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Abstract

Predictive maintenance (PdM) is a cornerstone of smart manufacturing, enabling the early
detection of equipment degradation and reducing unplanned downtimes. This study
proposes an advanced machine learning framework that integrates the Extreme Learning
Machine (ELM) with a novel hybrid metaheuristic optimization algorithm, the Polar Lights
Salp Cooperative Optimizer (PLSCO), to enhance predictive modeling in manufacturing
processes. PLSCO combines the strengths of the Polar Light Optimizer (PLO), Competitive
Swarm Optimization (CSO), and Salp Swarm Algorithm (SSA), utilizing a cooperative
strategy that adaptively balances exploration and exploitation. In this mechanism, particles
engage in a competitive division process, where winners intensify search via PLO and
losers diversify using SSA, effectively avoiding local optima and premature convergence.
The performance of PLSCO was validated on CEC2015 and CEC2020 benchmark functions,
demonstrating superior convergence behavior and global search capabilities. When applied
to a real-world predictive maintenance dataset, the ELM-PLSCO model achieved a high
prediction accuracy of 95.4%, outperforming baseline and other optimization-assisted
models. Feature importance analysis revealed that torque and tool wear are dominant
indicators of machine failure, offering interpretable insights for condition monitoring. The
proposed approach presents a robust, interpretable, and computationally efficient solution
for predictive maintenance in intelligent manufacturing environments.

Keywords: predictive maintenance; machine learning; smart manufacturing; predictive
modeling; metaheuristic optimization method; polar light optimizer; defect detection

1. Introduction

The significance of maintenance has increased throughout the years with extensive
mechanization and automation. Maintenance now plays a crucial role in the industrial
sector, and its expenses account for a substantial portion of the manufacturing costs of an
enterprise [1]. Existing literature broadly outlines three primary maintenance methods;
namely, Corrective Maintenance (CM), Preventive Maintenance (PM), and PdM meth-
ods [2]. CM is the simplest and consists of fixing the equipment only after failure. While
simple, CM often results in expensive production interruptions and unscheduled com-
ponent replacements. PM involves scheduling regular maintenance tasks for specified
equipment to reduce the probability of failures. Maintenance is performed while the ma-
chine remains operational to prevent unforeseen malfunctions and the resultant downtime
and expenses [3,4]. While PM may decrease repair expenses and unanticipated downtime,
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it leads to superfluous maintenance. The assessment of when equipment will wear out
relies on an assumed failure rate rather than empirical data regarding the state of the partic-
ular equipment. This frequently leads to expensive and entirely superfluous maintenance
activities, resulting in increased planned downtime and necessitating complex inventory
management [5]. Figure 1 illustrates the hierarchy of maintenance strategies.

Maintenance Strategies

Unplanned Maintenance/ Reactive

Corrective Maintenance Preventive Predictive

Maintenance Maintenance

Based on Intervals Realiability
Centered

Age Based »

Condition based

Figure 1. Hierarchy of maintenance strategies [6].

Introduced as a more advanced approach, PAM or condition-based maintenance is de-
signed to anticipate equipment failures and determine the appropriate maintenance actions
to optimize the balance between maintenance recurrence and the associated expenses. PdM
relies on the predictive analysis of data gathered from sensors and meters linked to equip-
ment, historical maintenance records, and operational logs to determine when equipment
requires maintenance or withdrawal. PAM enables firms to enhance their operations by
performing maintenance activities only when absolutely necessary [7]. As the complexity
of industrial systems grows and the amount of data generated increases, Machine Learning
(ML) has been increasingly applied to predictive maintenance and has notably enhanced its
effectiveness. ML algorithms have demonstrated the ability to manage high-dimensional
and multivariate data, uncover hidden links within data in intricate and dynamic contexts,
and deliver unparalleled accuracy in failure prediction [8,9]. Common ML algorithms
include Support Vector Machines (SVM) [10], K-Nearest Neighbors (KNN) [11], Recurrent
Neural Networks (RNNs) [12], Decision Trees (DT) [13], Bayesian Networks (BN) [14], Long
Short-Term Memory networks (LSTMs) [15], Convolutional Neural Networks (CNNs) [16],
Gradient Boosting Machines (GBM) [17], Random Forests (RF) [18], Naive Bayes (NB) [19],
K-means clustering [20], and the Extreme Learning Machine (ELM) [21]. ELM stands
out among other ML algorithms due to its rapid training process and versatility. Unlike
traditional neural networks, ELM eliminates the iterative learning process, achieving faster
convergence and reducing computational complexity [22]. Few studies have explored the
application of ELM for predictive maintenance across various domains, including electrical
systems [23], power transformers [24], aero-engines [25], lithium-ion batteries [26], and
steam turbines [27].

However, ELM’s effectiveness depends heavily on parameter tuning. Manual param-
eter tuning is both time-intensive and frequently ineffective in attaining high-precision
outcomes. To address this challenge, Metaheuristic Algorithms (MAs) are used to au-
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tonomously tune parameters via extensive simulation tests, guaranteeing that the model
parameters reach ideal settings [28]. Moreover, the integration of MAs notably improves the
model’s stability and generalization capacity. Van Thieu et al. introduced a combination of
ELM with the weighted mean of vectors (INFO) algorithm, Pareto-like Sequential Sampling
(PSS), and the Runge-Kutta optimizer (RUN) [29]. Their comparison analysis, utilizing
streamflow data, demonstrates improved forecast accuracy, strong convergence, and consis-
tent stability, especially the PSS-ELM. Li et al. developed an optimal forecasting model for
supercapacitor capacity, which combines an ELM with the Heuristic Kalman Filter (HKF)
technique [30]. The experiments revealed that HKF-ELM requires fewer setting parameters,
reduced time cost, and higher prediction accuracy. Similarly, Boriratrit et al. proposed three
hybrid forecasting models by integrating ELM with Jellyfish Search (JS-ELM), Flower Polli-
nation (FP-ELM), and Harris Hawk (HH-ELM) algorithms to improve precision and reduce
overfitting [31]. JS-ELM surpassed the other models by attaining the lowest Root Mean
Square Error (RMSE) and ensuring efficient processing times. Sun and Huang presented
the Whale Optimization Algorithm-ELM (WOA-ELM) for forecasting carbon emission
intensity [32]. The WOA-ELM exhibited a strong ability to handle extensive datasets while
proficiently accommodating smaller samples. The incorporation of the WOA significantly
augmented the ELM’s performance by enhancing its accuracy and overall predictive effi-
cacy. Tan introduced an alternative variant of ELM, a hybrid method that uses the Improved
Multi-Objective Particle Swarm Optimization (IMOPSO) algorithm to optimize multiple
competing objectives [33]. This technique limits the ELM network’s input weights and
hidden biases to appropriate ranges, improving generalization performance and resolving
instability. Hua et al. proposed a hybrid framework joining Partial Least Squares (PLS),
Variational Mode Decomposition (VMD), Improved Atom Search Optimization (IASO), and
ELM [34]. VMD decomposes wind speed data into frequency-based sub-series, PLS refines
the dataset, and IASO, enhanced with simulated annealing, optimizes the ELM. The model
outperformed other models, demonstrating superior accuracy and reliability. Kardani
et al. [35] also proposed the integration of MAs, Firefly Algorithm (FFA), and Improved
Firefly Algorithm (IFFA) with ELM, Adaptive Neuro-Fuzzy Inference System (ANFIS),
and Artificial Neural Networks (ANN) to optimize prediction performance. Among them,
the ELM-IFFA model delivered the most accurate and reliable results [35]. Gao et al. [36]
developed a hybrid prediction model in which the RF is utilized to extract parameters. The
ELM is then optimized for prediction using the Improved Parallel Whale Optimization Al-
gorithm (IPWOA). Simulation experiments demonstrated that the RE-IPWOA-ELM model
achieves superior prediction accuracy [36]. Shariati et al. utilized the hybrid ELM and the
Grey Wolf Optimizer (GWO) to predict the compressive strength of concrete with partial
cement replacements [37]. The authors reported notable improvements in the performance
of the ELM-GWO model.

Despite the advancements made in integrating MAs with ELM across various applica-
tions, the adoption of ELM in PAM domains remains limited. While ELM has demonstrated
significant potential in other fields, its application in other fields shows that it faces chal-
lenges stemming from limited accuracy and generalizability. These limitations primarily
arise due to the random initialization of weights and biases, which, although contributing
to ELM’s computational speed, hinder its ability to achieve optimal performance. Further-
more, the absence of multiple hidden layers and robust optimization strategies exacerbates
these issues, particularly in complex industrial scenarios where accurate predictions are
critical. Although prior studies have demonstrated the benefits of integrating MAs with
ELM to enhance its predictive capabilities, the existing literature lacks approaches that
incorporate novel competitive-based learning mechanisms and dynamic adaptive strate-
gies. Such strategies are essential to ensure an effective balance between exploitation and
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exploration of the problem space by the optimization algorithm, enabling the identifica-
tion of optimal weights and biases and thus significantly improving ELM’s accuracy and
robustness. This gap in the literature forms the core motivation and impetus for this re-
search, which seeks to address these challenges through the development of an innovative
optimization framework tailored for ELM in PdM applications.

Therefore, this study introduces the integration of the PLSCO to optimize the weights
and biases of ELM for PdM prediction. The PLO was introduced by Yuan et al., and it
draws inspiration from the aurora phenomenon [38]. It models the behavior of high-energy
particles interacting with the Earth’s magnetic field and atmosphere. PLO presents the
advantage of effectively balancing local and global search processes by using adaptive
weights. However, similar to other MAs, PLO can be trapped in local optima, and its
convergence can be hindered in high-dimensional spaces. The PLSCO addresses these
drawbacks by introducing two mechanisms into the traditional PLO. One approach to
mitigate the limitations of PLO is to incorporate a CSO strategy, where the population is
dynamically split into two groups: winners and losers, based on their fitness values. This
division ensures a structured division of optimization roles, enhancing both exploration
and exploitation. The winner group, comprising the top-performing individuals, focuses on
refining local searches. These particles are updated using the PLO mechanism, which excels
in fine-tuning solutions and exploiting promising regions in the search space. This ensures
that high-quality solutions are further improved through focused exploitation. The loser
group, consisting of the lower-performing individuals, adopts the SSA mechanism. SSA is
well-suited for exploration due to its ability to simulate salp chain dynamics, which allows
for broader coverage of the solution space. Unlike existing hybrid metaheuristic algorithms
for ELM tuning, which frequently operate by sequentially invoking constituent algorithms,
PLSCO introduces a co-evolutionary control layer that unifies the core mechanisms of PLO,
CSO, and SSA into a single adaptive search framework. The collision-based exploitation
mechanism from PLO is embedded directly into the swarm update equations, enabling
localized refinements to occur concurrently with global exploration. The competitive
learning dynamics of CSO are adapted to act as a real-time regulator of exploration—
exploitation balance, informed by SSA’s leader—follower hierarchy. This integration allows
PLSCO to adapt its parameter settings dynamically as the search progresses. Consequently,
PLSCO offers a more synergistic and responsive search process, improving convergence
behavior. A detailed comparison of the architectural components, parameter adaptation
strategies, and optimization mechanisms of the proposed ELM-PLSCO framework with
other benchmark ELM-based hybrid models is presented in Table 1.

Table 1. Comparative Summary of the Proposed ELM-PLSCO Model and Prior ELM-Based Hybrid
Optimization Models.

