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Abstract

This study presents advanced control and energy management strategies for uncertain
wind energy systems using a Takagi-Sugeno (1-S) fuzzy modeling framework. To address
key challenges, such as system uncertainties, external disturbances, and input delays, the
study integrates a fuzzy Hoo robust control approach with a neural network-based delay
compensation mechanism. A fuzzy observer-based Heo tracking controller is developed to
enhance robustness and minimize the impact of disturbances. The stability conditions are
rigorously derived using a quadratic Lyapunov function, Hoeo performance criteria, and
Young’s inequality and are expressed as Linear Matrix Inequalities (LMIs) for computational
efficiency. In parallel, a neural network-based controller is employed to compensate for the
input delays introduced by online learning processes. Furthermore, an energy management
layer is incorporated to regulate the power flow and optimize energy utilization under
varying operating conditions. The proposed framework effectively combines control and
energy coordination to improve the systems’ performance. The simulation results confirm
the effectiveness of the proposed strategies, demonstrating enhanced stability, robustness,
delay tolerance, and energy efficiency in wind energy systems.

Keywords: wind energy systems; management energy system; Hoo control; neural net-
works; delayed-input compensation; fuzzy observer; Takagi-Sugeno model; robust control;
Linear Matrix Inequalities (LMIs); tracking control; PDC strategy

1. Introduction

Wind energy technology has rapidly advanced over the last few decades, emerging
as one of the most competitive and cost-effective sources of renewable energy globally.
Wind turbine systems, which consist of turbines, driving shafts, and double-fed induction
machines, are essential for efficiently converting wind energy into electricity [1]. The
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primary objective of controlling these systems is to maximize energy extraction while
minimizing operational stresses and disturbances. Due to the unpredictable and fluctuating
nature of wind, effective control strategies are crucial to ensuring optimal performance,
enhanced energy conversion efficiency, improved power quality, and system reliability.

In the context of wind turbine control, the Takagi-Sugeno (T-S) fuzzy model has
gained significant attention due to its ability to handle complex nonlinear systems with
uncertain parameters. This approach utilizes if-then rules and membership functions to
create a piece-wise linear approximation of a nonlinear system, providing a flexible and
efficient solution for wind turbine control [2]. The T-S fuzzy model has proven effective in
addressing uncertainties in dynamic systems, making it highly suitable for wind turbine
applications. For a detailed understanding of T-S fuzzy modeling, the work of Tanaka and
Wang can be referenced [3].

A key challenge in wind turbine control is the need for robust tracking control to
minimize errors between the desired reference trajectories and the actual system outputs
while ensuring stability under external disturbances [4]. Despite the substantial body of
research on stability conditions for T-S fuzzy models, few studies have directly addressed
the tracking problem. The challenge lies in reducing the tracking error between the desired
reference trajectories and the actual system outputs while maintaining system stability in
the presence of disturbances [5]. This paper aims to address the tracking control problem
by proposing a fuzzy observer-based tracking control law that guarantees the asymptotic
tracking of reference signals, ensuring system stability under various external disturbances,
such as wind speed fluctuations [6]. A unique aspect of this study is the integration of
neural networks into the T-S fuzzy approach to manage disturbances and uncertainties
in the wind energy system [6]. Neural networks offer an intelligent approach to online
learning and adaptive control, providing the flexibility to estimate and compensate for
system uncertainties [7]. However, a significant challenge when incorporating neural
networks into control systems is the delay introduced by the online learning process. This
delay must be accounted for to ensure the systems’ stability and performance [8].

