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Abstract

To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid
model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode
Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long
Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the optimal
parameters for VMD, decomposing the original wind power series into multiple frequency-
based subsequences. Subsequently, ISAO is employed to fine-tune the hyperparameters
of the LSTM, resulting in an ISAO-LSTM prediction model. The final forecast is obtained
by reconstructing the subsequences through superposition. Experiments conducted on
real data from a wind farm in Ningxia, China demonstrate that the proposed approach
significantly outperforms traditional single and combined models, yielding predictions
that closely align with actual measurements. This validates the method’s effectiveness
for short-term wind power prediction and offers valuable data support for optimizing
microgrid scheduling and capacity planning in wind-integrated energy systems.

Keywords: short-term wind power prediction; variational modal decomposition; long- and
short-term memory networks; northern goshawk optimization algorithm; snow ablation
optimizer

1. Introduction

Since the proposal of the “dual-carbon” goal, China has actively advanced the develop-
ment of renewable energy to address climate change and enhance energy security. Among
these sources, wind power plays a crucial role due to its renewable nature, low cost, and zero
emissions, leading to its growing presence in the national energy mix [1]. Nevertheless, the
inherent variability and unpredictability of wind power often result in generation intermit-
tency, which complicates energy utilization and poses technical challenges for grid integration.
Accurate forecasting of wind power can help overcome these issues by supporting effective
grid scheduling and ensuring the stable operation of wind-connected systems [2,3].

Short-term wind power forecasting models are generally categorized into three types:
physical models, statistical models, and hybrid (combined) models [4]. Physical models [5]
rely on meteorological forecasts and turbine characteristics specific to geographic locations.
Although useful for long-term predictions, their reliance on extensive and complex weather
data limits their accuracy and practicality for short-term forecasting. Statistical models [6],
on the other hand, establish data-driven relationships between inputs—such as numerical
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weather forecasts and historical generation data—and predicted outputs. These models
are simpler to construct and often yield better accuracy and generalization than physical
models. However, their performance can vary across different time scales, especially when
handling nonlinear patterns, potentially resulting in larger prediction errors. To overcome
the limitations of both approaches, hybrid models integrate optimization algorithms with
prediction techniques [7], enabling more accurate modeling of wind speed and power fluc-
tuations. By tuning model parameters through optimization, these combined approaches
enhance forecasting accuracy and robustness, meaning that they are widely adopted in
modern wind power prediction tasks.

At present, conventional single prediction models include the neural network predic-
tion model [8], the integrated learning [9] prediction model and the Random Forest [10]
(RF) prediction model. Optimization algorithms mainly include Particle Swarm Optimiza-
tion [11] (PSO), Genetic Algorithm (GA) and Differential Evolution (DE).

An enhanced PSO-BP model was introduced [12], where Particle Swarm Optimization
(PSO) was used to optimize the weights and thresholds of the BP neural network. However,
due to the BP network’s reliance on gradient descent, it is prone to getting trapped in local
optima, indicating the need for more advanced neural network architectures to address this
limitation. In [13], a forecasting method utilizing the Spotted Hyena Algorithm (SHA) was
proposed to optimize the penalty coefficients and kernel parameters of the Support Vector Ma-
chine (SVM), resulting in notable improvements in prediction accuracy and stability. Ref. [14]
presented a wind power prediction model combining the Sparrow Search Algorithm (SSA)
with a Gated Recurrent Unit (GRU), where SSA is employed to fine-tune model parameters
through iterative optimization, enhancing forecasting performance. These hybrid approaches
illustrate the effectiveness of integrating optimization algorithms with predictive models to
address the uncertainty and volatility inherent in wind power forecasting.

Given the stochastic, volatile, and long-tailed characteristics of wind power sequences,
many current hybrid models incorporate signal decomposition techniques to simplify data
structure and enhance forecasting accuracy. These methods help reduce the complexity
and randomness of the original signal, making them widely adopted in wind power data
preprocessing. Common techniques include Fourier Transform [15] (Fast Fourier Transform,
FFT), Empirical Mode Decomposition (EMD) [16], and others. For instance, Ref. [17]
presents an EMD-based hybrid model that integrates an improved GA-BP algorithm with
Adaboost, introducing a novel hidden layer node selection strategy. By applying EMD
to obtain decomposed input data, the model improves prediction accuracy by capturing
relationships between components and the output. However, EMD, despite its suitability
for nonlinear and non-smooth signals, suffers from issues like mode mixing and sensitivity
to boundary effects, limiting its robustness. In contrast, Variational Mode Decomposition
(VMD) [18] offers a more stable approach by breaking down highly volatile and random
sequences into multiple smooth and regular subcomponents, effectively preserving the
intrinsic power characteristics of the original data while enhancing consistency.