Method Core Search Principle Dynamic/Adaptive Dlver51ty/Pert.urbat10n ELM Tuning Target
Control Mechanism
. . Sequential optimizer
PSS-ELM [29] Pareto.—hke S.equentlal cooperation for Multi-strategy sampling
. Sampling using INFO . . L .
(Pareto-like and RUN strateeios to progressive refinement, patterns to maintain Input weights (W)
Sequential select/update caﬁ didate balancing exploration population diversity and and biases (B)
Sampling ELM) p and exploitation stabilize convergence.

solutions efficiently.

over iterations.

HKF-ELM [30]

(Heuristic Kalman

Filter ELM)

Kalman Filter-based
state estimation applied
to ELM
parameter search.

Noise-driven adaptive
updates of state variables
and gain coefficients.

Dimensionality
reduction in search space
for faster, real-time
parameter adaptation.

Input weights (W)
and biases (B)
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Table 1. Cont.

Method

Core Search Principle

Dynamic/Adaptive
Control

Diversity/Perturbation
Mechanism

ELM Tuning Target

JS-ELM [31]
(Jellyfish Search
ELM)

Models’ jellyfish

foraging and swarm drift

in ocean currents.

Time-control mechanism

switching between

passive drifting and

active prey-chasing
phases.

Lévy-flight-like random
walks to maintain
diversity and reduce
overfitting risk.

Input weights (W)
and biases (B)

WOA-ELM [32]
(Whale
Optimization
Algorithm ELM)

Bubble-net hunting
strategy with spiral
updating and
encircling maneuvers.

Adaptive adjustment of

encircling radius and
spiral pitch based on
prey position.

Hybrid spiral search and
stochastic position
updates to avoid
premature convergence.

Input weights (W)
and biases (B)

IMOPSO-ELM [33]
(Improved
Multi-Objective
Particle Swarm
Optimization ELM)

Multi-swarm
cooperative PSO

optimizing ELM input

weights and hidden
biases via RMSE, 1.2

norm, and L2,1 norm for

network compactness
and generalization

Adaptive multi-swarm
and global-best selection

strategies in IMOPSO;
external elite archive

guides particle updates

to balance multiple
objectives and
prevent overfitting

Maintains diversity via
multi-objective
dominance sorting and
crowding distance.

Input weights (W)
and biases (B)

VMD-PLS-IASO-
ELM [34]
(Variational Mode
Decomposition,
Partial Least
Squares, Improved
Atom Search
Optimization ELM)

Combines VMD for

signal decomposition,
PLS extracts key features,
and ASO with Simulated

Annealing for
parameter search.

Annealing-based control

of atomic
interaction forces.

Frequency-based
decomposition from
VMD plus stochastic

perturbations in IASO to

avoid local minima and

maintain diversity in the
search space.

Input weights (W)
and biases (B)

ELM-IFFA [35]
(ELM with
Improved Firefly
Algorithm)

Firefly Algorithm (FFA)

enhanced with
Lévy-flight-based
random steps

Dynamic light
absorption coefficient
and Lévy-flight step

length adjust attraction

range and
exploration intensity

Lévy-flight-style
randomization allows
fireflies to jump out of

local optima,
maintaining diversity;
random direction
generation and
population-based
interactions prevent
premature convergence

Input weights (W)
and biases (B)

RF-IPWOA-ELM
[36] (Random
Forest, Improved
Parallel Whale
Optimization
Algorithm ELM)

Feature selection via RF,
followed by parallelized

WOA search.

Two populations with
different convergence
factor strategies
(nonlinear decrease

tailored to random vs.

chaotic initialization)
adapt global/local
search balance

Random, chaotic
sequence initialization
ensures diverse starting
points; immigration
operator exchanges
individuals by fitness
tiers to maintain
diversity and avoid
local optima

Input weights (W)
and biases (B)

ELM-GWO [37]
(ELM with Grey
Wolf Optimizer)

Grey Wolf Optimizer’s

leadership hierarchy («,
f3, 8 roles) guides search
in the weight-bias space

Adaptive role switching

and encircling prey

behavior; positions

updated iteratively
based on best wolves

Random leader selection
and position updates
help escape local optima

Input weights (W)
and biases (B)

ELM-PLSCO

(Extreme Learning

Machine, Polar
Lights Salp
Cooperative
Optimizer)

(Current Work)

Cooperative hybrid of
Polar Light Optimizer
(PLO), Competitive
Swarm Optimizer (CSO),

and Salp Swarm
Algorithm (SSA)

Adaptive division of

population into winners

and losers through CSO;

winners exploit via PLO,
losers explore via SSA;

global best

dynamically updated

Leader—follower
dynamics in SSA,
competitive pairing in
CSO, and stochastic
updates maintain
diversity and prevent
premature convergence

Input weights (W)
and biases (B)
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The remainder of this paper is structured as follows. Section 2 presents back-
ground information on the PLO and the proposed PLSCO. Section 3 describes the novel
ELM-PLSCO model, while Section 4 presents the experiments conducted and discusses
their results. Section 5 provides a conclusion and outlines potential directions for
future research.

2. Methodology
2.1. Polar Light Optimizer (PLO)

The PLO draws inspiration from the aurora borealis, where charged particles (solar
wind) interact with the Earth’s magnetic field, creating luminous patterns in the sky as
shown in Figure 2.

Solar wind high energy particles get caught up in the Earth's field line

~ = ~ N — T~
/j£,~\7*ww‘- NN
[7 s / \ W
® (N J T// / \ \ \
o... ~ -l\ l \
° : ° ( ? \ \ —\tmosphelel l I
SR \ , o
'\\\\ - 7/
- D %
S
Cluster oieneloetlcputlcles L ¥>/ S \\__’/

Figure 2. Solar wind energetic particles enter the Earth’s magnetic field lines [38].

The algorithm incorporates three primary mechanisms: gyration motion, aurora
oval walk, and particle collision, which are designed to simulate global exploration and
local exploitation in the optimization process [38]. The algorithm starts with a randomly
generated population of candidate solutions. The population matrix X, is given as follows
in Equation (1).

X(1,1) X(1,2) ... X(1,D)

X(2,1) X((2,2) ... X(@2,D)
X(N,D) = LB+ R x (UB — LB) = : : ) : 1)

X(N,1) X(N,2) ... X(N,D)

where N is the number of particles. D is the dimension of the solution space. UB and
LB denote the upper and lower boundaries of the search space, respectively. R denotes
a random value in [0, 1]. To search for optimal solutions, PLO imitates the gyration mo-
tion. The gyration motion simulates the spiraling motion of charged particles under the
influence of the Earth’s magnetic field, characterized by the Lorentz force as expressed
in Equation (2).

FL = quB @)

where q is the particle’s charge. v is its velocity. B is the magnetic field vector. The motion
is further modeled using Newton’s second law in Equation (3).
do

FLme 3)
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Here, m represents the mass of the charged particle. Combining Equations (2) and (3)
yields the first-order ordinary differential equation, as expressed in Equation (4).

do
mo = quB (4)

Integrating Equation (4) over time ¢ from 0 to t, and velocity vy to v(t), yields

v t
/ 1dvz/ 9B 4t 5)
) (% 0 m

Solving Equation (5) yields Equation (6).

Equation (5).

qBt

v(t) = vgem (6)

By accounting for atmospheric damping, the equation is rewritten as expressed in
Equation (7).
dv

mE = quB —av (7)

where « is the damping factor. This modification transforms the equation into a nonho-

mogeneous first-order linear differential equation. To solve it, the method of variation

of constants is applied by assuming a solution of the form v = Ce*, where C and A are

constants to be determined. First, obtain the linear first-order ODE as given in Equation (8).
dv  (gB —«)

- m v 8)

Seeking a solution of the form v(t) = CeM with constant C, substitution yields

Equation (9).
mACeM = (qB — a)Ce™ 9)

After canceling CeM # 0, we have A = qBT_“, giving Equation (10)

o(t) = Cexp <qu— “t> (10)

where C is the integration constant. The parameters g, B, and C are set to 1, while m is
assigned a value of 100. The damping factor « is a random variable within the range
[1,1.5]. The time-dependent behavior of the velocity v(t) described by Equation (10) is
incorporated into the algorithm to evaluate the fitness function during the optimization
process. The auroral oval walk is a mechanism in the PLO that enhances global exploration
of the solution space. Auroras typically form along an elliptical region known as the auroral
oval, whose size and boundaries vary with geomagnetic activity and the interplanetary
magnetic field. The dynamic fluctuations of the auroral oval introduce unpredictable chaos,
which is beneficial for efficient global search. To model this behavior, Levy Flight (LF) is
employed due to its non-Gaussian random walk characteristics. The LF step distribution is
defined in Equation (11).

Levy(d) ~ |d|7F,0<p<2 (11)

where  determines stability, and d represents the step size. The auroral oval motion is
described in Equation (12).

Ao = Levy(d) x (Xavg () = X(i,7)) + LB+, x (UB — LB)/2 (12)
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Here, Ao models the dynamic expansion and contraction of the auroral oval, Xavg (f)
is the population’s center of mass; it is expressed in Equation (13).

N

Xarg = - X L X0 (13)

X(i,j) is the current position of a particle. PLO combines gyration motion for local
exploitation and the auroral oval walk for global exploration. Gyration motion simulates
particles spiraling along the Earth’s magnetic field lines to perform fine local adjustments,
while the auroral oval walk enables larger exploratory steps to discover valuable regions in
the search space. The combined position update rule is expressed in Equation (14).

Xnew (i,7) = X(i,7) + 12 x (Wy x v(t) + Wp x Ao) (14)

where r, accounts for environmental randomness (r, € [0,1]), Wy and W, are adaptive
weights balancing gyration motion (v(t)) and auroral oval walk (Ao). Wj and W, are given

in Equations (15) and (16).
Wy = 2 1 (15)

(14e-20/m)

W2 — e—(2t/T)3 (16)

As iterations progress, W increases, emphasizing local exploitation while W, de-
creases, prioritizing global exploration early on. This dynamic balance allows the PLO
to efficiently explore and exploit the solution space, achieving optimal or near-optimal
solutions. Robust global exploration and local exploitation alone are insufficient for a
well-rounded optimization algorithm; the ability to escape local optima is equally critical.
To address this, the PLO incorporates a particle collision strategy inspired by the dynamic
interactions of charged particles in the solar wind as they travel toward Earth. When
entering the Earth’s atmosphere and magnetic field, high-energy particles such as electrons
and protons experience frequent collisions, altering their velocity and trajectory. These
collisions transfer energy, trigger excitation and ionization of other particles, and contribute
to the complex, evolving shapes of auroras. In the PLO, particle collisions are modeled
to induce chaotic movement, enabling particles to escape local optima. The position of a
particle after a collision is calculated in Equation (17).

Xpew(i,j) = X(i, ) + sin(rs x 7) x (X(i, j) — X(a,])),rs <Kand rs < 0.05  (17)

Here, X(a,j) represents a randomly selected particle. The collision probability K,
which increases over time, is given in Equation (18). In Equation (17), r3 is a uniformly
distributed random variable in [0,1] that controls the phase shift of the sine function,
influencing the displacement magnitude following particle collisions. r4 is a uniformly
distributed random variable in [0,1] used to determine whether a collision event occurs
in relation to the collision probability K. The parameter K, increases monotonically with
iteration count, thereby raising the probability of collision-induced perturbations during
later search stages and enhancing local search diversity. Where 75 is an independent random
variable used to add stochastic variability in collision activation.

