1.24 × 10−4 1.97 × 10−4 5.96 × 10−4 9.94 × 10−4 1.87 × 10−6 7.93 × 10−6

8 8.81 × 10−4 5.90 × 10−5 4.95 × 10−5 1.74 × 10−4 1.14 × 10−4 4.99 × 10−4 6.36 × 10−4 6.27 × 10−6 2.83 × 10−5

9 0.0058 3.83 × 10−4 2.45 × 10−4 0.00107 9.66 × 10−4 0.0034 0.0061 6.50 × 10−6 3.75 × 10−5

10 0.0140 0.00126 7.24 × 10−4 0.00283 0.00184 0.0123 0.0162 2.27 × 10−5 9.89 × 10−5

11 8.08 × 10−4 9.03 × 10−5 4.10 × 10−5 1.63 × 10−4 1.75 × 10−4 8.33 × 10−4 0.00116 2.79 × 10−6 1.19 × 10−5

12 0.0237 0.00331 0.00103 0.00424 0.00453 0.030 0.0331 1.11 × 10−4 5.45 × 10−4

We discretized the reduced space by a 60×60 uniform Cartesian grid with−0.025 < ψ2 < 0.035 and
−0.035 < ψ3 < 0.04. At every grid node, the values of the right-hand side of Equations (13) or (14) are
computed according to several interpolation schemes chosen form the ones described above in Section 3,
and stored in tables for later use. In particular, tables were created using the following methods:

1. The lifting operator consists of radial basis function interpolation with p = 3 performed over
50 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is done by radial
basis function interpolation with p = 3 performed over 50 nearest neighbors of an arbitrary point
in the ambient space, y. The reduced dynamical system is expressed in the form of Equation (13).

2. The lifting operator consists of radial basis function interpolation with p = 3 performed over
50 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is done by the
Nyström method. The reduced dynamical system is expressed in the form of Equation (13).

3. The lifting operator is based on Laplacian Pyramids up to a level l = 20 with σ0 = 0.5 over
80 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is based on the
Laplacian Pyramids up to a level l = 7 with σ0 = 0.5 over 80 nearest neighbors of y. The reduced
dynamical system is expressed in the form of Equation (13).

4. The lifting operator is based on Laplacian Pyramids up to a level l = 20 with σ0 = 0.5.
Restriction is done by the Nyström method. The reduced dynamical system is expressed in the
form of Equation (13).

5. The lifting operator is based on Geometric Harmonics locally performed over 15 nearest neighbors
of an arbitrary point in the reduced space, u. Refinements are performed until the Euclidean norm
of the residual is larger than 5 × 10−4. Restriction is done by the Nyström method. The reduced
dynamical system is expressed in the form of Equation (13).

6. The lifting operator is based on Kriging performed over eight nearest neighbors of an arbitrary
point in the reduced space, u (DACE package [27], with a second order polynomial regression
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model, a Gaussian correlation model and parameter θ = 10−3). Restriction is done by the Nyström
method. The reduced dynamical system is expressed in the form of Equation (13).

7. The lifting operator is based on Geometric Harmonics locally performed over 10 nearest neighbors
of an arbitrary point in the reduced space, u. Refinements are performed until the Euclidean norm
of the residual is larger than 10−3. Restriction is done using the Nyström method. The reduced
dynamical system is expressed in the form of Equation (13).

8. The lifting operator is based on Kriging performed over eight nearest neighbors of an arbitrary
point in the reduced space, u (DACE package [27], with a second order polynomial regression
model, a Gaussian correlation model and parameter θ = 10−3). Restriction is done by the Nyström
method. The reduced dynamical system is expressed in the form of Equation (14).

9. The lifting operator is based on Kriging performed globally over all samples (package [27], with a
second order polynomial regression model, a Gaussian correlation model and parameter θ = 13).
Restriction is done by the Nyström method. The reduced dynamical system is expressed in the
form of Equation (14).

10. The lifting operator is based on the Laplacian Pyramids up to a level l = 20 with σ0 = 0.5 over
80 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is based on
the Laplacian Pyramids up to a level l = 3 with σ0 = 0.5 over 80 nearest neighbors of an
arbitrary point in the ambient space, y. The reduced dynamical system is expressed in the form of
Equation (13).

11. The lifting operator is based on the Laplacian Pyramids up to a level l = 20 with σ0 = 0.5 over
80 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is based on
the Laplacian Pyramids up to a level l = 9 with σ0 = 0.5 over 80 nearest neighbors of an
arbitrary point in the ambient space, y. The reduced dynamical system is expressed in the form of
Equation (13).

12. The lifting operator is based on the Laplacian Pyramids up to a level l = 20 with σ0 = 0.5 over
80 nearest neighbors of an arbitrary point in the reduced space, u. Restriction is based on Laplacian
Pyramids up to a level l = 12 with σ0 = 0.5 over 80 nearest neighbors of an arbitrary point in the
ambient space, y. The reduced dynamical system is expressed in the form of Equation (13).

Each of the above tables was utilized for providing systems Equations (13) and (14) with a closure,
where the rates of reduced variables are efficiently retrieved via bi-variate interpolation in the Diffusion
Map space. In Figure 11, a sample trajectory (starting from u = [0, 0]) is reported in the top part, while
the Euclidean norm of the absolute deviation between the reduced and detailed solution (in the ψ2 − ψ3

plane) is reported in the lower part of the figure as a function of time. A more detailed comparison
is reported in the Table 1. In our (not optimized) implementation, all trajectories are computed by the
Matlab’s solver, ode45, with the reduced system showing a speedup of roughly four times compared to
the detailed one.