To address the challenge of improving both accuracy and stability in short-term wind
power forecasting, this study proposes a hybrid prediction model that integrates the North-
ern Goshawk Optimization (NGO) algorithm and an Improved Snow Ablation Optimizer
(ISAO) within a VMD-LSTM framework. First, Variational Mode Decomposition (VMD) is
applied to break down the original wind power sequence into multiple components. The
NGO algorithm is employed to optimize the key VMD parameters [k, o], using minimum
alignment entropy as the fitness criterion, thus enhancing the decomposition’s effective-
ness by reducing noise and ensuring more stable input for the forecasting stage. Next, a
separate LSTM model is constructed for each decomposed component, with ISAO used
to fine-tune the LSTM hyperparameters, resulting in the ISAO-LSTM forecasting model.
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After training with the optimized parameters, the final output is generated through the
reconstruction of individual predictions. Experimental results confirm that the proposed
approach significantly enhances forecasting accuracy and robustness.

2. Raw Wind Power Decomposition
2.1. VMD Decomposition

VMD [19] is a fully non-recursive signal decomposition method, proposed in 2014 by
Konstantin Dragomiretskiy. VMD, as a fully non-recursive model, is essentially the process
of building variational problems and then solving them to realize the decomposition of
non-smooth sequences. The following are the three specific steps of the model:
(1) Construct the variational

Assuming that the original signal can be decomposed into components, the objective
is to minimize the total estimated bandwidth of the IMF [20]. In addition, the constraints
need to be satisfied at the same time, expressed as

2
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where k is the number of modes to be decomposed; {wy} is the center frequency; 0; is the
partial derivative; 6(t) is the DeLillek function; and * is the convolution operation.

(2) Constrained variational

In order to obtain the optimal solution, the Lagrange multiplier and the second-order
penalty factor « are introduced, and the expression is
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where A is the Lagrange multiplier; and « is the second-order penalty factor.
(3) Solving the variational components

The nonlinear normalized model is solved distributively using the alternating direc-
tion multiplier method [21], where all components can be obtained by Fourier isometric
transformation with the expression
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where ﬁZlH (w), f(w), tx(w), A(w) and are the Fourier transforms of the components,
respectively.

2.2. The NGO-VMD Model

Considering that the VMD is not adaptive, the number of modes, the penalty factor
«, the fidelity coefficient, and other parameters need to be set manually. If the number of
modes is selected improperly, overfitting or loss of key information will occur, while the
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improper selection of the penalty factor o will lead to distortion and slow convergence, etc.
In this study, the VMD is optimized by using NGO.

In this study, we adopt NGO to optimize VMD, using Minimum Permutation Entropy
(MPE) as the fitness function to establish the optimization model.

2.2.1. Entropy of a Permutation

Alignment entropy [22] quantifies the level of vector aggregation in high-dimensional
space and serves as an indicator of time-series regularity. A lower entropy value corre-
sponds to a more structured and predictable sequence. To accurately determine the optimal
parameter combination [k, o], this study adopts minimum alignment entropy as the fitness
function. The calculation process is outlined as follows:

S

HPE(m) = — Z Pq In Pq (5)
g=1

where P is the probability of the time series, and g is the position before being aligned.

2.2.2. Northern Goshawk Optimization Algorithm

The Northern Goshawk Optimization Algorithm [23] is a population-based optimiza-
tion algorithm proposed by Dehghani et al. in 2021, inspired by the hunting behavior of
hawks, which consists of two phases: identifying attacks (global search) and pursuing
actions (local search).

(1) Recognize Attack (Exploration)

In this phase, the northern hawk randomly selects prey in the search space and
launches an attack. This step aims to perform a global search to identify the optimal region.
Equation (6) represents the new state in the jth dimension, and Equation (7) represents the
population update formula:
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of the stage, r and I are the random numbers generated during the iteration process.

where F; is the value of the objective function, is the value of the objective function

(2) Manhunt (development)

This stage enhances the algorithm’s ability to exploit the search space by simulating
the trailing and chasing process of the northern goshawk. Assuming that the hunting range
radius of the northern goshawk is, according to Equation (8), the updating formula for
the search radius, Equation (9) is the state updating formula for the first dimension, and
Equation (10) is the updating formula for the population membership:

t
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where t is the current number of iterations, T is the maximum number of iterations, and

F'*"/"2 s the value of the objective function of the stage

2.3. NGO-Optimized VMD

After determining the required parameters and of the NGO algorithm, the population
is randomly initialized, by obtaining the minimum fitness value of the population and
setting the minimum alignment entropy as the fitness function. Subsequently, a global
search is performed on the minimum arrangement entropy. The output is the optimal [k,
o]. This series of steps aims to achieve effective exploration and optimization of the search
space to obtain the best results.