K=/(t/T) (18)
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As the algorithm progresses, collisions occur more frequently, enhancing the ability of
particles to explore new regions of the solution space. This strategy plays a crucial role in
maintaining diversity and preventing premature convergence.

2.2. Proposed PLSCO
2.2.1. Salp Swarm Algorithm (SSA)

A notable limitation of the PLO lies in its tendency to exhibit reduced exploration.
PLO effectively leverages the auroral oval walk for exploration. Although the auroral
oval walk introduces randomness through LF, it focuses on specific candidate solutions
within a limited region, reducing the likelihood of escaping local optima. Its ability to
maintain a diverse population and explore uncharted regions of the solution space is
relatively constrained. This limitation becomes especially pronounced in complex and
high-dimensional optimization problems, where premature convergence to local optima
hinders the algorithm’s overall performance. The integration of the SSA within the PLSCO
directly addresses this shortcoming by introducing a dynamic mechanism to bolster global
exploration. The SSA is inspired by the collective swarming behavior of salps, marine
organisms that navigate and forage in a structured formation called a salp chain. In SSA,
the population of salps is divided into two roles: leaders and followers [39]. The leader,
positioned at the head of the chain, determines the primary movement direction by mov-
ing closer to the food source, which represents the best solution (global optimum) found
so far. The followers occupy subsequent positions in the chain and adapt their move-
ments based on the leader’s trajectory. Leader salps position is updated as follows using
Equation (19) [40].

i+ Xéest,]- +c1((UBj — LBj)c2 + LB;), ifc3 >05 19)
Lj Xpestj — €1((UBj — LBj)ca + LB;), ifcg < 0.5
where Xf}fl is the updated position of leader salps in the j-th dimension. X{ j repre-

sents the current position of the best solution in the j-th dimension. UB; and LB; are the
upper and lower bounds of the search space in the j-th dimension. ¢y, ¢; and c3 represent
random coefficients, where c; controls step size, ¢, adds randomness within bounds, and
c3 determines movement direction. The parameter c; is a random value in [0, 1], while c3
is randomly drawn from [0, 1]. The parameter c3 determines the movement direction of
leader salps. When c3 > 0.5, the leader moves toward the food source; when c3 < 0.5, the
leader moves away, enabling exploration of alternative regions. For example, if c3 = 0.7, the
leader’s position update is biased toward the best-known solution, accelerating exploitation.
Conversely, if c3 = 0.4, the leader moves in the opposite direction, facilitating exploration
and helping to escape potential local optima. This bidirectional adjustment mechanism
ensures a balanced search process. The upper and lower bounds of the j-th dimension are
represented as UB; and LB;, respectively. A critical parameter, ¢1, dynamically governs the
balance between exploration and exploitation and is defined in Equation (20).

c] = Ze*(%)2

(20)
where T is the total number of iterations and f is the current iteration. For the followers,
their positions are updated based on the average of their current position and the position
of the preceding salp in the chain as given in Equation (21).

1

Xiit=> (Xf,j + lel,j) (21)
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The SSA directly addresses the exploration flaw by introducing a stochastic, hierar-
chical leader—follower dynamic that promotes broader and adaptive exploration. SSA’s
design mitigates the deterministic and localized behavior of PLO through the exploration
strategy of SSA in Equation (19). Furthermore, the adaptive step size c;, decreases gradually
over iterations, ensuring that the algorithm focuses on exploration in the early stages and
transitions seamlessly to exploitation as the search progresses.

2.2.2. Competitive Swarm Optimizer (CSO)

The integration of CSO into PLSCO transforms the algorithm’s exploitation phase by
addressing the inherent limitations of PLO. CSO introduces a structured, adaptive approach
to local refinement, ensuring that high-quality solutions are continuously improved as
shown in Figure 3. This is achieved by continuously refining the best solutions and
exploring regions of possible solutions with worst-performing particles. This refinement
complements the global exploration capabilities introduced by SSA, creating a dynamic
balance between exploration and exploitation. The CSO improves upon the PLO algorithm
by introducing a competitive mechanism. The population of N search agents (set to an
even number) is randomly divided into N /2 pairs. In each pair, one agent is designated as
the winner and the other as the loser, based on their fitness values. Winners are directly
carried over to the next generation without modification, while losers update their velocity
and position by learning from the winners. This approach ensures that N/2 agents are
updated in each iteration, preserving the optimization process of PLO while enhancing
performance. The velocity and position of a loser in the c-th pair at iteration t are updated
using Equations (22) and (23) [41].

Vlijs—elr,j = Ql(c’ t)vli)ser,j + QZ(C’ t) (X\tfvinner,j - Xfoser,j) + (PQ3(C' t) ( _]t' - Xfoser,j) (22)

t+1 oyt t+1
Xloser,j - Xloser,j + Vloser,]‘ (23)
h Loser R
Competition Learning
J .
A A Winner A

t t+1

Figure 3. Competitive Swarm Optimizer (CSO) process.

X! .y is the position of the winner in the j-th dimension. X! _ er,j and V| | or,j TEPTESENt
the position and velocity of the loser in the j-th dimension, respectively. X; denotes
the average position of the entire population in the j-th dimension. Qi(c,t), Qa(c,t)
and Q3(c, t) are random stochastic vectors in [0,1]", influencing the learning behavior;
¢ is a predefined parameter regulating the }_(]t influence on velocity. For winner and loser
selection, a random permutation of the population indices, denoted as randlist, is created as

the randomized pairing of agents. For each iteration of the pairing process, k represents the
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loop index that determines the pairs of agents being compared. r5 represent the first agent
in the pair r5 = randlist[k|, and r¢ is a second agent in the pair r¢ = randlist[k + N/2]. The
winner and loser are determined using Equations (24) and (25) [42].

rs, if fitness (r5) < fitness (r¢)

Winner(k) =
re, Otherwise

(24)

Loser(k) re, if fitness (r5) < fitness (r¢) (25)

r5, otherwise

The integration of PLO, CSO, and SSA in PLSCO is a deliberate design choice based on
both theoretical complementarity and empirical success reported in the recent metaheuristic
literature. PLO contributes strong local exploitation capabilities through its gyration mo-
tion and auroral oval walk, supported by adaptive weighting to fine-tune solutions within
promising regions. SSA introduces leader—follower dynamics that enable broad, adaptive
exploration while maintaining population diversity, a feature particularly advantageous
in multimodal landscapes. CSO adds a structured competition mechanism, dividing the
population into winners and losers to create an adaptive feedback loop that reinforces
exploitation for top-performing solutions while stimulating exploration among underper-
formers. The algorithm begins by initializing a population of high-energy particles, each
representing a candidate solution within the search space. The fitness of these particles is
evaluated based on the problem’s objective function, and the global best solution, Xj,es is
identified. In each iteration, the population is randomly divided into N /2 pairs, where N is
the population size. Fitness comparisons are conducted within each pair to classify agents
as winners or losers, according to Equations (24) and (25). Winners who demonstrate better
fitness update their positions using the PLO mechanism as described in Equation (17). PLO
emphasizes exploitation by leveraging gyration motion, auroral oval walks, and particle
collisions to refine solutions in potential regions. Losers with inferior fitness update their
positions using SSA as described in Equation (19), which focuses on exploration. The SSA
mechanism employs leader—follower dynamics to encourage the exploration of unexplored
regions, preventing stagnation in local optima and maintaining population diversity. After
updating the winners and losers’ positions, each particle’s fitness is re-evaluated, and
positions are selectively retained if they improve fitness. The global best solution, Xpest ,
is continuously updated as better solutions are identified. The process iterates until the
maximum number of iterations is reached or a predefined convergence criterion is satisfied,
at which point the best solution, X, is returned as seen in Algorithm 1. This competitive
division incorporates an adaptive learning mechanism, where winners continue exploiting
the local search space while losers enhance exploration by learning from both winners and
global dynamics. By dynamically pairing agents and employing diverse update strategies,
PLSCO prevents premature convergence, ensures an efficient search process, and adap-
tively balances global and local search efforts. This design addresses the limitations of
standalone PLO and SSA, making PLSCO a robust and efficient optimization approach
suitable for solving complex, high-dimensional, and multimodal optimization problems.
The flow chart of PLSCO is illustrated in Figure 4.
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Algorithm 1: PLSCO Pseudo Code

Initialize parameters: t = 0, Max_t (maximum number of iterations)
Initialize the high-energy particle population X
Evaluate the fitness value of each particle in f(X)
Set the current best solution: Xpes;
While t < Max_t:
Identify winners and losers in the population using Equations (24) and (25)
For each particle:
If the particle is a winner:
Update its position using the PLO update rule (Equation (17))
Else:
Update its position using the Salp Swarm Optimization rule (Equation (19))
Calculate the fitness: f(Xnew)
If f(Xnew) < f(X):
Replace the current position with the updated position: X = Xnew
Else:
Retain the current position of the particle
Update Xpew based on the best fitness value in the population
t=t+1
Return Xpest

) B

START Inltlallzlewl;z;‘rz;:telster N & —D[Initialize particle Cluster X Calculate the fitness F(x)

\ 4

A 4

conditions Met?
l

Yes o )
Return the optimal best deimi ><— Update the Optimal Xbest [€q

\ J

No t

Compute particles Xnew| ves Compute Loser & ] G ]
. & A o A . . por » enerate permutation
position u?ll% Equation Winner? Wlnn(ezl'4;v:ltlllldE(gg)atlons “— indices of particles randlist

I No I—‘

v \
Compute particles Xnew
Position using Equation

(19)

Update particles position Calculate fitnes
with Xnew if its better f(new)

Figure 4. PLSCO flow chart.

2.3. Computational Complexity of PLSCO

The computational complexity of the PLSCO is explained in this section. During ini-
tialization, generating the population of N particles with D dimensions incurs a complexity
of O(N - D), while the computation of fitness values for all particles requires O(N - F;),
where F. represents the cost of evaluating the fitness function. Within each iteration, the
classification of particles into winners and losers based on fitness comparisons introduces
a complexity of O(N). The position updates for winners and losers, governed by the
PLO and SSA mechanisms, require O(N/2 - D) each, resulting in O(N - D) overall. Fitness
evaluation of all particles following the updates contributes O(N - F.), while updating the
global best solution adds O(N). Combining these operations, the per-iteration complexity
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is dominated by the fitness evaluation and is approximated as O(N - F;). For a total of Max;
iterations, the overall computational complexity is O(Max; - N - F;). Including the initializa-
tion phase, the total complexity is expressed as O(N - D) + O(Max; - N - F;). Since Max;, N,
and F; typically dominate D, the algorithm’s complexity is effectively O(Max; - N - F;),
with the fitness evaluation being the most computationally intensive component.

3. Machine Learning Hyper-Parameter Optimization with PLSCO
3.1. Extreme Learning Machine (ELM)

The ELM addresses the limitations of traditional feedforward neural networks, exten-
sive parameter tuning, and excessive time by introducing a single hidden layer architecture
with gradient-free learning. ELM is widely applied due to its rapid learning capability
and ability to model both linear and nonlinear systems [43]. For N pairs of observations
{(X;, )} |, where X; € R%is the input and T; € R is the target, ELM randomly initial-
izes the input weights W and hidden biases B. The output weights are then computed
using a direct matrix solution. The output Y; of the ELM is expressed in Equation (26).