In terms of accuracy, we found that the best performances are achieved combining a local lifting
operator (e.g., interpolation/extension over nearest neighbors) with the Nyström method for restriction.
For instance, we notice that a proper combination between radial basis function interpolation (for lifting)
and Nyström extension may offer excellent accuracy (in terms of deviation errors ‖δψ‖ and |δyi|), as
shown in Table 1 for the solution trajectory in Figure 11. Clearly, radial basis functions are simpler to
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implement and require less computational resources compared to other approaches, such as Kriging and
Geometric Harmonics. We should stress, though, that the latter techniques present similar performances
and are certainly to be preferred in cases where (unlike Figures 9 and 11) samples are not uniformly
distributed (i.e., sample clustering). Moreover, we observe that approaches based on Laplacian Pyramids
(for restriction) present poorer performances even with large values of l. An explanation for this is a
possible inaccurate estimate of the derivatives at the right-hand side of the reduced dynamical system,
which we attempt to illustrate through the caricature in Figure 12.

Figure 12. Illustrating a possible pathology. Samples (circles) are uniformly chosen in X ,
with Y = sin(X). Laplacian Pyramids are adopted for interpolation between samples with
σ0 = 10. Estimated values with the finest level l = 5, l = 9 and l = 13 are denoted by
LP05, LP09 and LP13, respectively. At the latter level, the estimates of derivatives are no
longer accurate.
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We finally find that solutions to system Equation (14) typically lead to larger errors compared to those
obtained solving Equation (13).

For completeness, in Figure 13, we report the time series of the Diffusion Maps’ variables as obtained
by Methods 2 and 3 in Table 1, as well as the restriction of the corresponding detailed solution. Moreover,
in Figures 14 and 15, a comparison of the time series in the detailed space is reported as obtained by
reconstruction of the states in <9 from the reduced solutions in Figure 13.
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Figure 13. Time evolution of the two diffusion map variables along the solution trajectory of
Figure 11 as obtained by Method 2 (top) and by Method 3 (bottom) (see Table 1). The initial
condition in the Diffusion Maps’ space [0, 0] is first lifted into <9 and then relaxed towards
the equilibrium point by the detailed kinetics Equation (8) using the readily available Matlab
solver, ode45. The latter time series is afterwards restricted to the Diffusion Maps’ space and
reported with a continuous line. Symbols denote the corresponding solution directly obtained
in the reduced space by solving system Equation (13) by the same Matlab solver, ode45.
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Figure 14. The initial condition in the Diffusion Maps’ space [0, 0] is first lifted into <9 and
then relaxed towards the equilibrium point by the detailed kinetics Equation (8) using the
readily available Matlab solver, ode45 (continuous line). Symbols report the corresponding
time series as obtained by lifting the reduced solution at the top of Figure 13 (i.e.,
Method 2).
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Figure 15. The initial condition in the Diffusion Maps’ space [0, 0] is first lifted into <9 and
then relaxed towards the equilibrium point by the detailed kinetics Equation (8) using the
readily available Matlab solver, ode45 (continuous line). Symbols report the corresponding
time series as obtained by lifting the reduced solution at the bottom of Figure 13 (i.e.,
method 3).
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5. Conclusions

In this work, we showed that the Diffusion Map (DMAP) technique is a promising tool for extracting
a global parameterization of low-dimensional manifolds arising in combustion problems. Based on the
slow variables automatically identified by the process, a reduced dynamical system can be obtained and
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solved. Both lifting and restriction operators (i.e., mapping of any point in the region of interest of
the reduced space into the full space and vice versa) lie at the heart of such an approach. To construct
these operators, methods for extending empirical functions only known at scattered locations must be
employed, and we have tested several.

For chemical kinetics governing a non-isothermal reactive gas mixture of hydrogen and air, a
comparison is carried out on the basis of the deviation error between sample detailed solutions
and the corresponding reduced ones in both the full and reduced spaces. Several combinations
of interpolation schemes were implemented in the procedure restrictions/liftings, with the reduced
rates, du/dt, pre-computed and stored in tables to be utilized at a later time for providing system
Equation (13) with a closure. In the considered case, approaches based on a local lifting operator, i.e.,
interpolation/extension over nearest neighbors, combined with the Nyström method (for restriction) have
shown superior performances in terms of accuracy in recovering the (longer-time) transient dynamics of
the detailed model.

While the feasibility of the presented approach has been demonstrated here, a number of open issues
remain. In particular, future studies should focus on computationally efficient implementations of
the method without pre-tabulation, since handling tables at high dimensions (say m > 4) becomes
computationally complex. Clearly, the approach can only start after the initial collection of a (rich
enough) dataset from simulations. It is worth noting, however, that the reduced coordinates that result
from data mining can also be helpful in designing subsequent data collection to further extend the
manifold if necessary: Taylor-series-based extensions close to the boundaries (in a reduced-dimension
Diffusion Map space) of the dataset collected can provide initial conditions for further data-collection
simulations. The idea has been, in principle, proposed in the past [31] in the context of navigating
effective free energy surfaces, and its incorporation in our Diffusion Map-based approach here is worth
pursuing.In this paper the initially collected data came from a detailed set of kinetic ordinary differential
equations, and the effective model for the reduced variables was also assumed to be a set of ODEs in these
variables. The approach, however, can also, in principle, be used when the data do not need to come from
a large set of ODEs, but, for example, from multiscale Stochastic Simulation Algorithm descriptions of
chemical kinetic schemes (for such a recent application, see [32]). Moreover, as demonstrated also in the
presented combustion example, the method should be able to cope with manifolds, whose dimensions
possibly vary across distinct regions of the phase-space (see [23]); how to consistently express and solve
reduced systems across manifolds with disparate dimensions remains out of reach of the present method,
requiring further investigation.
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