The optimization flow of the NGO optimization VMD is shown in Figure 1.

Setting the parameters
of the NGO algorithm

Randomly initialize the
population to generate the
location of each northem
goshawk [K.a]

variational modal
decomp osition

—

The minimun arrangement
entropy is calculated for each
IMF component

Compare minimum arrangement entropy
and update

Update the global minimum alignment
entropy of the population

Updating the location of the Northern
Eagle

No

Whether the maximum number of
iterations has been reached

Output the optimal parameter
combination [K,a]

End

Figure 1. NGO optimization of VMD process.

3. Short-Term Wind Power Forecasting Model Based on
NGO-VMD-ISAO-LSTM

Accurate and reliable wind power forecasting is crucial for the efficient scheduling
of microgrids, as it directly influences energy management, storage planning, and oper-
ational costs. However, due to the nonlinear, non-stationary, and noisy nature of wind
power data, traditional approaches—such as physical models, statistical methods, and
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standalone artificial intelligence techniques—often struggle with limited generalization
and inconsistent performance, making them inadequate for real-time microgrid operations.
In contrast, hybrid models that integrate signal decomposition with optimization algo-
rithms address these challenges more effectively. By extracting components at different
frequency levels and simultaneously tuning model parameters, these approaches overcome
the shortcomings of individual models and significantly enhance forecasting accuracy and
stability. Therefore, advancing research on such combined models holds both theoretical
and practical value for improving prediction precision, refining microgrid scheduling
strategies, and boosting overall system efficiency.

3.1. Snow Ablation Optimizer

The Snow Ablation Optimizer (SAO) [24], introduced by Lingyun Deng et al. in
2023, is a meta-heuristic algorithm inspired by the natural processes of snow sublimation
and melting. Its design aims to balance global exploration and local exploitation within
the solution space. SAO operates through four key stages: initialization, exploration,
exploitation, and a dual-population strategy to enhance search efficiency and diversity.

(1) Initialization phase

In SAOQ, the iterative process begins with a randomly generated population. Equation
(11) describes the entire population, which is usually modeled as a matrix containing an
operation vector and rows and columns.

Z=L+6x(U-L)

211 21,2 . Z1,Dim—1 Z1,Dim

221 222 . Z3,Dim—1 Z3,Dim 1)
ZN-11 4N-12 .-+ ZN-1,Dim—1 Z4N-1,Dim

ZN1 ZN2 -+ ZN,Dim-1 ZN,Dim 1 N Dim

where L and U are the lower and upper bounds of the solution space, respectively, and 6
denote the random numbers generated in [0, 1].

(2) Exploration phase

During the transition of snow or meltwater into vapor, the resulting movement is
irregular and highly dispersed. This behavior is mimicked in the exploration phase of
the algorithm through Brownian motion, which captures the randomness observed in the
sublimation process.

In standard Brownian motion, the step size is determined using a probability density
function derived from a normal distribution with a mean of zero and a variance of one. Con-
sequently, the displacement at any moment follows this distribution, and is mathematically
described as

1 x2
fem(x;0,1) = Nor X exp(—z). (12)

Brownian motion utilizes dynamics and uniform step sizes, making it an exploration
tool for exploring potential regions in space, which can be well modeled in the process of
vapor diffusion. The position of the exploration process is calculated as

Zi(t+1) = Elite(t) + BM;(t) ® (61 % (G(t) — Zi(t)) + (1 — 61) x (Z(t) — Zi(t))) (13)

where Z;(t) is the position of the first particle in the first iteration; BM;(t) is a vector of
random numbers based on Gaussian distribution to represent the Brownian motion; ® is
the multiplication by rows; 0] is the random number generated in [0, 1].
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The solution formula for the location of the center of mass of the group is

1 M
Z:(t) = 7 L% (14)
Elite(t) € [G(t), Zsecond (t), Zunira(t), Ze(1)] (15)

where G(t) is the current optimal particle; Elite(t) is a random individual among several
elite groups in the overall population; Z(t) is the center-of-mass position of the individual
whose fitness value is ranked in the top 50% of the whole population; Zg,qon () and Zy,;,4(t),
denote the second and third best individuals in the current population, respectively.

In each iteration, a selection is made at random from a set that includes the current
best solution, the second and third top-performing individuals, and the center-of-mass
position of the leading factor.