Yl-:szzlﬁj-g(I/Vj-Xi—i-Bj):Ti,i:1,2,...,N (26)

Here, L represents the number of hidden neurons, f; € R™ are the output weights,
g(+) is the activation function, W; € R? are the input weights, and B; € R™ are the biases
of the j-th hidden neuron. Equation (26) can be reformulated in matrix form as given in
Equation (27).

H-B=T (27)

where H is the hidden-layer output matrix, f is the vector of output weights, and T is the
training target. The hidden-layer matrix H is defined in Equation (28).

gW1-X1+By) ... g(Wp-X1+Br)
H= : : : (28)

Each element of H corresponds to the output of a hidden neuron for a specific input.
The parameters 3, W, and B are optimized by minimizing the deviation between the
predicted output and the training target, represented in Equation (29).

I H-p=T|=min || H-p-T| (29)
The cost function for this optimization is given in Equation (30).

2
Cost = Zfil {Z]'Lzl Bi-g(Wj- X+ B;) — Tl} 0

The solution for B is obtained using the Moore-Penrose generalized inverse of H,
which is calculated in Equation (31).

B=H"-T (31)

Here, H™ represents the pseudo-inverse of H. The training process of ELM involves
solving H - B = T to determine the optimal output weights 8, thereby minimizing the
error between the model output Y; and the target T;. This direct, matrix-based approach
makes ELM computationally efficient and suitable for modeling complex systems. ELM is
illustrated in Figure 5.
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Figure 5. Extreme Learning Machine.

3.2. ELM-PLSCO Model

PLSCO is employed to optimize the weights (W) and biases (B) of ELM, enhancing its
predictive accuracy and robustness. In this model, PLSCO is utilized to identify the optimal
parameters for ELM by iteratively refining the input weight matrix (W) and hidden bias
vector (B) to minimize the error between the predicted output (Y) and the target values
(T). The integration of PLSCO ensures an adaptive and balanced search process, leveraging
both exploration and exploitation. The process begins by initializing a population of high-
energy particles, where each particle represents a candidate solution comprising randomly
generated W and B values for the ELM. The fitness of each particle is evaluated using the
accuracy metric, which measures the accuracy of the ELM output. The global best solution,
Xpest, 1s identified based on the highest accuracy score.

In each iteration, the PLSCO framework divides the population into winners and
losers through competitive learning. Winners, representing candidate solutions with better
fitness, are updated using the PLO mechanism, which emphasizes exploitation. The
PLO’s components, including gyration motion and auroral oval walks, refine the W and
B values in high potential regions of the search space, ensuring precise adjustments for
convergence. Conversely, losers are updated using the SSA, which focuses on exploration.
The SSA encourages global search by directing particles to unexplored areas, preventing
premature convergence, and maintaining population diversity. After updating the positions
of winners and losers, the fitness of each particle is re-evaluated using the outcomes of
the ELM predictions. Particles are selectively updated, retaining new positions if fitness
improves; otherwise, previous positions are maintained. The global best solution, Xpest, is
dynamically updated whenever better fitness is achieved. This iterative process continues
until the maximum number of iterations (Max;) is reached. By integrating PLSCO into
the ELM framework, the optimization process benefits from an adaptive balance between
local exploitation and global exploration, ensuring efficient and accurate tuning of W and
B. This combination enhances the ELM’s ability to model complex systems, reduces the
risk of overfitting, and achieves higher prediction accuracy compared to conventional
optimization methods. The flowchart of ELM-PLSCO is illustrated in Figure 6.
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Figure 6. ELM-PLSCO flow chart.
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4. Experiment and Discussion
4.1. Analysis of PLSCO Search Capability

In this section, the performance of the proposed optimization algorithm is evalu-
ated and compared against existing and improved algorithms prior to its application to
the predictive maintenance problem. The evaluation is conducted using two established
benchmark function suites: CEC2015 and CEC2020. The experimentation and analyses
employ the CEC2015 test suite to assess the algorithm’s capabilities. This suite comprises
single-modal functions (F1-F2), multimodal functions (F3-F5), hybrid functions (F6-F8),
and composite functions (F9-F15) [44]. Similarly, the CEC2020 test suite includes F16 (single
modal functions), F17-F19 (basic multimodal functions), F20-F22 (hybrid functions), and
F23-F25 (composition functions) [45]. The parameter settings for each algorithm are de-
tailed in Table 2. Other key experimental parameters include a maximum of 2000 iterations,
30 independent runs, a problem dimension of 30, and a population size of 30. The proposed
algorithm is compared with several state-of-the-art optimization algorithms: Adaptive
Chaotic Gaussian RIME optimizer (ACGRIME) [46], Aquila Optimizer (AO) [47], African
Vulture Optimization Algorithm (AVOA) [48], Opposition Based Learning Path Finder
Algorithm (OBLPFA) [49], PathFinder Algorithm (PFA) [50], Parrot Optimizer (PO) [51],
Pelican Optimization Algorithm (POA) [52], Sine Cosine Algorithm (SCA) [53], and Polar
Light Optimizer (PLO) [38]. It is noteworthy that within this study, the comparative experi-
ments incorporated an improved recent optimizer, such as ACGRIME and OBLPFA, as a
representative hybrid and enhanced optimizer. While other optimizers, such as AO, AVOA,
PFA, POA, SCA, and PLO represent recent and original optimizers, PLSCO is distinct in its
cooperative competition mechanism, where winners are refined using PLO’s exploitation
dynamics and losers explore via SSA’s leader—follower strategy. This structure, combined
with adaptive parameter adjustment, enables a dynamic balance between exploration and
exploitation throughout the optimization process.

Table 2. Parameter Settings.

Algorithm Parameter
ACGRIME u=+4
u = 0.00565, w = 0.005,
AO a=06=0.1
AVOA L1=08,1,=02,w=25P;=0.6,P, =04,
P;=0.6
OBLPFA a, B=11, 2]
PFA a, p=11, 2]
PO « =rand [0,1]/5,60 =rand [0,1] * 7*
POA R=02
SCA a=2
PLO m =100,a = [1,1.5]
m =100,a = [1,1.5],
PLSCO cl = [2/e,2]

4.1.1. Analysis of CEC 2015

In the experiments conducted using the CEC2015 test functions, two key metrics were
evaluated: the Average (AVG) and Standard Deviation (STD) of results, as presented in
Table 3. The unimodal functions selected for this study were specifically used to assess the
exploitation capabilities of the algorithms. The results indicate that for the test function
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F1, the proposed PLSCO achieved the lowest mean value, outperforming all compared
algorithms. However, for F2, ACGRIME demonstrated superior performance, while algo-
rithms such as AO, PO, POA, and SCA exhibited subpar performance in these functions.
For the multimodal functions (F3-F5), PLSCO consistently outperformed other algorithms
in terms of average values, highlighting its superior accuracy in addressing multimodal
optimization problems. An exception is observed in F5, where PLSCO achieved results
similar to POA, which remained the most accurate optimizer among the comparisons. In
the hybrid function tests (F6—F8), PLSCO exhibited varying performance. While it was less
accurate than ACGRIME for F6, it achieved better mean values and greater stability, as
reflected in lower standard deviations for F7 and F8. These results underscore the improved
capability of PLSCO to handle hybrid problems with diverse characteristics effectively. The
improvement of ACGRIME in F2 and Fé6 is attributed to ACGRIME’s enhanced optimization
ability in specific unimodal landscapes and hybrid functions with narrow optima, where its
adaptive chaotic perturbations provide improved precision. Also, according to the no free
lunch theorem, no single algorithm can be efficient for all optimization problems [54]. For
composite functions (F9-F15), PLSCO demonstrated outstanding performance, particularly
in F11, F13, F14, and F15, achieving solutions closest to the global optimum compared to
other algorithms. These results validate the algorithm’s robust ability to optimize complex,
high-dimensional problems with composite structures.

The experimental results with the CEC2015 test functions demonstrate that PLSCO
consistently performs well across unimodal, multimodal, hybrid, and composite functions.
This superior performance can be attributed to the integration of SSA operators, which
enhance the algorithm’s exploration capabilities by encouraging global search and main-
taining diversity within the population. Additionally, the competitive learning framework
plays a crucial role in dynamically balancing exploration and exploitation by classifying
particles into winners and losers. Winners refine their solutions through the PLO mech-
anism, which emphasizes precise local search, while losers adopt the SSA approach to
explore unvisited regions, preventing premature convergence. The synergy between CSO’s
competitive learning and SSA operators ensures that PLSCO effectively navigates complex
search spaces and adapts to the characteristics of diverse optimization problems. These
findings underscore PLSCO'’s potential as a robust, adaptive, and versatile optimization
algorithm for solving a wide range of challenging optimization tasks.