To address this issue, this work develops new stabilization conditions for delayed-
input systems, ensuring both robustness and performance, despite the delay. These stabi-
lization conditions are derived using a Lyapunov function and combined with Heo tracking
criteria to guarantee system stability and performance in the presence of disturbances,
such as variations in wind speed [9]. The proposed methodology is formulated as a Linear
Matrix Inequality (LMI) problem, which can be efficiently solved using convex optimiza-
tion techniques [10]. This approach ensures the robustness of the control system while
minimizing the tracking errors caused by disturbances, improving the overall performance
of the wind turbine systems [11,12]. In addition to the control strategies, this study pro-
poses an energy management strategy for wind energy systems, particularly addressing
the intermittent nature of wind power. The proposed strategy aims to optimize the energy
output while ensuring the safety and reliability of the wind turbine system. The strategy
integrates fuzzy control techniques for maximum power extraction from the wind system,
while battery storage is used to supply energy when the wind system cannot meet the
energy demand. The energy management system also includes a backup battery and
a diesel generator to protect the battery from overcharging and deep discharging, thus
extending its lifespan [13,14]. To model and simulate the energy management strategy;,
the Stateflow approach in MATLAB/Simulink is used, providing a graphical interface for
interactions with the models and simulations. This tool allows for testing various load
scenarios and demonstrating the behavior of the management algorithm under different
operating conditions.
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The proposed integrated control and energy management strategies provide significant
improvements in the stability, robustness, energy efficiency, and tracking performance of
wind energy systems, contributing to the growth and sustainability of wind energy as a
clean and reliable renewable energy source [15].

The paper is organized as follows: Section 2 introduces the T-S fuzzy model for wind
turbine systems with external disturbances and tracking control criteria. Section 3 discusses
the design of the neural network-based fuzzy observer and tracking control law. Section 4
presents the development of sufficient conditions for stabilization, utilizing Lyapunov
functions. Section 5 focuses on energy management strategies, including the optimization
of energy extraction, battery storage management, and protection mechanisms. Section 6
demonstrates the effectiveness of the proposed approach through simulation results, while
Section 7 concludes the paper.

2. Problem Formulation
2.1. T-S Fuzzy Model

Let us consider the T-S fuzzy system with uncertainties parameters. The if-then rule
is described as follows:

Plant rule:

If 71 (t) is Nj and ... and zp(t) is Njp,
then { X(t) = (Ai+ AADX(E) + (B + AByu(t) + Bab(t M
y(t) = Cix(t)

where Nj; is a fuzzy set, x(t) € R" is the system state vector, u(t) € R™ is the control
input vector, ¢(t) € R is the disturbance input vector, y(t) € R? is the system output,
A;, B, C; are known constant matrices that describe the nominal system, and z;(t) =
[z1(t), z2(F), ooone. ,Zp(t)] are the premise variables. The Lebesgue measurable uncertainties
are defined as AA;(t) = H;F;(t)E,;, AB;(t) = H,F;(t)Ey;, where matrices H;, E;;, and Ey; are
constants of appropriate dimensions, and F(t) is an unknown matrix function, which is
bounded by F! (t)F;(t) < L.

Given a pair of (x(t),u(t)), the final outputs of the fuzzy systems are inferred as
follows:

Li1 Hi(2(8))[(Ai + AAi(1))x(¢) + (Bi + ABi(t))u(t) + Baicw(t)]
Yioy Hi(2(1))

x(t) =

where p; = [T Njjz(t) and h;(z(t)) = %
The defuzzification process of the TSlifuzzy model (1) with uncertainties parameters

can be represented as follows:

{ x(E) = Y0 hi(2(5)[(Ai + AA;(£)x(t) + (B; + ABi(£))u(t) + Baigp(1)]
y(t) = Yi_q hi(z(t))Cix(t) )

2.2. Wind System

In this study, the wind energy conversion system (WECS) comprises a wind turbine
connected to an electrical generator via a drive train. Due to fluctuations in wind speed
caused by climatic variations, the natural rotational speed of the turbine is often insufficient
for optimal energy production. To address this, a mechanical speed multiplier represented
as a gain factor, is introduced between the turbine and the generator. This component helps
the system operate near its optimal rotational speed [16,17]. Additionally, to ensure the tur-
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bine consistently functions at the maximum power point, a control system is implemented,
as illustrated in Figure 1.

Wind Tm Te

Seed ind Turbine # Mass Drive Train I Generator Model

v
=
Model - and I‘HL.ltipliEr - q

w, w,
E Teres Te

Breg

Pich angle (I Control System

Figure 1. Control strategy of wind energy conversion system [18].

Power System

To illustrate the proposed fuzzy robust tracking control condition, a control problem
of a wind generator is considered.