(3) Development phase

When snow melts into liquid water, the process is often modeled around the current
optimal solution using snowmelt simulation techniques. A widely used approach for
capturing this behavior is the classical degree-day method, which effectively represents the
dynamics of snowmelt. The position update equation for this stage is

Zi(t+1) = M x G(t) + BM;(t)®

(62 % (G(1) — Zi() + (1 — 62) x (Z(8) — Z:(8))) (10

where 6, is a random number in [—1, 1]; and M is the degree-day snowmelt model.
The general form of the method is

1

s 1
M = (0.35+0.25 x £

—t

) X efmax 17)

where f is the current iteration number; and tyax is the maximum iteration number.
In each iteration, update the expression for the degree-day factor (DDF) as

t
fmax — 1
DDF = 0.35 + 0.25 x EET (18)

where DDF is the degree-day factor, which ranges from 0.35 to 0.6.
(4) Dual-population mechanism

The SAO algorithm distinguishes itself from other optimization methods through its
dual-population mechanism, effective exploration—exploitation strategy, and adaptable
position-update process. These characteristics enhance its ability to maintain a strong
balance between global and local searches, improve convergence efficiency, and adapt
to complex challenges, particularly in multi-modal and high-dimensional scenarios like
short-term wind power forecasting.

Elite(t) + BM;(t) ® (61 x (G(t) — Z;(t))
+(1—61) x (Z(t) — Zi(t))),i € index,
M x G(t) + BM;(t) ® (62 x (G(t) — Z;(t))

+(1—6,) x (Z(i’) — Zi(t))),i € index,

Zi(t+1) = (19)

3.2. Improved Snow Abatement Optimizer

Although the SAO algorithm demonstrates strong performance in optimization tasks,
it still faces challenges such as limited convergence accuracy and a tendency to fall into
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local optima. To address these issues, this section introduces an Improved Snow Ablation
Optimizer (ISAO), which enhances global search ability and convergence precision through
the integration of multiple optimization strategies. These improvements effectively mitigate
the original algorithm’s shortcomings and offer a more robust and efficient approach for
solving complex optimization problems.

(1) Sinusoida Chaos Mapping Initialization

In traditional SAO, random initialization often leads to limited initial population diver-
sity due to the lack of uniform distribution characteristics, which in turn leads to premature
convergence problems. In this study, Sinusoida chaotic mapping was introduced to improve
the initialization process of SAO. Sinusoida chaotic mapping generates pseudo-random
sequences with ergodicity and non-repeatability through nonlinear iterative equations. Its
mathematical expression is

Xpi1 = p-sin(7rxy) (20)

where the system exhibits typical chaotic properties for the control parameter u € [0,
2.3]. Compared with other traditional chaotic models, Sinusoida mapping exhibits better
traversal uniformity and dynamic range coverage ability in the parameter space.

(2) Levy flight strategy

In traditional SAO, when reaching a certain number of iterations, the exploration
phase will be transformed into the development phase, and at this time, the fitness function
value is no longer changed. In order to avoid falling into the local optimum, the Levy flight
mechanism was introduced to update the exploration and development phases in order to
improve the global search capability. The specific implementation is as follows.

The Mantegna algorithm is used to generate the Levy step, and the mathematical

expression is
URo

where u, v is the independent normally distributed random vector; B is the Levy index; and
o is the scaling factor.
The original Brownian motion based on Gaussian distribution was replaced with a

Levy flight, and the original exploration phase formula was updated to
Xf+1 = Xf +71+S© (Ceentroid — Xf) (22)

where S is the step vector generated by the Levy flight; r; € [0, 1] is a uniform random
number; and Ceentroiq 1S the center of mass of the elite population.

The long-jump property of the Levy flight was combined with a local dense search
to effectively balance global dispersion and local concentration in the exploration phase.
By adjusting the scaling factor of s (e.g., 0.01), the step size magnitude can be controlled to
avoid excessive deviation from the potential optimal region.

3.3. Long- and Short-Term Memory Networks

Long Short-Term Memory (LSTM) [25] is a variant of Recurrent Neural Networks
(RNNSs), which enables the management of memory units by introducing special storage
units and gate mechanisms to better capture long-term dependencies in sequential data.

The basic structure of LSTM is shown in Figure 2. The LSTM cell contains the states
of the memory cells as well as three gate control structures: forgetting gates, input gates,
and output gates. The input forgetting gate performs selective forgetting, decides which
information gets stored by computation, and acquires new cells by constantly updating
the computation.
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Ct-1 Ct

- L]

— 0 x(t)

hy

Figure 2. LSTM network architecture.