4.1.2. Analysis of CEC2020

The experimental results presented in Table 4 for the CEC2020 benchmark functions
demonstrate that PLSCO consistently obtained superior performance across various cat-
egories of optimization problems. For single-modal functions (F16), PLSCO achieved
an average fitness value that significantly surpasses the traditional PLO, showcasing its
enhanced exploitation capabilities. However, the best performance in F16 was achieved
by the ACGRIME algorithm. In basic multimodal functions (F17-F19), PLSCO exhibited
exceptional exploration abilities and resistance to local optima, particularly in F19, where
it achieved the most optimal average fitness, matching the performance of the improved
algorithm ACGRIME. While the performance of PLSCO in F17 and F18 was slightly lower
than that of ACGRIME, it demonstrated a competitive capability to navigate multimodal
landscapes effectively.
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Table 3. Results of PLSCO and other optimizers on CEC2015 30 dimensions.
ACGRIME AO AVOA OBLPFA PFA PO POA SCA PLO PLSCO
F1 AVG 1.916 x 10° 4.862 x 101 2.650 x 10° 2.687 x 10° 2.627 x 10° 4.689 x 10%° 1517 x 10 1.354 x 101 1.181 x 107 7.105 x 10*
STD 1217 x 10° 5.360 x 10° 2422 x 10° 5.893 x 10° 5.530 x 10° 7.015 x 10° 7.118 x 10° 2.622 x 10° 3.604 x 10° 1129 x 10*
F2 AVG 1.622 x 10* 5.941 x 10* 5.167 x 10* 7.891 x 10* 1.030 x 10° 6.312 x 10* 2.631 x 10* 4313 x 10* 7.850 x 10* 3.531 x 10*
STD 4.304 x 10° 2.703 X 10° 3492 x 10 2.941 x 10* 2,942 x 10* 6476 x 10° 7.014 x 10° 6.064 x 10° 1.155 x 10* 1.050 x 10*
F3 AVG 3.166 x 102 3.427 x 102 3.353 x 102 3.311 x 102 3.305 x 102 3.398 x 102 3.280 x 102 3.367 x 102 3.210 x 102 3.157 x 10%
STD 2.848 2.165 3.554 3.166 2.770 1.351 2.828 2.848 2.239 3.242
F4 AVG 4.359 x 10° 7.293 x 10° 5.298 x 10° 8210 x 10° 8.173 x 10° 7.936 x 10° 4.057 x 10° 7.888 x 10° 4.672 x 10° 4.030 x 10°
STD 6.897 x 102 6.898 x 102 7.942 x 102 3.651 x 102 3.705 x 102 3.048 x 102 6.221 x 102 2.939 X 10* 3.865 x 102 7.001 x 10?
F5 AVG 5.009 x 102 5.026 x 102 5.015 x 102 5.034 x 102 5.034 x 102 5.029 x 102 5.006 X 107 5.029 x 102 5.009 x 102 5.006 X 107
STD 3.245 x 107! 4.607 x 107! 5.769 x 10! 4159 x 107! 3.287 x 10~ 3.902 x 10! 2.188 x 107! 3.195 x 10~ 1.994 x 107! 3.812 x 107!
F6 AVG 6.004 x 102 6.047 x 102 6.005 x 102 6.011 x 102 6.010 x 102 6.046 x 102 6.023 x 102 6.023 x 102 6.007 x 102 6.005 x 102
STD 6.826 x 102 2437 x 107! 1.199 x 1071 2.288 x 107! 1.397 x 1071 3.990 x 10! 9.669 x 107! 4981 x 107! 1.892 x 1071 5368 x 1072
F7 AVG 7.005 x 102 7.769 x 102 7.005 x 102 7.055 x 102 7.059 x 10 7.856 x 102 7.315 x 102 7.290 x 10 7.005 x 102 7.003 X 102
STD 2,036 x 107! 6.934 2.180 x 10~ 2512 2.824 1.182 x 10! 1.053 x 10! 4.526 3.736 x 1071 3.224 X 1072
F8 AVG 8.099 x 10*? 5.126 x 10° 1152 x 10° 3.417 x 10° 7.016 x 10 5.097 x 10° 7.465 x 10* 9.573 x 10* 8.233 x 102 8.093 x 102
STD 4178 2.184 x 10° 3.410 x 102 2,695 x 10° 1.213 x 10° 1.845 x 10° 5.296 x 10° 9.340 x 10* 3.187 2.675
F9 AVG 9.124 x 10*2 9.136 x 10? 9.131 x 102 9.135 x 102 9.135 x 10? 9.135 x 102 9.122 x 102 9.134 x 10? 9.128 x 102 9.124 x 102
STD 3.941 x 107! 1.297 x 107! 2.712 x 1071 1.903 x 107! 2.249 x 1071 1.490 x 107! 4731 x 107! 1.934 x 107! 4.352 x 1071 3.075 x 107!
F10 AVG 5.396 X 10° 5.875 x 107 6.376 x 10° 9.125 x 10° 9.551 x 10° 3.236 x 107 5.819 x 10° 1.292 x 107 9.916 x 10° 7.136 x 10°
STD 3.873 x 10° 1.799 x 107 3.720 x 10° 6.068 x 10° 3.807 x 10° 1.164 x 107 3.802 x 10° 5.507 x 10° 4432 x 10° 4413 x 10°
F11 AVG 2.224 x 10° 1.841 x 10° 2.554 x 10* 4359 x 10° 4362 x 10° 1.374 x 10° 5431 x 10° 1.029 x 107 5.151 x 10° 1.204 x 103
STD 2.032 x 10° 1.420 x 10° 1.930 x 10* 2433 x 10° 2.906 x 10° 1.028 x 10° 4.836 x 10° 9.620 x 10° 4718 x 10° 8.584 x 10
F12 AVG 2.719 x 10° 8.133 x 1012 9.235 x 10" 6.077 x 10° 1.538 x 10° 5.409 x 10" 2.869 x 10° 1.050 x 10° 3.197 x 10° 3.072 x 10°
STD 5.693 x 102 1.153 x 1012 4.617 x 1012 4.340 x 10° 3.095 x 10° 3.022 x 101 8.608 x 102 6.374 x 10° 9.429 x 10 4.269 x 10
F13 AVG 1579 x 10° 2411 x 10° 1.644 x 10° 1.711 x 10° 1.717 x 10 1.798 x 10° 1578 x 10° 1.590 x 103 1.562 x 10° 1.559 x 10°
STD 2.798 x 10! 3.609 x 10? 3.002 x 10! 4.094 x 10! 4.464 x 10! 6.980 x 10! 1.085 x 10! 7.228 1.335 1.366 x 107*
Fl4 AVG 2,001 x 10° 3.853 x 10° 4.993 x 10° 2523 x 10° 2,521 x 10° 4.494 x 10° 2413 x 10° 3.029 x 10° 2133 x 10° 1.974 x 10°
STD 5.228 x 10! 1.020 x 10° 3.284 x 10° 3.156 x 102 2.536 x 102 7.527 x 102 2.761 x 102 2.259 x 102 1.436 x 107 1111
F15 AVG 2537 x 103 2.968 x 103 2.821 x 10° 2983 x 103 2976 x 103 2.998 x 10° 2513 x 10° 2.920 x 103 2.534 x 10° 2.441 x 10°
STD 1.450 x 102 7.974 x 10" 7.609 x 10! 3.829 x 10! 3.358 x 10! 1.098 x 102 3.521 x 102 4.779 x 10! 8.323 x 10! 3.054 x 102
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Table 4. Results of PLSCO and other Optimizers on CEC2020 30 dimensions.
ACGRIME AO AVOA OBLPFA PFA PO POA SCA PLO PLSCO
F16 AVG 6.97 X 10> 455 x 1010 137 x 10° 456 x 10° 440 x 10° 470 x 101 129 x 10" 1.70 x 101© 237 x 10"  3.95 x 10*
STD 6.92 x 103 588 x10° 951 x108 916 x10® 9.67 x 10® 653 x10° 519 x10°  3.03 x 10° 834 x 10°  9.57 x 103
F17 AVG 1.56 X 10° 6.18 x 1012 1.15 x 101 5.15 x 101" 442 x 10" 546 x 102 1.71 x 102 1.86 x 1012 2.69 x 10°  3.80 x 10°
STD 112 x 10 697 x 10 849 x 100 943 x 1010 652 x 1010 729 x 1011 824 x 10 233 x 10! 118 x 10°  8.82 x 10°
F18 AVG 2,07 x 10°  1.86 x 10" 439 x 1010 159 x 1011 1.67 x 101 1.74 x 102  5.68 x 1011 6.06 x 1011 121 x 10°  1.74 x 10°
STD 7.86 x 10 243 x 101 3.86 x 1010 276 x 1019 391 x 101 276 x 101 227 x 10! 1.03 x 10" 436 x 108 6.60 x 10°
F19 AVG 191 x 10>  9.05 x 10° 248 x 103 212 x 10> 206 x 10> 530 x 10° 9.44 x 10>  1.66 x 10* 192 x 10>  1.91 x 103
STD 247 415 x 10° 747 x 10> 377 x 10> 146 x 10> 159 x 10° 859 x 10>  1.46 x 10* 1.87 2.71
F20 AVG 256 x 10° 228 x 108 945 x10° 9.33 x10°  1.01 x 107 530 x 107  6.36 x 10° 118 x 107 774 x 10°  2.16 x 10°
STD 115 x 10° 117 x 108 839 x 10°  3.87 x 10° 496 x 106 240 x 107  4.00 x 10° 553 x 10° 3.76 x 10°  5.61 x 10*
F21 AVG 331 x10*  1.01 x 108 329 x 10*  1.13x10° 1.02x10° 1.02x 108 359 x10* 573 x10° 1.05x 10*  8.63 x 103
STD 244 x 10* 795 x 107 218 x 10* 593 x10° 498 x 10° 650 x 107  1.34 x 10* 437 x 10° 427 x 10>  6.23 x 103
F22 AVG 333 x10° 996 x 108 425x10° 1.95x 107 194 x 107  3.08 x 108 123 x10®° 349 x 107  9.36 x 10°  2.61 x 10°
STD 244 x10°  8.05x 108 249 x 10° 844 x 10° 7.65x 10° 164 x 108 776 x10° 179 x 107 672 x10° 132 x 10°
F23 AVG 239 x 103 530 x 10> 255 x10® 249 x 103 249 x 10> 370 x 10> 285 x 10 262 x 10> 238 x 10°  2.37 x 10°
STD 1.20 x 101 9.48 x 10> 893 x 10! 248 x 101 2.00 x 100 359 x 10>  4.46 x 10>  4.89 x 10! 3.60 3.58
F24 AVG 263 x10% 316 x 104 6.02 x 10> 734 x 10> 743 x10° 322x10* 173 x10* 148 x 10*  3.00 x 103  2.62 x 103
STD 772 x 101 130 x10%  1.84 x 10> 728 x 10> 678 x 10>  3.00 x 10>  4.67 x 10> 127 x 10>  1.05 x 10>  4.26 x 10!
F25 AVG 293 x10° 580 x10° 318 x10® 321 x10° 321x10° 625x10° 343 x10° 3.62x10° 293 x10®° 293 x 10°
STD 9.56 556 x 102 9.31 x 100 9.67 x 10! 120 x 10>  6.85 x 10> 255 x 10>  1.49 x 102 1.64 1.41 x 10!




Processes 2025, 13, 2707

20 of 41

The results for hybrid functions (F20-F22) further underscore PLSCO’s adaptability
and robustness. PLSCO outperformed other algorithms, such as PO and PFA, in terms of
average fitness across F20-F22. Additionally, its relatively low standard deviation reflects a
high degree of stability and reliability, further establishing its superiority over competing
methods, including recently developed algorithms like POA. For composition functions
(F23-F25), PLSCO showcased its ability to maintain an effective balance between explo-
ration and exploitation. It consistently achieved the best average fitness in these functions,
outperforming not only improved algorithms such as ACGRIME and OBLPFA but also
recently proposed methods like AVOA and PO. These results highlight PLSCO’s capacity
to converge rapidly while effectively exploring complex, high-dimensional solution spaces.
The results in Table 4 emphasize PLSCO’s superior optimization performance, robustness,
and stability across all function categories. By integrating advanced strategies, including
competitive learning and SSA operators, PLSCO achieves a dynamic balance between
exploration and exploitation, leading to improved convergence rates, enhanced exploratory
capabilities, and better overall performance compared to competing algorithms. These
findings firmly establish PLSCO as a versatile and reliable optimization algorithm for
tackling a wide range of challenging problems.

4.1.3. Convergence and Box Plot Analysis

Figures 7-10 present a comparative analysis of the PLSCO method against nine state-
of-the-art algorithms using convergence curves and box plots on the CEC2015 and CEC2020
benchmark functions, respectively. The convergence curves, depicted in Figures 7 and 8§,
illustrate how the average accuracy of each algorithm evolves as the number of iterations
increases. The box plots in Figures 9 and 10 provide a detailed view of the distribution of
final optimal solutions attained by each algorithm. These plots display critical statistical
elements, including the minimum, maximum, lower quartile (Q1), median, upper quartile
(Q3), and any outliers, with outliers distinctly marked as red “+” symbols. While the
convergence curves evaluate how effectively each algorithm achieves optimal solutions
over iterations, the box plots highlight the stability and consistency of the results, with
smaller box sizes indicating greater robustness against variations in the search space. The
convergence curves demonstrate that PLSCO achieves rapid convergence in the early stages
of the optimization process. Unlike other algorithms, which tend to exhibit flattened curves
and stagnate in local optima, PLSCO continues to explore high-quality regions of the search
space. Notably, PLSCO demonstrates faster convergence across all functions except F1 in
the unimodal category (F1-F2), underscoring its effective exploitation capabilities. For
multimodal functions (F3-F5), PLSCO delivers superior performance, achieving higher
accuracy, particularly in F3 and F4, compared to other optimizers. In hybrid functions
(F6-F8), PLSCO shows exceptional convergence for F6 and F8, with results comparable to
other advanced algorithms, indicating its adaptability to diverse problem characteristics.