T
By defining the state vector as x(t) = [95 Qr Qg [3} and the control signal as

u = [Bg, QZ]T/
the reference state vector to track can be defined as
T
xr(t> = [ers Qyy Qgr ,Br}

and the fuzzy model of the WECS can be described as

x(t) = A(z)x(t) + Bu(t) + BV (¥) 3)
y(t) = Cx(t)
where
0 1 -1 0
& _& & Trﬁ(ZO)
Az) = Kl Bj (B£’+Bg) g
Jg Jg Jg )
0 0 0 -7
0 O 0
0 0 Trv](zl))
B = = r
0 B2 0
. B
z 0 0

C=1[0 0 1 0

where 05 denotes the torsion angle, (2, is the angular velocity of the rotor, (2, is the angular
velocity of the generator, Kj is the stiffness of the transmission, Bs is the damping of the
transmission, and ], and ], are the inertia of the rotor and the generator, respectively.

T, is the aerodynamic torque. B and B; are the actual and desired pitch angles,
respectively.

2.3. T-S Fuzzy Representation

The wind generator system is then described by the following four if-then rules:
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If B is F}, and V is F}, then

x = A1x + Byu + By ¢
y=Cx

If B is F}, and V is F3, then

x = Apxx + Bou + B¢
y=Cx

If B is F2, and V is le, then

x = Asx + Bsu + B¢
y=Cx

If B is F2, and V is Fzz, then

X = Agx + Bgu + B¢
y=Cx

2.4. Observer Design

In this study, we address the scenario where the state variables required for feedback
control are unavailable due to an unmeasurable premise variable. To tackle this, a T-
S observer is proposed to estimate the states of the T-S nonlinear system described in
Equation (2).

(1) = Ty AsR(0) + Bault) + Gily(6) — 9(0) "
9(t) = Liz GiE(1)
where G;(i = 1,....,r) are the observers’ gains to be determined, and £(t) is the state

estimation.
Let us define the state estimation error, e, (t), as follows:

ex(t) = x(t) — £(1)ex(t) = x(t) — (t) )

2.5. Tracking Criteria

To deal with the tracking problem for the T-S fuzzy system, we consider the following
reference model:
xr(t) = Ar(8)xr(t) +1(t) (6)

x;(t) is the reference state;
A,(t) is a specified asymptotically stable matrix;
r(t) is a bounded reference input.

Then the objective is to design a T-S fuzzy model-based controller, which stabilizes the
fuzzy system (2) and achieves the H, tracking performance related to the tracking error,
er(t), as follows:

by ¥ 1=
| et Qe ae) < v [T 5 (g()a( )

where f¢ denotes the final time, Q is a positive definite weighting matrix, and 7 is a
specified attenuation level.
The tracking error is defined by

er(t) = x(t) — x(t)er(t) = x(t) — x,(t) ®)
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2.6. Tracking Control

Suppose the following fuzzy controller is employed to deal with the above control
system design, then the control structure is chosen as a PDC law:

u(t) = =Y iy hi(z(8))ki(xe () — 2(1)) ©)

where k; represents the gain matrices with appropriate dimensions.

Let us consider the estimation error ey (t) = x(t) — £(¢) and the tracking error state
reference e, (f) = x(t) — x,(t).

Some easy manipulations lead to the following augmented system:

=Y ik i(2(6) (A () xa(t) + Sp(t)) (10)

where
-1 B21
_ r(t) |—=
t) = S(t) =
B Aj + AA;(t) + Bikj + AB;(t)k; Bi(t)k; A — A+ AA(1)
Ajj(t) = AA;(t) + AB;(t)k; A — A i(Hk; AA;(t)
0 Ay
Hence, the tracking criteria Hoo (6) with the augmented vector x,(t) can be modified
as follows:
tf tf
| OQun(a) < v? [ 73 (1and() )
with

Qo = (Q,0,0,0) and " ()@ (t) = rT ()r(t) + T ()p(1)

3. Neural Network Representation

To eliminate errors and uncertainties arising from modeling, the neural network
approach is employed to minimize the error between the nominal system output and the
actual system output. The unknown term, estimated by the neural networks, is added to
the nominal system to make it more representative of reality [19,20].

erN = ¥, (t) — y(t) (12)

where y(t) is the output of the nominal system.