In Figure 2, hy_4, h; are the hidden layer vectors at the time t — 1 and the time ¢,
respectively; c;_1, c; are the cell states at the time t — 1 and the time ¢, respectively; x; is the
input at the time ¢; ¢ is the Sigmoid activation function, with the value domain of [0, 1];
and tanh is the hyperbolic tangent activation function, with the value domain of [-1, 1].
The formulas for the input gate, forget gate and output gate are shown below.

ir = o(Wixy + Uihy—1 + by) (23)
fo = (Wi + Ughy_y +by) (24)
o = 0(Wox; + Uphy_1 + by) (25)

where W;, U; is the weight assigned to the input gate; b; is the bias of the input gate; W,
Uy is the weight assigned to the forget gate; by is the bias of the forget gate; W, U, is the
weight assigned to the output gate; and b, is the bias of the output gate.

The metameric state is updated at time t. The state is computed as

Ct=fr-cr1+ip-Ct (26)
Candidates for the new cell state information store are
= tanh(cht + Uchi_q + bc) (27)

where W, U, is the weight assigned to the candidate representative; and b is the bias of
the candidate representative.
The implicit layer state at the time output is computed as

hy = o - tanh(ct) (28)

3.4. ISAO-Optimized LSTM

There are difficulties in the selection of certain hyperparameters in LSTM, and the cor-
rect selection of hyperparameters often affects the overall prediction accuracy. Traditional
methods usually learn the parameters initially and cross-validate them based on experience.
In this study, we used the ISAO algorithm to optimize the parameters of LSTM, adaptively
search for appropriate neural network parameters, reduce the difficulty of learning and
prediction, and improve the accuracy of prediction.

The ISAO learning parameter optimization process for LSTM is shown in Figure 3.
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Determine if the iteration
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Output LSTM optimal learning
pamameter combinations

Figure 3. SAO-optimized LSTM process.

3.5. NGO-VMD-ISAO-LSTM Combined Prediction Model Building

This study combines the NGO optimization algorithm, VMD modal decomposition
technique, ISAO optimization algorithm and LSTM prediction model to build the combined
NGO-VMD-ISAO-LSTM model, and the specific steps are as follows:

(1) The NGO algorithm optimizes the VMD parameters [k, «], enabling the decomposition
of raw wind power data into multiple subsequences using the enhanced VMD method;

(2) AnISAO-LSTM prediction model is constructed for each IMF component obtained
from the decomposition. The ISAO algorithm adaptively tunes the neural network’s
hyperparameters, thereby enhancing forecasting accuracy;

(38) The total prediction result is obtained by superposition reconstruction;

(4) Appropriate indicators are selected to analyze the errors.

The flow chart of NGO-VMD-ISAO-LSTM prediction is shown in Figure 4.
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Figure 4. NGO-VMD-SAO-LSTM flowchart.

3.6. Evaluation Indicators

To evaluate the forecasting performance of the proposed model, three key metrics
were selected. Their calculation formulas are as follows

18
RMSE = [~} (9 — y)* (29)
i=1
1
MAE =—} [9; = vil (30)
i=1
N o 2
, E (Jo = o)
RE=1-55— (31)
L ()

1

)
I

4. Simulation Analysis

The data used in this paper were collected over a 10-day period from 25 September
to 5 October 2021 at a wind farm in Ningxia, China. The wind power data were sampled
at 15 min intervals, resulting in a total of 1056 sets of data. Wind speed, wind direction,
temperature and pressure were selected as input features. The first 80% of the data was
selected as the training set and the remaining 20% as the test set, and the prediction
time span was 45 h. Because wind power data are often affected by problems such as
weather conditions and equipment failures, which can adversely affect the subsequent
modeling decision-making process, the collected data were preprocessed accordingly. In
this study, a combination of linear interpolation and forward /backward padding was used:
for smooth trends with little variation, linear interpolation usually provides smoother and
more reasonable padding; for data with large variations or no obvious trends, forward or
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backward padding can be considered, especially when missing values are at the beginning
or end of the data. These methods can effectively fill in any gaps in the data to ensure data
integrity and continuity.

In this study, the hardware equipment used for the wind power prediction experiment
included an Nvidia GeForce RTX 4090 model graphics card, an i9-13900k model CPU, etc.,
and the software platform used was MATLAB2022B version.

4.1. Analysis of Single LSTM Model Prediction Results

To demonstrate the advantages of the LSTM prediction model proposed in this paper
over other individual models in short-term wind power forecasting, ablation experiments
were conducted using BP neural networks and Convolutional Neural Networks (CNN).
The performance metrics for each model are presented in Table 1.

Table 1. Evaluation indicators for each single prediction model.