In composite functions F11 and F15, PLSCO surpasses advanced algorithms such as
ACGRIME, OBLPFA, and PLO by maintaining an optimal balance between exploration
and exploitation. The findings depicted in Figure 7 further validate PLSCO’s ability to
achieve superior convergence accuracy compared to other techniques. This highlights
the effectiveness of the enhancements introduced in PLSCO, which not only improve the
trade-off between exploration and exploitation but also enhance its ability to avoid local
optima and approach the global optimum with greater precision.
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Figure 10. Box Plots of PLSCO and Compared Algorithms on CEC2020 30 dimension.

The integration of the SSA and CSO strategies within PLSCO is central to its supe-
rior performance. The competitive learning framework fosters diversity by dynamically
classifying particles as winners and losers, encouraging both local refinement and global
exploration. SSA operators ensure continuous exploration of the solution space, maintain-
ing diversity and preventing premature convergence. Additionally, the methodological
innovations in PLSCO enable it to excel in shifted, rotated, and hybrid functions within
the CEC2020 benchmark, particularly in F20, F21, F22, F23, and F25, as shown in Figure 8.
The box plot analyses in Figures 9 and 10 further reinforce PLSCO'’s stability, with tight
distributions and minimal outliers, underscoring its robustness. The red “+” in the plots
are outliers

4.1.4. Diversity Analysis

To emphasize the enhancements introduced by PLSCO over the standard PLO, a
diversity analysis is conducted to evaluate the distribution of the population throughout
the optimization process [55]. Population diversity captures the nonlinear dynamics of
the population by measuring the average distance between individuals over iterations. A
reduction in diversity, characterized by nonlinear behavior, suggests increased aggrega-
tion within the population, heightening the risk of premature convergence to suboptimal
solutions. The population radius, defined as the maximum distance between any two
individuals, is mathematically expressed in Equation (32) [56].

D= max (VEL (% -%0)°) @

(i#j)e[LIX]]

where | X]| is the population size, D is the dimensionality of the problem space, and X;;
represents the position of the i-th individual in the t-th dimension. From this, the diversity
of the population is calculated as expressed in Equation (33).

~ X |D|Z|X‘ VI, (i - %) (33)

where X; denotes the center of the population. Figure 11 illustrates the diversity trajectory
for selected benchmark functions, specifically F4, F5, and F15 from CEC2015 and F18, F23,
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Diversity

and F25 from CEC2020. The results reveal that during the early stages of the optimization
process, PLSCO exhibits significantly higher diversity compared to the standard PLO.
This heightened diversity is attributed to the integration of SSA operators within PLSCO,
which ensures a broad exploration of the search space by maintaining the dispersion of
search agents. Consequently, this reduces the risk of premature convergence to suboptimal
solutions, allowing for more effective global exploration.
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Figure 11. Diversity Plots of PLSCO and PLO.

In contrast, PLSCO demonstrates reduced population diversity in the later stages of the
search compared to PLO. This indicates that the search agents in PLSCO have transitioned
from global exploration to focused exploitation, progressively converging toward the global
optimum. This behavior is driven by the CSO strategy, which dynamically refines the
solutions by guiding the population to optimal regions while avoiding local optima. The
interplay between SSA and CSO ensures a balanced and adaptive search process. SSA
maintains diversity during the initial phases, enabling PLSCO to escape local optima
and explore diverse regions of the solution space. CSO, on the other hand, enhances
exploitation in the later stages, concentrating the search around high-potential areas and
ensuring convergence to near-optimal solutions. This dynamic balance, as evidenced by
the diversity trajectory analysis, underscores PLSCO’s superiority over PLO, enabling it to
achieve higher optimization performance, robustness, and stability across a wide range of
benchmark functions.

4.1.5. Exploration vs. Exploitation

This section presents the comprehensive analysis of PLSCO’s local and global search
capabilities, focusing on its ability to balance exploration and exploitation; these are the
two foundational components of optimization algorithms. The aim of evaluating the
mathematical formulations and visual representations of these proportions is to assess
PLSCO’s effectiveness in dynamically adapting its search strategies. The mathematical



Processes 2025, 13, 2707 26 of 41

expressions for calculating exploration and exploitation proportions are expressed in
Equations (34)—(37) [57].

1 1X| .
D1V; = mzl 1 ‘medmn(Xf]-) - Xf]- (34)
FDivi = 2Y° D/ 35
iv _Bijl iv; (35)
FDi
ERP = — " (36)
FDiv .,
FD FDiv'
ETP = ——vmax Y %100 (37)

Here, Xf’j represents the j-th element of the i-th agent in the population during the
t-th iteration. The median function computes the median value of the matrix, reflecting
central tendencies within the population. FDiv! measures the average difference in the
population’s dimensions at the ¢-th iteration, while FDivyax represents the maximum
observed value of FDiv’. Exploration and exploitation proportions, denoted as ERP and
ETP, respectively, are expressed as percentages, indicating the relative focus of the algorithm
during each phase of the search.

Figure 12 provides visual insights into the dynamics of exploration and exploitation
rates for benchmark functions from CEC2015 (F1, F5, and F13) and CEC2020 (F18, F23,
and F25). The curves illustrate PLSCO’s remarkable ability to adaptively balance these
two phases across all agents during the optimization process. In the initial stages, the
ERP is dominant, reflecting the algorithm’s emphasis on global exploration to investigate
diverse regions of the solution space. As the search progresses, the ERP gradually decreases,
allowing the ETP to predominate, signaling a shift toward refined exploitation of promising
regions to identify optimal solutions. This adaptive behavior is attributed to the integration
of the SSA and CSO within PLSCO. The SSA operators enhance global exploration in the
early iterations by maintaining population diversity and preventing premature convergence.
Meanwhile, the CSO strategy dynamically guides the search toward high-potential regions
by refining local exploitation, particularly in later stages. These techniques orchestrate
a seamless interplay between exploration and exploitation, enabling PLSCO to navigate
complex optimization landscapes effectively.

The findings depicted in Figure 12 highlight PLSCO’s ability to maintain a dynamic
equilibrium between exploration and exploitation, steering agents toward the global opti-
mum. By emphasizing exploration in the initial phases and transitioning toward exploita-
tion as the search progresses, PLSCO demonstrates its capability to adaptively balance
these phases, resulting in efficient convergence and superior optimization performance.
This methodological refinement positions PLSCO as a robust and versatile optimization
algorithm capable of solving high-dimensional and complex problems with precision.
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Figure 12. Exploration vs. Exploitation.

4.1.6. Non-Parametric Analysis

To ensure a rigorous evaluation of the experimental results and mitigate the impact
of randomness, the outcomes of 30 independent iterations for each of the 10 algorithms
across 25 test functions were analyzed using the Wilcoxon rank-sum test at a significance
level of 0.05. This statistical test was employed to identify significant differences between
the results of PLSCO and the comparison algorithms. A p-value greater than 0.05 indicates
no significant difference between the results, whereas a p-value less than or equal to 0.05
signifies a statistically significant difference. The pairwise Wilcoxon rank-sum test results
for PLSCO and the other algorithms are summarized in Table 5, with “-” denoting instances
where no results were available for pairwise comparison.

The results from the CEC2015 and CEC2020 benchmark functions demonstrate that
PLSCO exhibits significant differences compared to the majority of the evaluated algo-
rithms, particularly the traditional PLO. This underscores the enhancements introduced
in PLSCO, including the integration of SSA and CSO strategies, which contribute to its
superior performance. In some cases, algorithms such as ACGRIME and POA achieved
superior outcomes on specific test functions, resulting in p-values greater than 0.05, indi-
cating comparable performance with PLSCO. However, in the majority of the benchmark
functions, PLSCO achieved the best results, reaffirming its robustness and effectiveness in
solving diverse optimization problems. Additionally, the Friedman Mean Rank Test was
conducted to further validate the relative efficiency of the algorithms. PLSCO consistently
obtained the highest mean rank across both the CEC2015 and CEC2020 test suites, establish-
ing it as the most efficient algorithm among the compared methods. This performance can
be attributed to the synergistic integration of SSA and CSO mechanisms, which ensure a
dynamic balance between exploration and exploitation. The SSA strategy enhances global
exploration by maintaining diversity and preventing premature convergence, while the
CSO mechanism fosters local refinement, guiding the population toward optimal solutions
in the later stages. These methodological advancements position PLSCO as a versatile and
highly effective optimization algorithm capable of achieving superior performance across a
wide range of challenging optimization landscapes.
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Table 5. Friedman and Wilcoxon Non-Parametric Analysis Results.
ACGRIME AO AVOA OBLPFA PFA PO POA SCA PLO PLSCO
CEC2015 Friedman 227 8.73 5.43 6.9 6.97 8.7 3.87 6.87 3.63 1.63
Mean
Friedman
Rank 2 10 5 7 8 9 4 6 3 1
p-Value 3305 x 1071 6550 x 107*  9.815 x 107*  6.550 x 107*  6.550 x 107*  6.550 x 107 2209 x 10~!  6.550 x 107  6.533 x 10~* -
CEC2020 Friedman 1.95 9.6 45 57 55 9.4 6.3 7.8 2.8 145
Mean
Friedman
Rank 2 10 4 6 5 9 7 8 3 1
p-Value 8.886 x 1071 5.062 x 1073 5062 x 1073 5.062 x 1073 5062 x 1073 5.062 x 1073  5.062 x 1073  5.062 x 1073  7.632 x 1073 -
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4.2. Predictive Maintenance Prediction Using ELM-PLSCO Model
4.2.1. Dataset

In this study, the AI4I 2020 Predictive Maintenance Dataset from the UCI Machine
Learning Repository was utilized [58]. This dataset was selected due to the challenges
associated with acquiring predictive maintenance data from real-world industrial environ-
ments [59]. It provides a reliable representation of actual predictive maintenance scenarios
encountered in industrial applications. The dataset comprises 10,000 data points with seven
distinct features and a machine failure label, making it a robust resource for evaluating
predictive maintenance models [60]. The features of the dataset are as follows:

1.  Type: This categorical variable classifies products into three categories based on per-
formance levels: high (H, representing 20% of all products), medium (M, representing
30% of all products), and low (L, representing 50% of all products).

2. Air Temperature: Measured in Kelvin (K), this feature is normalized to have a standard
deviation of 2K centered around 300 K, reflecting the air temperature conditions
during operations.

3. Process Temperature: Also measured in Kelvin (K), this feature is normalized with
a standard deviation of 1K and represents the temperature within the machine’s
operational processes.

4.  Rotational Speed: Expressed in revolutions per minute (rpm), this value is calculated
based on a machine power output of 2860 W, indicating the tool’s operational speed.

5. Torque: Measured in Newton meters (N m), torque values are distributed around
40 N m with a standard deviation of 10 N m, with no negative values recorded.

6. Tool Wear Time: This feature, measured in minutes, captures the cumulative opera-
tional time of the tool, representing its wear level over time.

7. Failure type: Machine failures are categorized into five distinct modes:

i Tool Wear Failure: Tool wear or replacement occurs randomly between 200
and 240 minutes of operation.

ii. Heat Dissipation Failure: Failure occurs when the difference between air
temperature and process temperature falls below 8.6 K, and the rotational
speed drops below 1380 rpm.

iii. Power Failure: This failure arises when the product of torque and rotational
speed results in power exceeding 9000 W or dropping below 3500 W.

iv. Overstrain Failure: Overstrain occurs when the product of torque and tool
wear exceeds specified thresholds for each product category: 11,000 min N m
for L products, 12,000 min N m for M products, and 13,000 min N m for
H products.