¥Ve(t) = ya(t) + &(x, w)

The neural network considered is a multi-layer perceptron (MLP), a type of predictive
network. Figure 1 illustrates the proposed neural network architecture, with the output
variable calculated using the following equation:

w) = Yo, (wioe(Y iy wix;)) (13)

In this study, a neural network—specifically a multi-layer perceptron (MLP)—is em-
ployed as an intelligent estimation and compensation mechanism to address input delays
and modeling uncertainties within the wind energy system. The main objective is not to di-
rectly control the system but to enhance the accuracy of the control strategy by minimizing
the mismatch between the nominal system output and the actual system behavior.
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The neural network estimates unknown nonlinearities or uncertainties that are not
captured by the nominal Takagi-Sugeno fuzzy model. These unknown components may
stem from unmodeled dynamics, time-varying disturbances, or approximation errors. By
learning these deviations in real-time, the neural network produces an adaptive corrective
signal, which is then integrated back into the control input to compensate for delays and
improve the tracking accuracy.

Equation (12) reflects the error between the nominal and the actual system outputs;
the neural network works to minimize this error using a gradient descent-based online
learning algorithm. The learning updates are computed iteratively to ensure the neural
network adapts to changing system conditions.

The structure of the MLP is shown in Figure 2, where

e  The input layer receives measured system variables.

e The hidden layer processes the input using a tanh activation function, offering
nonlinearity.

e The output layer generates the estimated compensation signal.

The weights between the layers are continuously updated to optimize performance
during real-time operation. This adaptive learning ensures that the neural network main-
tains an accurate model of the delay-induced uncertainty, even under varying operating
conditions or in the presence of non-Gaussian disturbances.

By embedding this learned compensation term into the control framework, the overall
system gains improved robustness, delay tolerance, and dynamic performance, without
requiring an exact analytical model of the uncertainties or delays. The neural network
thus plays a supporting, but crucial, role in ensuring the robustness and adaptability of the
overall control scheme [21].

Wk

.._.’:t.\'. W)

=
a
1

a )
Figure 2. The neural network’s architecture [22].

Where something is the activation function, considered as a hyperbolic tangent func-
tion (tanh), N and n are, respectively, the number of hidden layer nodes and the number
of network inputs. In addition, something and something are, respectively, the weights
between the hidden layer and the output layer and the weights between the hidden layer
and that of the input network.

The network weights are adjusted during the online implementation. The method
used is based on the gradient descent method (GD). The essence of the GD method consists
of iteratively adjusting the weights in the direction opposite to the gradient of E, so as to
reduce the discrepancy according to the following:

dw 9 10,
Tl e _nkiﬁ(eRN) (14)
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The Delayed PDC Control

The most widely used control strategy for stabilizing nonlinear systems represented
by T-S models is the Parallel Distributed Compensation (PDC) control approach [23]. The
control law employed in this method is similar to that of a standard PDC controller [24],
with the key difference being that it depends on the delayed state of the system. It is
expressed as follows:

u(t) = =Y hi(z(t—t(t))kx(t — (t)) (15)

4. Robust Control with a Delayed Input

In this section, we address the problem of control with a delayed input. First, let us
consider the system (2). The system, along with its control law, can be rewritten in the
following form:

x(t) = Yoy D hi(z(0)hy(z(t — (1) [Ax(t) — Bikjx(t — (1)) + Bxud(t)]  (16)

{ x(t) = Yiog X hi(2() )by (2(t — (b)) [Aix(t) — Bikjx(t — ©(t)) + B2i3(t)]
e(t) = Ximy Xj—1 hiz(H)hj(2(1) [(Ai—LjCi)e(t) + B2id(t)]

Theorem 1. For the two given scalars, v > 0 and T > 0, the system is asymptotically stable if
there exist positive, definite, symmetric matrices, X > 0, Q >0, S > 0, R > 0, and appropriately
dimensioned matrices, Mj(i = 1,2,3), Y;(j = 1,2,.r), Lj(j = 1,2,..r), such that the following
LMI condition is satisfied.