Model RMSE MAE R?
BP 5.528 4.279 0.936

CNN 4.452 3.516 0.958

LSTM 4.309 3.418 0.961

As shown in Table 1, the LSTM model achieved lower RMSE and MAE values com-
pared to the BP and CNN models, reflecting a noticeable improvement in prediction
accuracy. This suggests that the LSTM model is better suited to handling wind power
data with pronounced temporal characteristics. The forecasting results of each model are
illustrated in Figure 5.

100

Real value

— BP
—— CNN
—— LSTM

80

power/MW

0 50 100 150 200
Time/15min

Figure 5. Prediction results of different single prediction models.

Figure 5 illustrates that, despite initial preprocessing, the non-stationary nature of
wind power data still causes discrepancies between predicted and actual values at certain
points, negatively impacting model fitting. Due to these challenges, relying solely on a
single prediction model is insufficient. Therefore, the VMD algorithm was employed to
decompose the data and reduce noise. Additionally, to address the difficulty in select-
ing LSTM hyperparameters and enhance prediction accuracy, the ISAO algorithm was
introduced for hyperparameter optimization.
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4.2. Analysis of VMD-SAO-LSTM Model Prediction Results

In order to verify the performance of the VMD-SAO-LSTM model, three models,
VMD-LSTM, VMD-SAO-LSTM and VMD-ISAO-LSTM, were selected for the comparison
of the prediction results. The sampling frequency of the VMD was 1000 Hz, the modal
number of the center frequency rule of thumb was six, and the penalization factor o was
adjusted to 3000 according to the smoothness of the signals. The convergence tolerance
criterion was 10-7 with no DC part. The VMD decomposition results are shown in Figure 6.

— 100
= 0 L L 1 L n
0 200 400 600 800 1000
< 50
=
0F
= \/\/\/\/\/\W\M
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Figure 6. VMD decomposition results.

Both SAO and ISAO use a population size of 10, 30 iterations, and a degree-day
factor of 0.35. These algorithms adaptively optimize the LSTM model’s initial learning
rate, hidden unit count, and L2 regularization parameter. The evaluation metrics for each
combined prediction model are presented in Table 2.

Table 2. Evaluation indicators for various combination prediction models.

Model RMSE MAE R?
VMD-LSTM 3.363 3.150 0.973
VMD-SAO-LSTM 3.281 2.982 0.977
VMD-ISAO-LSTM 2.630 2.378 0.980

Combined with Table 2, it can be seen that after the introduction of VMD decom-
position technology and the SAO optimization algorithm, all evaluation indexes were
significantly improved. Specifically, the ISAO optimization algorithm improved RMSE
and MAE by 5.1% and 6.8%, respectively, compared to the SAO optimization algorithm,
which proves the feasibility of applying VMD decomposition technology and the ISAO
optimization algorithm in the field of wind power prediction. The prediction results of
each combined prediction model are shown in Figure 7.

Figure 7 shows that most predicted points closely follow the actual wind power
trends. However, because VMD parameters are manually set and not adaptive, prediction
efficiency is limited. To address this, this study introduced the NGO optimization algorithm
to adaptively optimize VMD hyperparameters, identifying the best combination of modal
number and penalty factor to enhance prediction accuracy.
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Figure 7. Prediction results of different combination prediction models.

4.3. Analysis of the Prediction Results of the NGO-VMD-SAO-LSTM Model

The VMD parameters, including sampling frequency, were set as described, while the
optimal modal number and penalty factor were determined through NGO optimization.
The NGO algorithm uses a population size of 10 and runs for a maximum of 30 iterations.
Using minimum arrangement entropy as the fitness function, NGO adaptively finds the
best combination of modal number and penalty factor—resulting in eight modes and an «
value of 2867. The decomposition results of NGO-VMD are shown in Figure 8.

Figure 8 shows that the NGO-VMD model decomposed the original sequence into
eight subsequences. IMF1 and IMF2, as the primary modes, exhibit smoother curves; IMF3,
IMF4, and IMF5 are roughly symmetric, easing prediction difficulty; while IMF6, IMF?7,
and IMF8 capture the overall volatility of the wind power series. Compared to the single
VMD decomposition shown in Section 3.2, these eight components are more regular and
better capture the original series” features. This demonstrates that incorporating NGO
optimization improves VMD’s ability to preserve data characteristics and reduce modal
aliasing, providing a stronger foundation for accurate prediction.

The prediction results based on the NGO-VMD-ISAO-LSTM prediction model and the
comparison model are shown in Figure 9, and the corresponding evaluation indexes are
shown in Table 3.