V. Random Failure: Failures that occur randomly with a probability of 0.1%,
irrespective of process parameters.

The diverse and complex characteristics of the dataset make it an ideal benchmark
for evaluating the performance of predictive maintenance models. By integrating PLSCO
with ELM, the weight and bias parameters of ELM are optimized to enhance its predictive
accuracy for identifying machine faults. The detailed feature set and failure labels enable
comprehensive testing of PLSCO’s capability to balance exploration and exploitation,
ensuring ELM effectively learns and generalizes across diverse failure scenarios. In this
dataset, failure type is used as the target variable, while others are used as the input
variables in a predictive model. Although the AI4I 2020 dataset provides a robust and well-
structured platform for evaluating predictive maintenance models, it does not fully replicate
the noise levels, class imbalance, and heterogeneous data distributions encountered in
real industrial environments. The selection of this dataset was driven by the limited
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availability of publicly accessible PAM datasets with comprehensive feature sets and
accurate labeling. Nonetheless, the proposed PLSCO-ELM framework incorporates features
such as competitive learning and adaptive parameter adjustment that are suited to handle
variability and noise in more complex datasets.

4.2.2. Evaluation Metrics

The evaluation criteria used to assess the performance of the PLSCO-enhanced ELM
are summarized in Table 6. They provide a comprehensive framework for evaluating
the model’s predictive accuracy and reliability. Aside from the metrics in the table, the
Area Under the Receiver Operating Characteristic Curve (ROC-AUC) is included in the
metrics. It reflects the classifier’s ability to discriminate between different classes, and
is a performance metric derived from the ROC curve. The interpretation of ROC-AUC
scores is generally as follows: 0.5-0.6 indicates poor or failed classification performance,
0.6-0.7 suggests a weak or marginal level of class separability, 0.7-0.8 indicates fair per-
formance, 0.8-0.9 indicates considerable or good discrimination, and above 0.9 indicates
excellent classification ability [61].

Table 6. Evaluation Metrics.

Evaluation Metric Value

Number of Correct Predictions

Accuracy Score
y Total Predictions

Recall Score

True Positives
True Positives+False Negatives

Specificit True Negatives
p y True Negatives-+False Positives
Precision True Positives
True Positives+False Positives
F1- T Precision X Sensitivity
Score 2x Precision + Sensitivity

These metrics are critical for understanding the effectiveness of the optimized ELM in
identifying machine faults within the PAM dataset. By employing these evaluation criteria,
the effectiveness of PLSCO in optimizing ELM’s weights and biases can be rigorously
assessed. These metrics ensure a thorough evaluation of the model’s ability to identify
machine faults accurately and reliably, highlighting the enhancements brought about by
the integration of PLSCO into the predictive maintenance framework.

4.2.3. Prediction Results and Discussion

In this section, the parameters for all optimization algorithms are maintained as
specified in Table 2. The number of iterations is set to 100, and the population size is
fixed at 30 for all optimization algorithms utilized in this study. The search boundaries
for PLSCO and the comparison algorithms in optimizing the weights and biases of ELM
are defined within the range of [—10,10]. The hidden layer of ELM is configured with
15 neurons across all optimization algorithms employed in this study. The AI4I 2020 dataset
was partitioned into training and testing sets using a randomized 70:30 split. To ensure that
performance evaluations were robust to variability arising from random data partitioning,
the performance metrics presented in Tables 7 and 8 correspond to the average, standard
deviation, and best performance, providing a statistically reliable measure of predictive
accuracy and stability. In this study, the number of hidden layer neurons in ELM was fixed
at 15. This choice aligns with existing applications of ELM, where similar configurations
have demonstrated a favorable trade-off between model complexity and generalization
capability, while mitigating overfitting risks [62]. Given that the central focus of this work
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is to evaluate the impact of PLSCO on the optimization of ELM’s weights and biases,
the number of neurons is kept constant to ensure that observed performance differences
stem directly from the optimization mechanism rather than architecture variability. The
results of the experiment demonstrate that the improved PLSCO significantly enhances
the predictive performance of ELM in identifying machine faults more accurately from the
dataset compared to other nature-inspired optimization techniques. The performance of
the algorithms was assessed using several metrics across both training and testing datasets,
as seen in Tables 7 and 8. PLSCO consistently outperformed its counterparts, achieving
the highest average accuracy of 0.95682 for training and 0.95465 for testing, respectively,
and recall of 0.86951 for training and 0.86587 for testing, respectively, alongside superior
F1, precision, and specificity. This exceptional performance underscores the algorithm’s
robustness and effectiveness in optimizing the ELM model for PdM tasks.

Table 7. Training Results of ELM-PLSCO and Compared Optimizers on Predictive Maintenance

Predictions.
Accuracy Recall F1 Precision Specificity ROC-AUC
ELM-

ACGRIME AVG 0.94498 0.83380 0.82504 0.83642 0.96699 0.95842
STD 34833 x 1073 1.0473 x 1072 1.1492 x 1072 12322 x 1072 2.0880 x 1073  1.6508 x 102

Best 0.95565 0.86580 0.85882 0.87571 0.97338 0.96830

ELM-AO AVG 0.93673 0.80908 0.79753 0.81062 0.96204 0.93748
STD 25019 x 1073 7.4594 x 1073 85143 x 1073 8.7628 x 1072  1.4983 x 1073  1.5216 x 1072

Best 0.94204 0.82513 0.81667 0.82939 0.96522 0.95196

ELM-AVOA AVG 0.93717 0.81043 0.79861 0.80985 0.96231 0.94697
STD 59840 x 1073 1.7981 x 1072 21161 x 1072 17712 x 1072 3.5876 x 1073 2.2907 x 1072

Best 0.95000 0.84921 0.84301 0.84726 0.97001 0.96569

ELM-OBLPFA AVG 0.93157 0.79354 0.77997 0.79385 0.95895 0.93500
STD 2.5022 x 1073 7.5026 x 10-3 9.0911 x 1073 79754 x 1073 1.5003 x 1073  1.9411 x 1072

Best 0.93544 0.80513 0.79431 0.80547 0.96127 0.95133

ELM-PFA AVG 0.93040 0.79007 0.77597 0.79028 0.95825 0.93885
STD 2.6446 x 1073 79372 x 1072 9.2766 x 1073 8.2712 x 1073 1.5870 x 1073 1.8975 x 1072

Best 0.93581 0.80610 0.79658 0.81164 0.96149 0.95174

ELM-PO AVG 0.91674 0.74912 0.73687 0.75546 0.95004 0.93572
STD 15943 x 1072 4.7889 x 1072 5.1919 x 1072 4.4899 x 1072 9.5756 x 1073 2.3394 x 1072

Best 0.94599 0.83693 0.82948 0.84001 0.96759 0.95573

ELM-POA AVG 0.93891 0.81564 0.80486 0.81754 0.96335 0.95430
STD 4.2540 x 1073 1.2755 x 1072 1.4522 x 1072 1.4342 x 1072 25510 x 1073 1.5111 x 1072

Best 0.94617 0.83754 0.83014 0.84554 0.96770 0.96257

ELM-SCA AVG 0.93197 0.79477 0.78184 0.79444 0.95919 0.93724
STD 26744 x 1073 8.0207 x 1073 9.5402 x 1073 9.2014 x 1073 1.6044 x 1073 1.6640 x 1072

Best 0.93787 0.81283 0.80230 0.81426 0.96274 0.95226

ELM-PLO AVG 0.93718 0.81034 0.79938 0.81129 0.96231 0.94835
STD 25911 x 1073 7.7804 x 103 8.8441 x 1073 84426 x 1073 15523 x 10-3  1.4603 x 1072

Best 0.94350 0.82927 0.82014 0.83394 0.96610 0.95984

ELM-PLSCO AVG 0.95682 0.86951 0.86479 0.87366 0.97409 0.97265
STD 32343 x 1073 9.7067 x 1073 1.0065 x 1072 9.1041 x 1073 1.9420 x 1073 1.1501 x 102

Best 0.96236 0.88609 0.88067 0.88768 0.97742 0.98163
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Table 7. Cont.
Accuracy Recall F1 Precision Specificity ROC-AUC
ELM AVG 0.92756 0.78149 0.76405 0.78079 0.95654 0.86978
STD 11156 x 10~%  3.4839 x 107%  4.2909 x 10~%* 50514 X 10~%  6.7278 x 10~°  1.7422 x 10~*
Best 0.92765 0.78177 0.76439 0.78122 0.95660 0.86990
Table 8. Test Results of ELM-PLSCO and Compared Optimizers on Predictive Maintenance Predic-
tions.
Accuracy Recall F1 Precision Specificity ROC-AUC
ELM-
ACGRIME AVG 0.94296 0.83124 0.82036 0.83093 0.96578 0.95794
STD 3.6422 x 1073 1.0869 x 1072 1.1953 x 1072 1.2902 x 1072 2.1895 x 1073 1.7226 x 1072
Best 0.95413 0.86476 0.85526 0.87153 0.97250 0.96822
ELM-AO AVG 0.93490 0.80694 0.79342 0.80473 0.96093 0.93654
STD 25060 x 1073 7.6073 x 1073 84363 x 1073 89505 x 103 15103 x 1073 1.5305 x 1072
Best 0.94073 0.82421 0.81368 0.82453 0.96445 0.95125
ELM-AVOA AVG 0.93530 0.80807 0.79449 0.80419 0.96117 0.94664
STD 5.9249 x 1073 1.7724 x 1072 2.0922 x 1072 1.8062 x 1072 35619 x 1073 2.3484 x 1072
Best 0.94795 0.84540 0.83786 0.84181 0.96876 0.96558
ELM-OBLPFA AVG 0.92961 0.79123 0.77551 0.78747 0.95776 0.93336
STD 26930 x 1073 8.0910 x 1073 9.9844 x 1073 9.0900 x 103 1.6191 x 1073 1.9308 x 102
Best 0.93416 0.80490 0.79229 0.80172 0.96049 0.94989
ELM-PFA AVG 0.92865 0.78823 0.77227 0.78467 0.95718 0.93737
STD 2.7388 x 1073 82006 x 1073 9.7908 x 1073 87281 x 1073  1.6435 x 1073 1.9135 x 1072
Best 0.93482 0.80686 0.79602 0.80457 0.96088 0.95128
ELM-PO AVG 0.91526 0.74807 0.73396 0.75156 0.94917 0.93512
STD 15925 x 1072 47671 x 1072 51907 x 1072 44197 x 1072 95354 x 1073 2.2797 x 1072
Best 0.94447 0.83553 0.82610 0.83605 0.96670 0.95500
ELM-POA AVG 0.93677 0.81250 0.79970 0.81095 0.96206 0.95330
STD 44501 x 1073 13354 x 1072 15188 x 1072 1.5464 x 1072 2.6744 x 1073 1.5877 x 1072
Best 0.94411 0.83427 0.82540 0.84037 0.96645 0.96206
ELM-SCA AVG 0.93004 0.79245 0.77753 0.78864 0.95802 0.93686
STD 27910 x 1073 83961 x 1073 1.0006 x 1072  9.6542 x 1073 1.6760 x 10-3 1.7222 x 1072
Best 0.93505 0.80667 0.79494 0.80971 0.96099 0.95231
ELM-PLO AVG 0.93555 0.80907 0.79611 0.80670 0.96133 0.94720
STD 26505 x 1073 79224 x 1073 9.0507 x 1073  8.6087 x 1072  1.5953 x 1073  1.4666 x 1072
Best 0.94173 0.82756 0.81551 0.82714 0.96503 0.95879
ELM-PLSCO AVG 0.95465 0.86587 0.85936 0.86785 0.97280 0.97224
STD 33773 x 1073 1.0111 x 1072 1.0633 x 1072 9.6555 x 1072  2.0226 x 1073  1.2381 x 1072
Best 0.96003 0.88211 0.87507 0.88161 0.97601 0.98189
ELM AVG 0.92487 0.77706 0.75677 0.77095 0.95490 0.86649
STD 14291 x 10~*  4.0735 x 10~%  4.8355 x 10~%  4.9587 x 10~%  8.4736 X 10™>  9.0289 x 107>
Best 0.92499 0.77739 0.75716 0.77135 0.95497 0.86656

When compared to other algorithms, such as ACGRIME, AO, AVOA, and POA,
PLSCO demonstrated a clear advantage in accuracy, as evidenced by its score. As seen in
Table 8, PLSCO’s accuracy score is superior to competing algorithms, indicating a high
degree of reliability. A deeper analysis of the performance metrics reveals that while most
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algorithms demonstrated high specificity, there was a trade-off in terms of precision and
F1 score for several methods. However, PLSCO achieved the highest specificity (0.97409
for training and 0.97280 for testing) and maintained a balanced and superior performance
across precision and F1 score, reflecting its capability to minimize false positives while ac-
curately identifying true machine faults. This balance is crucial for predictive maintenance
applications, where both overestimating and underestimating machine faults can lead to
operational inefficiencies or unexpected downtimes.

