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Abstract: Reliable visual monitoring is essential for industrial quality control systems
under adverse weather conditions. Rain-induced degradation, such as occlusions, texture
blurring, and depth distortions, can significantly hinder image clarity and compromise
precision in surface defect detection. To address this, we propose a novel image deraining
framework, the Degradation-Background Perception Network (DBPNet). DBPNet features
a hierarchical encoder–decoder structure and incorporates two core modules: the Frequency
Degradation Perception Module (FDPM) and the Depth Background Perception Module
(DBPM). FDPM focuses on frequency decomposition to remove high-frequency rain streaks
while retaining critical image features using cross-attention mechanisms. DBPM is proposed
to integrate robust depth maps, which remain unaffected by rain degradation, as explicit
constraints to guide the model in reconstructing clean scenes. Furthermore, we propose the
Selective Focus Attention (SFA) module, which enhances interactions between frequency-
domain features and background priors, ensuring accurate reconstruction and effective
rain removal. Experimental results on five synthetic and real-world benchmark datasets
demonstrate that our method outperforms state-of-the-art CNN and transformer-based
approaches. This framework contributes to more robust visual input for process control,
enabling better fault detection, predictive maintenance, and sustainable system operation.

Keywords: single image deraining; frequency domain; depth feature

1. Introduction
Image deraining is a critical research topic in the field of image restoration, aimed

at recovering clean and rain-free images from degraded observations captured in rainy
weather conditions. The interference caused by rain can significantly hinder the perfor-
mance of various downstream tasks, such as object detection [1], autonomous driving
systems, and video surveillance [2]. In safety-critical applications like self-driving cars,
even minor rain-induced artifacts can distort traffic sign recognition or obstacle detec-
tion, potentially leading to catastrophic consequences. Rain-related degradation typically
manifests in two primary forms: rain streaks, which are the elongated patterns caused by
falling raindrops, and rain haze, resulting from the scattering effect of rain droplets on
light, particularly in heavy rain or distant scenes. These degradations exhibit complex
spatial-frequency characteristics: while rain streaks predominantly occupy high-frequency
bands due to their sharp edges, rain haze introduces low-frequency global illumination
shifts that obscure structural details.

The development of image deraining techniques has undergone significant evolution
over the past decades. Early approaches primarily relied on traditional image processing

Processes 2025, 13, 1628 https://doi.org/10.3390/pr13061628

https://doi.org/10.3390/pr13061628
https://doi.org/10.3390/pr13061628
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr13061628
https://www.mdpi.com/article/10.3390/pr13061628?type=check_update&version=1


Processes 2025, 13, 1628 2 of 21

techniques, such as filtering [3], low-rank modeling [4], and sparse coding [5]. For instance,
Gaussian mixture models [6] were employed to separate rain layers by leveraging chro-
matic consistency assumptions, while dictionary learning methods [7] attempted to model
rain streaks as sparse outliers. These methods focused on utilizing handcrafted features to
model rain streak patterns and their removal but were often limited in handling diverse
rain scenarios and complex background textures [8]. Their reliance on simplistic priors
frequently led to over-smoothing of textures or incomplete rain removal when confronted
with overlapping rain layers or non-Gaussian noise distributions. With the advent of deep
learning, the field witnessed a paradigm shift. Convolutional neural networks (CNNs)
became the backbone of modern deraining frameworks, leveraging their powerful feature
extraction capabilities to address the intricate spatial structures of rain streaks. Recent
architectures like SwinDerain [9] have further incorporated transformer-based mecha-
nisms to capture long-range dependencies critical for distinguishing rain patterns from
similar-looking background edges. Subsequently, advanced architectures, such as attention
mechanisms [10], generative adversarial networks (GANs) [11], and multi-scale learning
models [12,13], further enhanced deraining performance by focusing on spatial and contex-
tual dependencies. Notably, progressive learning frameworks have demonstrated success
in handling heavy rain by iteratively removing rain streaks and haze through cascaded
subnetworks. Despite remarkable progress, challenges remain in achieving robust perfor-
mance across varying rain intensities, textures, and complex scenes. Current methods often
struggle with three key issues: (1) simultaneous handling of spatially varying rain streaks
and global haze effects, (2) preservation of high-frequency textures in occluded regions,
and (3) generalization to real-world rain patterns that deviate from synthetic training
data distributions.