Compared to the NGO-VMD-SAO-LSTM model, the NGO-VMD-ISAO-LSTM achieved
improvements of 13.64%, 18.51%, and 0.5% in RMSE, MAE, and RMSE. Among all the
models discussed in Sections 3.1 and 3.2, the proposed model exhibited the lowest predic-
tion error and highest accuracy, further demonstrating its effectiveness and reliability for
short-term wind power forecasting.

Table 3. Evaluation indicators for NGO-VMD-SAO-LSTM prediction model and comparison model.

Model RMSE MAE R?
NGO-VMD-SAO-
LSTM 2.023 1.864 0.981

NGO-VMD-ISAO-

LSTM 1.747 1.519 0.986
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Figure 8. NGO-VMD decomposition results.
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Figure 9. Prediction results of NGO VMD SAO-LSTM prediction model and comparison model.

5. Conclusions

This paper has proposed a combined prediction model integrating NGO-optimized
VMD decomposition with ISAO-optimized LSTM, validated using measured wind power
data from a Ningxia wind farm. The main conclusions are as follows:

(1) Decomposition of raw wind power data by the VMD method reduces wind power
fluctuation, solves the data feature capture problem, effectively improves the quality
of input features in the subsequent prediction model, and thus significantly improves
prediction accuracy.
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(2) The introduction of the NGO algorithm optimized the VMD parameters, reduced the
influence of noise on signal decomposition, improved the computational efficiency of
VMD in processing wind power data, and improved the quality and stability of signal
decomposition. At the same time, the NGO algorithm adaptively seeks the optimal
combination of modal number and penalty factor [k,«], and the decomposed modal
components can accurately capture the periodicity of the data as well as the trend
of change, which improves its usability in the subsequent short-term wind power
prediction work.

(3) The ISAO algorithm was applied to optimize LSTM hyperparameters, enhancing
both training efficiency and model performance. Compared to single and existing
combined models, the proposed approach yielded predictions closer to actual values,
making it well-suited to short-term wind power forecasting. Multiple error metrics
confirmed its effectiveness in this application.

(4) The integration of NGO-VMD decomposition and ISAO-LSTM prediction enhances
the accuracy and practicality of short-term wind power forecasting, offering valuable
theoretical support for optimizing new energy integration into power systems.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; software, X.L.; validation, X.L.
and H.Z.; data curation, X.L.; writing—original draft preparation, Z.L. and X.L.; writing—review
and editing, H.Z.; visualization, H.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Acknowledgments: We thank everyone who helped with this paper.

Conflicts of Interest: All authors declare no conflicts of interest.

References

1. Xue, Y, Yin, J.; Hou, X. Short-Term Wind Power Prediction Based on Multi-Feature Domain Learning. Energies 2024, 17, 3313.

2. Nikulins, A.; Sudars, K.; Edelmers, E.; Namatevs, I.; Ozols, K.; Komasilovs, V.; Zacepins, A.; Kviesis, A.; Reinhardt, A. Deep
Learning for Wind and Solar Energy Forecasting in Hydrogen Production. Energies 2024, 17, 1053. [CrossRef]

3. Maduabuchi, C.; Nsude, C.; Eneh, C.; Eke, E.; Okoli, K.; Okpara, E.; Idogho, C.; Waya, B.; Harsito, C. Renewable Energy Potential
Estimation Using Climatic-Weather-Forecasting Machine Learning Algorithms. Energies 2023, 16, 1603.

4. Liu,S,; Zhang, Y.; Du, X.; Xu, T.; Wu, ]J. Short-Term Power Prediction of Wind Turbine Applying Machine Learning and Digital
Filter. Appl. Sci. 2023, 13, 1751.

5. Huo, X,; Su, H.; Yang, P; Jia, C.; Liu, Y.; Wang, J.; Zhang, H.; Li, ]. Research of Short-Term Wind Power Generation Forecasting
Based on mRMR-PSO-LSTM Algorithm. Electronics 2024, 13, 2469.

6. Yang, M; Jiang, Y; Che, ].; Han, Z.; Lv, Q. Short-Term Forecasting of Wind Power Based on Error Traceability and Numerical
Weather Prediction Wind Speed Correction. Electronics 2024, 13, 1559. [CrossRef]

7. Lei, P;Ma, F; Zhu, C; Li, T. LSTM Short-Term Wind Power Prediction Method Based on Data Preprocessing and Variational
Modal Decomposition for Soft Sensors. Sensors 2024, 24, 2521. [CrossRef]

8.  Xiang, L, Liu, J.; Yang, X.; Hu, A.; Su, H. Ultra-short term wind power prediction applying a novel model named SATCN-LSTM.
Energy Convers. Manag. 2022, 252, 115036.