Qu 0 0 Qu 0 O 0

X By X
x (o 0 0 0 0 0 0 0
* * 033 0 0 0 0 0 SBZi
(—) REE x QO To-T] Mz-M] T3-T] 0 0 0
i=l % x % o« —Q-T-T! 0 -T3-T¢ 0 o |~
* * * * * Qg 0 0 0
* * * * * * Qyy 0 0
* * * * * * * —Q -z 0
| * * * * * * * * —v21

5. Energy Management Algorithm

The algorithm presented in Figure 3 outlines the energy management system we
implemented using the Stateflow tool. This system is designed to handle various oper-
ational scenarios that may arise. The wind energy management strategy proposed here
effectively manages both the wind power input and energy storage, ensuring the battery is
safeguarded against excessive discharge and overcharging.

The control logic relies on three key input parameters:

Pwind: The available wind power.

Pload: The power demand from the load.

SOC (state of charge): The battery charge level, where the SOC is constrained be-
tween a minimum of 20% (to prevent deep discharging) and a maximum of 80% (to avoid
overcharging).
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Case 5

Connection
PLoad with Diesel
Generator
(S4)

Pwind = Pload

Measure
Pwind, Pload

SOC min <SOC <SOC max

SOC =SOC max

Pwind = Pload

Yes

Case 2

Case 4 Case 3 Case 1

Connection
Battery with Load
and Pwind with

Connection Pwind|
with Load and

Connection Pwind
with Load and

Connection
Battery with Load

P Batte
et O Battery_backup (S1=s2) (S1+83)
(S1+52+83)

Return <

Figure 3. The management energy algorithm of the wind system [25].

The system accounts for five distinct operating scenarios:

Case 1:

When the battery’s state of charge (SOC) is within the safe range (20-80%), and the
wind power output exceeds the load demand, the wind energy is sufficient to meet the
load requirements and simultaneously recharge the battery.

Case 2:

If the SOC remains between 20% and 80%, but the wind power is lower than the load
demand, the available wind energy is inadequate. In this situation, the battery compensates
for the energy shortfall to ensure the load is fully supplied.

Case 3:

To prevent overcharging, once the SOC reaches the upper threshold of 80%, the system
redirects the wind power to a backup battery. Meanwhile, the load remains connected to
the primary battery.

Case 4:

When the battery is deeply discharged (SOC falls below 20%), and the wind power
exceeds the load demand, the wind source supplies sufficient energy to power the load and
begin recharging the battery.

Case 5:

If the SOC drops below 20%, and the wind source cannot provide enough power for
the load, the available wind energy becomes insufficient. In this scenario, both the load
and the battery are powered by a diesel generator.

5.1. Model of Battery

A dynamic battery model was implemented in MATLAB/Simulink. This generic
model, detailed in [24], is based on a lead-acid battery and described by the equations
provided in [25]. The model parameters were derived from the battery’s discharge charac-
teristics, with the same values assumed for the charging process.
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5.2. Diesel Generator Model

Figure 4 illustrates the energy management architecture of the wind-based power
system. This setup integrates several components: the wind energy source, battery storage,
electrical loads, a backup battery, and a diesel generator. The system also includes four
switches (51, S2, S3, and S4), which regulate the connections between the energy sources
and the various subsystems, such as the battery and the load. All the components are
coordinated through an energy management system. The core objective of this system is
to implement a control algorithm using the Stateflow tool (Matlab/Simulink, MATLAB
R2010a), enabling the efficient handling of operational constraints and dynamic decision-
making within the hybrid energy setup.

‘ ,goad \
>| wind
Load i —
J l Pwind
Batt
s e
o bat_char >
SocC
r s2 S1

Battery ! u' M = bat_dis char

bat_backup
Battery backup sS4 P S3
P_DG DG
- S4 Scope
o /

Diesel Generator Management Of Wind System

Figure 4. The wind energy management model in Matlab /Simulink [25].

The model comprises the following:

P_DG: The power supplied by the diesel generator.
P_BACKUP: The power supplied by the battery backup.

Stateflow variables:
System inputs

Pload: The load power requested.
Pwind: The power supplied by the wind.
SOC: The state of charge of a battery.

System outputs

Wind: The On/Off relay of the wind.

Battery: The On/Off relay of the battery.

bat_char: The On/Off relay of the charge.
bat_dischar: The On/Off relay of the discharge.
bat_backup: The On/Off relay of the battery backup.
DG: The On/Off relay of the diesel generator.