Recent studies [8,14,15] have explored the use of frequency-domain approaches for
image deraining. These methods leverage frequency transformations like Fourier and
Wavelet transforms to isolate and process features from various frequency bands, address-
ing both global and local degradation patterns effectively. The frequency domain’s inherent
separation capability allows explicit modeling of rain components: high-frequency bands
capture rain streak details while low-frequency components contain haze-induced illumi-
nation shifts. For example, Fu et al. [14] proposed a Differential Dependency Network
(DDN) that decomposes a rainy image into low-frequency background and high-frequency
details. The network focuses on high-frequency components, utilizing residual blocks for
its architecture. By learning nonlinear mappings through a CNN, DDN effectively removes
rain streaks from the high-frequency components, thereby predicting both the rain residuals
and the clean image. In a similar vein, Zhang et al. [8] proposed the Density-aware Image
De-raining method using a Multistream Dense Network (DID-MDN), which overcomes the
limitations of previous methods that struggled with varying rain densities and sizes. DID-
MDN incorporates a rain density estimation into the network, enabling it to remove rain
streaks effectively across diverse conditions. FreqMamba [15] combines frequency-based
techniques with state-space modeling, which employs a multi-branch Frequency-State
Space Model (SSM) block that integrates Fourier spectrum modeling with local spatial
refinements. However, existing frequency methods often treat high- and low-frequency
components in isolation, neglecting their cross-band correlations that are crucial for recon-
structing edge-continuous structures. Moreover, a key limitation of image deraining is the
difficulty in separating rain from object edges and the background, as the rain often blends
with these elements, making it challenging to directly learn deraining information in the
image domain. This ambiguity is exacerbated in heavy rain scenarios where dense streaks
form complex occlusions while haze reduces contrast, creating a coupled degradation that
requires joint spatial-frequency reasoning.
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To address the challenges posed by rain degradation, we draw inspiration from re-
cent advances in multimodal learning and physics-aware vision systems. We propose the
Degradation-Background Perception Network (DBPNet), a novel framework designed
to effectively remove rain degradation by leveraging frequency-domain properties and
depth background priors. Our method addresses both low-frequency structural degrada-
tions and high-frequency detail disruptions, guided by background prompts to generate
high-quality, clean images. The proposed framework is centered around two key innova-
tions. First, we introduce a Frequency Degradation Perception Module (FDPM), which
explicitly decomposes image features into high-frequency and low-frequency components,
enabling targeted extraction of degradation features. The FDPM employs a cross-attention
mechanism to modulate and enhance interactions between frequency components, facili-
tating effective feature separation and refinement. Second, inspired by the robustness of
Depth-Anything [16] in handling extreme cases, we integrate background priors extracted
from Depth-Anything as guidance for background modeling, called the Depth Background
Perception Module (DBPM). These priors enable our framework to better understand and
reconstruct background details, even in challenging conditions. To further improve rain
removal and image reconstruction, we propose a Selective Focus Attention (SFA) mod-
ule, which enhances interactions between frequency-domain features and background
priors. The SFA module selectively emphasizes key frequency components and aligns
them with background features, ensuring more precise reconstructions and robust rain
removal. Extensive experiments on synthetic and real-world rain degradation datasets
demonstrate that DBPNet achieves state-of-the-art performance, especially excelling in
real-world benchmarks. Our contributions are summarized as follows:

• We propose the Degradation-Background Perception Network (DBPNet), a compre-
hensive framework that addresses rain degradation by leveraging frequency-domain
characteristics and depth-based background priors.

• The Frequency Degradation Perception Module (FDPM) is proposed to explicitly de-
compose image features into high- and low-frequency components, facilitating targeted
degradation modeling and feature refinement through a cross-attention mechanism.

• We design the Depth Background Perception Module (DBPM), which integrates depth
priors extracted from Depth-Anything to guide the reconstruction of background
details, showcasing the robustness of depth-aware background modeling in adverse
weather conditions.

• We propose the Selective Focus Attention (SFA) module, which aligns frequency-
domain features with depth priors, selectively emphasizing key features to achieve
more accurate rain removal and image reconstruction.

2. Related Work
2.1. Single Image Deraining

Single image deraining (SID) has become an important and challenging area within
emerging vision applications. The task aims to recover clean background content from
a rain-degraded image, which is crucial for downstream applications like autonomous
driving, video surveillance, and industrial monitoring. Over the years, numerous efforts
have been made to tackle this problem under both supervised and unsupervised settings.