The consistency and stability of PLSCO’s performance are further reinforced by its
low standard deviations across all metrics. Also observed in the ROC-AUC average score,
PLSCO demonstrated superior performance with an average test score of 0.97224, indicat-
ing that it can discriminate effectively within the classes of the predicted value. However,
ELM demonstrated even better standard deviations for all metrics. This superior standard
deviation in ELM is attributed to its deterministic nature in training, stemming from the
direct computation of output weights using the Moore-Penrose pseudo-inverse. Unlike
iterative optimization-based methods, such as PLSCO, where performance may be slightly
influenced by randomness in population initialization and search trajectories, ELM’s matrix-
based approach ensures minimal variability across multiple runs. Consequently, this char-
acteristic contributes to ELM’s exceptionally stable performance, particularly in scenarios
requiring repeated trials or consistent outcomes. This stability is particularly evident in
scenarios involving noisy or imbalanced data, where other algorithms may struggle to
maintain reliability. The results indicate that PLSCO’s design effectively addresses these
challenges, making it a robust choice for real-world predictive maintenance tasks. Addi-
tionally, the algorithm’s ability to outperform the baseline ELM model by a significant
margin underscores the importance of integrating advanced optimization techniques for
enhancing machine learning models.

Furthermore, the convergence behavior, as depicted in Figure 13, illustrates the su-
perior fitness and rapid stabilization of PLSCO relative to other optimization methods.
Unlike competing algorithms, which exhibited slower or suboptimal convergence patterns,
PLSCO achieved higher fitness values with fewer iterations, further validating its efficacy
in enhancing the ELM-PLSCO model’s learning process. The plot provides valuable in-
sights into their optimization performance. The fitness values for PLSCO are consistently
higher throughout the iterations, clearly demonstrating its ability to quickly adapt and
achieve optimal solutions. In contrast, other algorithms, such as AO and AVOA, exhibit
slower convergence rates, requiring more iterations to approach fitness levels that are still
below those achieved by PLSCO. Notably, PLSCO’s convergence curve shows a smooth
and steady ascent, highlighting its efficiency in navigating the solution space without
being hindered by local optima. This is a critical advantage in predictive maintenance
applications, where timely and accurate predictions are essential for minimizing downtime
and optimizing operational efficiency. The superior convergence behavior of PLSCO also
suggests its potential applicability in other complex optimization scenarios.

The results highlight the transformative impact of using the PLSCO algorithm for
optimizing ELM in PdM prediction. The algorithm’s ability to achieve superior accuracy,
stability, and convergence speed positions it as a highly effective tool for enhancing ma-
chine fault prediction. The comparative analysis and convergence trends underscore its
advantages over other nature-inspired algorithms, providing a strong case for its adoption
in industrial settings. These findings demonstrate the potential of integrating advanced
nature-inspired optimization techniques into predictive maintenance frameworks, paving
the way for more reliable and efficient industrial applications.
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Figure 13. Accuracy Plot of ELM-PLSCO and Compared Models.

The confusion matrix plots of the best test accuracy from 30 independent runs are
shown in Figure 14, confirming that ELM-PLSCO maintains a high true positive rate while
minimizing false classifications, indicating its suitability for predictive maintenance tasks
where fault detection accuracy is critical. Furthermore, the corresponding ROC-AUC plots
of the best test accuracy from 30 independent runs are shown in Figure 15, illustrating that
ELM-PLSCO consistently attains higher area under the curve values compared to other
models, reflecting its robust discriminative capability under varying decision thresholds.
This improvement can be attributed to the synergy of PLO’s competitive dynamics, CSO’s
stochastic search diversity, and SSA’s adaptive exploitation, which collectively enhance
the optimizer’s ability to balance exploration and exploitation. These findings suggest
that the hybridization strategy not only accelerates convergence but also strengthens
classification stability.

The computation time in seconds results presented in Table 9 reveal notable differ-
ences among the ELM-based hybrid optimization models. The proposed ELM-PLSCO
achieved a moderate computation time of 287.21 s, which is competitive given its en-
hanced exploration—exploitation balance and improved convergence characteristics, which
is higher than baseline ELM-PLO. While algorithms such as ELM-SCA and ELM-AVOA
demonstrated the lowest computation times, their reduced runtime comes at the cost of
lower predictive accuracy in earlier evaluations. Conversely, models such as ELM-PO
and ELM-POA exhibited substantially longer runtimes, largely due to their more complex
update strategies and less efficient convergence behavior. The ELM baseline, with a com-
putation time of only 3.37 s, remains the fastest; however, it lacks the optimization capacity
to fine-tune parameters effectively, leading to inferior predictive performance. The results
indicate that ELM-PLSCO provides a favorable trade-off between computational efficiency
and prediction accuracy, making it suitable for predictive maintenance applications where
both accuracy and timeliness are critical.
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Figure 14. Confusion Matrix of ELM-PLSCO and Compared Models.
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Figure 15. ROC-AUC plots of ELM-PLSCO and Compared Models.
Table 9. Computation Time Comparison of ELM-PLSCO and other Models.
ELM- ELM- ELM- ELM-
ELM-AO ELM-PFA ELM-PO ELM-POA ELM-SCA ELM-PLO ELM
ACGRIME AVOA OBLPFA PLSCO
376.51 389.58 135.21 245.58 137.14 1454.18 446.77 132.45 287.21 132.10 3.37

4.2.4. Feature Importance Score Analysis

The feature importance analysis provides crucial insights into the predictive power of
individual variables in the dataset for machine failure prediction. Feature importance was
evaluated using the permutation importance score method, which assesses the decrease
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in model performance when the values of a given feature are randomly shuffled while all
others remain unchanged. A greater drop in performance indicates a higher importance of
that feature to the model’s predictions. As evident in Figure 16, torque emerges as the most
significant feature, with the highest importance score. This indicates that torque plays a
pivotal role in determining machine health, as variations in torque could directly reflect
changes in mechanical load and operational efficiency. Following closely are tool wear and
air temperature, both of which exhibit substantial contributions to the prediction model.
The high importance of tool wear is expected, given its direct relationship to equipment
degradation, while air temperature highlights the impact of environmental conditions on
machine performance. The feature Type_L demonstrates a comparable level of importance.
This is due to the inherent characteristics or operational conditions associated with these
products, such as lower thresholds for durability or higher susceptibility to wear and tear.
Rotational speed and Type_M exhibit moderate contributions, emphasizing their role in
reflecting operational conditions.

Feature Importance

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Normalized Importance

Figure 16. Feature Importance Score of ELM-PLSCO Model.

In contrast, features such as process temperature and Type_H demonstrate lower
importance, indicating they contribute less predictive power to the model’s predictions.
Their relatively lower influence may stem from weaker correlations with the target variable
or redundancy with other features. When combined with the performance metrics from
the improved ELM-PLSCO algorithm, the feature importance analysis underscores the
effectiveness of leveraging domain-specific insights for model optimization. The priori-
tization of features such as torque and tool wear validates the practical relevance of the
proposed approach. Moreover, the hierarchical ranking of features highlights potential
areas for targeted monitoring and intervention in real-world maintenance practices.

The findings from the feature importance analysis also complement the accuracy
trends observed in the optimization algorithms’ fitness plots. Specifically, the ability of
ELM-PLSCO to achieve superior performance could be attributed, in part, to its capability to
better capture the relationships among these influential features. This synergy between fea-
ture importance and algorithmic performance demonstrates the potential for ELM-PLSCO
to uncover meaningful patterns in complex datasets, ultimately driving advancements in
predictive maintenance.
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5. Conclusions

This study proposes an advanced PAM model that integrates the ELM with an en-
hanced optimization algorithm, termed PLSCO. PLSCO is developed by synergistically
combining mechanisms from the CSO and the SSA within the PLO framework. This
hybridization effectively addresses the critical challenge of balancing exploration and ex-
ploitation in optimization processes. A novel competitive division mechanism enables
adaptive learning, enhancing both local refinement and global search capabilities, thereby
significantly improving the overall optimization performance of the algorithm. The ELM-
PLSCO model was evaluated on the AI4I 2020 Predictive Maintenance dataset, where it
demonstrated superior predictive accuracy and stability compared to baseline ELM and
conventional optimization-based approaches. Feature importance analysis revealed that
variables such as torque and tool wear play a pivotal role in fault prediction, while product
type and other operational parameters provide insights into performance-specific vulnera-
bilities. These findings highlight the model’s ability to extract meaningful and actionable
knowledge from industrial data.

Despite its promising results, this study has several limitations. First, the evaluation
was conducted using only a single publicly available dataset, the AI4I 2020 dataset, due
to the limited availability of industry-reported PdM datasets in the public domain. Indus-
trial predictive maintenance data are often proprietary and protected by confidentiality
agreements, restricting access for research purposes. While the AI41 2020 dataset offers a
well-structured and balanced benchmark for controlled experimentation, it may not fully
capture the complexities of real-world industrial environments, such as high noise levels,
severe class imbalance, and heterogeneous operational conditions. Second, although the
hybrid PLSCO algorithm exhibits strong optimization performance, its computational com-
plexity in large-scale or real-time applications requires further investigation, as it requires
more computation time. The scalability and efficiency of the algorithm under dynamic
operational conditions warrant deeper analysis.

Future research will address these limitations by extending the proposed framework
to dynamic, real-time environments and evaluating its performance across multiple PdAM
datasets obtained through industrial collaborations. This will enable a more comprehensive
assessment of the model’s generalization capability across diverse industrial domains.
Additionally, future work will incorporate domain-specific constraints and real-world
operational dynamics into the optimization process to further improve the robustness and
practical applicability of the model. Further experimental evaluations will include compar-
isons with other high-performance hybrid optimizers and emerging metaheuristic-machine
learning integration techniques. The framework will also be systematically evaluated with
respect to neuron count variation and different dataset partitioning strategies to identify
optimal configurations and enhance model reliability.
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