In standalone renewable energy systems, such as wind-based installations, incorpo-
rating energy storage or integrating one or more diesel generators is often essential to
ensure reliability.

A typical diesel generator system consists of two primary components: a diesel engine
and a synchronous generator. The diesel engine supplies the mechanical power needed to
drive the generator while maintaining a constant rotational speed (w) to ensure a stable
output frequency. Electrical power is produced by the synchronous generator, and the
output voltage is regulated by an excitation system to remain within its nominal range.
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The dynamic behavior of the diesel engine is modeled using control system transfer
functions, which also include the actuator’s response characteristics, as described in [26].

Tzs+1
H. =K. ~ 17
¢ TiTos? + Tys + 1 17
Tys+1
H, = s (18)

(14 T5.5).(1+ Tgs).s
where H. represents the transfer function of the governor’s control system, while H,
is the transfer function for the actuator. T1, T2, and T3 are the time constants of the
regulator. T4, T5, and T6 are the time constants of the actuator, and K is the regulator gain;
Figure 5 illustrates the diesel generator system, as implemented in MATLAB/Simulink.
This model includes the diesel engine, the governor system, the synchronous generator, and
its excitation system, which together determine the dynamic response and power output of
the generator.

wref(pu)

Diesel Engine
Governor

Id Ig

SM
15kVA _
A Cumrent Meas urement
+ 'J
" ° E
v
c Scope
Three-Phase
Progrsmmable
Voltage Scurce

L=
Viref (pu) > m

1 wvref ACLA Volage Messurement

~ ~ I
|=Hﬁl sqrt(u(1)~2 + u(2)~2) F—= vt

sart(u(1)~2 + u(2)~2) I—» It erdl

1fd

=

Ifd

=1 not irmplementead

| Vstab
EXCITATION

Figure 5. Model of diesel generator [25].

6. Example and Simulation

To illustrate the proposed fuzzy robust tracking control condition, a control problem
of a wind generator is considered.

T
By defining the state vector as x(t) = [05 Qy Qg ‘8} and the control signal as
u= [,Bdr QZ]T/
the reference state vector to track can be defined as
T
x”(t) = [ers (@ Qgr ﬁr}
and the fuzzy model of the WECS can be described as

x(t) = A(z)x(t) + Bu(t) + BV (¢t) (19)
y(t) t
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where
0 1 -1 0
_Ks B B T,p(20)
A = | g e
o 2s : 0
Jg 3 Jg .
0 0 0 -z
0 0 0
0 0 Tro(20)
B = Bg Bz = r
0 32|
z 0 0

c=1[o o 1 0

where 0s denotes the torsion angle, (2, is the angular velocity of the rotor, (2, is the angular
velocity of the generator, Kj is the stiffness of the transmission, Bs is the damping of the
transmission, and ], and ], are the inertia of the rotor and the generator, respectively.

T; is the aerodynamic torque. B and f; are the actual and the desired pitch angles,
respectively.

T-S Fuzzy Modeling

The wind generator system is then described by the following four if-then rules:
If Bis F!, and V is le, then

x = A1x + Bju + By ¢
y=Cx

If B is F}, and V is F3, then

X = Arx + Bou + B22(P
y=Cx

If B is F2, and V is F}, then

x = Aszx + Bzu + Bps¢p
y=Cx

If Bis Flz, and Vis PZZ, then

x = A4x—|— B4u + B244)
y==Cx

In order to obtain the best performance from this nonlinear system (16), the following
T-S fuzzy model is given:

{ (1) = Sy ((0) (A + A4 ()x(8) + (B + AB(D)u(t) + Bap(0] )
y(t) = Ty (=(1)Cix(t)

The parameter uncertainties, AA;(t), AB;(t), represent the impossibility of an exact
mathematical model of a dynamic system due to the system complexity. If the wind
generator is a complex system, then the presence of uncertainties is possible.
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Where
¢(t) = V(Hhi(z) = FL(B)R(V),
ha(z) = FH(B)F5(V)
h3(z) = FE(B)E (V),
hy(z) = FE(B)E3 (V) hi(z) = F{ (B)E;(V),
ha(z) = F{ (B)EZ (V)
h3(z) = F(B)E(V),
ha(z) = FF(B)F3(V)
[0 1 -1 0
_ K _Bs Bs Trp1
Ay = gj BJ (Bo+By) g
Jg Jg Jg
R R -
[0 1 -1 0]
_K  _Bs Bs Trp
Az = KJ Bj _ (Bs+By) g
Is Js Js
0 0 0 —1]
Ay = A1, Ay = A3
0 0 0
Trvl Ter