9.  Masoumi, M. Machine Learning Solutions for Offshore Wind Farms: A Review of Applications and Impacts. . Mar. Sci. Eng.
2023, 11, 1855.

10. Kontopoulou, V.I; Panagopoulos, A.; Kakkos, I.; Matsopoulos, G. A Review of ARIMA vs. Machine Learning Approaches for
Time Series Forecasting in Data Driven Networks. Future Internet 2023, 15, 255.

11.  Liu, X;; Yang, L.; Zhang, Z. Short-Term Multi-Step Ahead Wind Power Predictions Based On A Novel Deep Convolutional
Recurrent Network Method. IEEE Trans. Sustain. Energy 2021, 12, 1820-1833.

12. Zhao, Z,; Yun, S,; Jia, L.; Guo, J.; Meng, Y.; He, N.; Li, X,; Shi, J.; Yang, L. Hybrid VMD-CNN-GRU-based model for short-term

forecasting of wind power considering spatio-temporal features. Eng. Appl. Artif. Intell. 2023, 121, 105982.


https://doi.org/10.3390/en17051053
https://doi.org/10.3390/electronics13081559
https://doi.org/10.3390/s24082521

Processes 2025, 13, 2192 17 of 17

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

Ates, K.T. Estimation of Short-Term Power of Wind Turbines Using Artificial Neural Network (ANN) and Swarm Intelligence.
Sustainability 2023, 15, 13572. [CrossRef]

Wang, C.-H.; Zhao, Q.; Tian, R. Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network.
Energies 2023, 16, 4282.

Wang, Z.; Ying, Y.; Kou, L.; Ke, W.; Wan, J.; Yu, Z,; Liu, H.; Zhang, F. Ultra-Short-Term Offshore Wind Power Prediction Based on
PCA-SSA-VMD and BiLSTM. Sensors 2024, 24, 444.

Wang, Z.; Wang, S.; Cheng, Y. Fault Feature Extraction of Parallel-Axis Gearbox Based on IDBO-VMD and t-SNE. Appl. Sci. 2023,
14, 289.

Dou, D,; Jiang, J.; Wang, Y.; Zhang, Y. A rule-based classifier ensemble for fault diagnosis of rotating machinery. J. Mech. Sci.
Technol. 2018, 32, 2509-2515.

Chen, J.; Liu, L.; Guo, K;; Liu, S.; He, D. Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and
Hybrid Deep-Learning Models. Appl. Sci. 2024, 14, 5966.

Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531-544.

Lu, P; Ye, L.; Zhao, Y.; Dai, B.; Pei, M.; Tang, Y. Review of meta-heuristic algorithms for wind power prediction: Methodologies,
applications and challenges. Appl. Energy 2021, 301, 117446.

Liu, X.; Sun, W,; Li, H.; Hussain, Z.; Liu, A. The method of rolling bearing fault diagnosis based on multi-domain supervised
learning of convolution neural network. Energies 2022, 15, 4614. [CrossRef]

Liu, B.; Cai, J.; Peng, Z. Rolling Bearing Fault Diagnosis Method Based on VMD-IMDE-PNN. Noise Vib. Control 2022, 42,
96-101+133.

Dehghani, M.; Hubalovsky, S.; Trojovsky, P. Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving
Optimization Problems. IEEE Access 2021, 9, 162059-162080.

Deng, L.; Liu, S. Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design.
Expert Syst. Appl. 2023, 225, 120069.

Pan, H.; He, X,; Tang, S.; Meng, F. An improved bearing fault diagnosis method using one-dimensional CNN and LSTM. Stroj.
Vestn.-]. Mech. Eng. 2018, 64, 443-452.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/su151813572
https://doi.org/10.3390/en15134614

	Introduction 
	Raw Wind Power Decomposition 
	VMD Decomposition 
	The NGO-VMD Model 
	Entropy of a Permutation 
	Northern Goshawk Optimization Algorithm 

	NGO-Optimized VMD 

	Short-Term Wind Power Forecasting Model Based on NGO-VMD-ISAO-LSTM 
	Snow Ablation Optimizer 
	Improved Snow Abatement Optimizer 
	Long- and Short-Term Memory Networks 
	ISAO-Optimized LSTM 
	NGO-VMD-ISAO-LSTM Combined Prediction Model Building 
	Evaluation Indicators 

	Simulation Analysis 
	Analysis of Single LSTM Model Prediction Results 
	Analysis of VMD-SAO-LSTM Model Prediction Results 
	Analysis of the Prediction Results of the NGO-VMD-SAO-LSTM Model 

	Conclusions 
	References