= O O O

Numerical value:

C:[o 01 0}
B—B,=B,—Bs—B,

C=C=C=CG=0C

Ks = 1.566 % 10° N/m, T = 100 ms

Bs = 3029.5 Nms/rad, B¢ = 15.993 Nms/rad

J = 830000 Kg.m?, J; = 5.9 Kg.m?
Typ1 = 723980, T,5p = 376070
Trp1 = 106440, T,p = 85370

The control objective we aimed to attain was the best tracking of the rated power while

regulating the rotor speed.

We considered a network-based T-S fuzzy system for output tracking control, and we
showed the effectiveness of the proposed method by performing output tracking control
simulations for the T-S fuzzy system.

The simulation results of the wind system control method and energy system manage-
ment are presented in this section.
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In solving the LMI problem stated in Theorem 1, we obtained the results in terms of
gains; it is clear that the proposed approach gives better results.

ki = 1.0e+04x

[ 0.0000 0.0000 —0.0000 —0.0000
5.8638 0.0112 —0.0112 0.0015

ky = 1.0e+ 04 «

[ 0.0000 0.0000 —0.0000 —0.0000

5.8638 0.0112 —0.0112 0.0015

ks = 1.0e+ 04 x )

[ 0.0000 0.0000 —0.0000 —0.0000
5.8638 0.0112 —0.0112 0.0015

ky= 1.0e+ 04 «

[ 0.0000 0.0000 —0.0000 —0.0000
5.8638 0.0112 —0.0112 0.0015

[ 0.0120 0.0120
0.0008 0.0008
L = Ly, =
0.1804 0.1804
| 0.0000 0.0000
[ 0.0120 0.0120
0.0008 0.0008
Ly = Ly =
0.1804 0.1804
| 0.0000 0.0000

The simulation results of the LMI problem show that the attenuation level is 0.3442, so
we can deduce that the designed T-S fuzzy controller ensures a good tracking performance
and can guarantee stability.

For the simulation, we considered the wind speed input profile (11 m/s <V <29 m/s),
as given in Figure 6.
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Figure 6. The profile of the wind input speed [24].
The Figure 7 above illustrates the rotor speed tracking performance.
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Figure 7. Rotor speed (rd/s) with Hoo observer, based on [24].
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The Figure 7 above illustrates the rotor speed tracking performance. It is evident
that the actual speed closely follows the reference trajectory, even under varying wind
speed conditions. This indicates that the implemented Takagi-Sugeno (T-S) fuzzy controller
provides effective and accurate tracking. The next Figure 8 displays the corresponding
membership functions used in the controller design.

=20 <O [S]e]

Figure 8. Membership function [24].

7. Conclusions

In this study, a sufficient condition for the robust stabilization of uncertain, nonlinear
wind turbine systems subject to external disturbances and input delays was proposed.
Building upon previous research, the proposed framework integrates advanced control
strategies using Takagi-Sugeno (T-S) fuzzy modeling to effectively handle system uncer-
tainties and delay effects. A robust fuzzy observer-based tracking controller was designed
to minimize tracking errors and mitigate the impact of disturbances. The control design was
formulated using a quasi-Linear Matrix Inequality (LMI) approach, enabling its practical
implementation and scalability. Additionally, a delayed-state feedback control law based
on Parallel Distributed Compensation (PDC) was developed, supported by an observer, to
ensure the system’s stability. The stability conditions were rigorously established using
a quadratic Lyapunov function and expressed as LMIs, allowing for computational effi-
ciency in the controller’s synthesis. The simulation results demonstrate that the proposed
method successfully stabilizes the wind energy system, enhancing its robustness, delay
tolerance, and control accuracy in the presence of external disturbances. Overall, this study
contributes to a unified and effective control strategy for the reliable operation of wind
turbine systems under real-world uncertainties.
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