With the advent of deep learning, convolutional neural networks (CNNs) became the
mainstream solution for SID due to their strong capability in learning spatial features and
non-linear mappings. Early works like DDN [14] designed residual architectures to directly
predict rain residuals, but faced limitations in handling diverse rain densities or separating
rain streaks from complex textures. Subsequent models adopted multi-stream, multi-scale,
or recurrent architectures to improve performance. For instance, RESCAN and PReNet
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introduced recurrent processing for progressive refinement, while MSPFN and MPRNet
employed multi-scale modules to aggregate global and local information. Transformer-
based methods such as Uformer [17], Restormer [18], and NeRD-Rain [19] have further
advanced this field by capturing long-range dependencies and modeling global context.
Despite these improvements, existing models still face challenges in maintaining high-
frequency details, generalizing to real-world rain patterns, and separating rain streaks
from visually similar structures. To address these limitations, recent research has explored
more refined strategies that incorporate additional priors, cross-domain learning, or new
optimization schemes. For example, Chen et al. [20] proposed an error-aware feedback
mechanism to detect residual degradation and adaptively refine features. Their approach
improves robustness in complex rain scenarios by explicitly modeling deraining errors.
Furthermore, DCD-GAN [21] introduces dual contrastive learning in an unpaired setting,
allowing the model to align content representations across different domains without
requiring paired supervision. This strategy has shown promising results for real-world
applications, where clean ground truth may be unavailable.

Recent advancements have further focused on improving derained image quality
by integrating diverse strategies such as feature fusion, attention mechanisms, frequency
enhancement, and patch-level recurrence modeling. These approaches aim to address the
inherent challenges of distinguishing rain streaks from background textures and preserving
fine details across complex scenes. For instance, MFFDNet [22] adopts a dual-channel
mixed fusion scheme that captures both local textures and global semantics, enabling
more comprehensive degradation modeling. Building on this idea, SEPC [23] introduces
a synergistic ensemble framework that leverages both single-scale and multi-scale fea-
tures, reinforced by contrastive learning to improve discrimination between rain and object
boundaries. Similarly, DPAFNet [24] enhances feature representation through dual-path
attention fusion, allowing more effective integration of multidimensional contextual in-
formation. Focusing on frequency-domain characteristics, Gabformer [25] incorporates
Gabor filters into transformer blocks to preserve high-frequency textures critical for visual
fidelity. In parallel, AFENet [26] adaptively adjusts frequency responses across scales
to enhance structural consistency in restored images. FADformer [27] further advances
frequency-aware modeling by combining spectral priors with transformer-based archi-
tectures, effectively bridging spatial and frequency representations. Beyond pixel-level
enhancement, structural recurrence has also been explored. MSGNN [28] exploits graph
neural networks to model both internal and external patch similarities, improving gener-
alization across varied rain patterns. Furthermore, insights from real-world benchmarks
are driving progress—Zhang et al. [29] summarized lessons from the GT-Rain Challenge,
encouraging a shift toward realistic degradation scenarios and cross-domain robustness.

Despite these advances, most existing approaches still rely heavily on spatial or fre-
quency cues alone, often overlooking the inherent coupling between rain artifacts and scene
semantics. In contrast, our proposed method integrates both frequency decomposition and
depth-aware priors to address these challenges jointly.

2.2. Frequency Domain in Image Restoration

According to the spectral convolution theorem, Fast Fourier Transform (FFT) serves
as an effective tool for modeling global information [30]. In this context, high-frequency
components capture image details and textures, while low-frequency components represent
smooth and flat regions. This separation makes it convenient to handle different frequency
sub-bands independently within the frequency domain. Leveraging these advantages,
several deep learning frameworks have been proposed for image restoration in the spectral
domain. For instance, Mao et al. [31] employed Fourier transforms to integrate both
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high- and low-frequency residuals for motion deblurring. Guo et al. [32] introduced a
window-based frequency channel attention mechanism based on FFT, which models global
information while maintaining model consistency across training and inference stages.
Li et al. [33] incorporated Fourier transforms into their model to enhance low-light images
by separately processing amplitude and phase. Additionally, FFT has been utilized in
designing loss functions aimed at preserving high-frequency details [13,34–36].

Moreover, wavelet transform has also been explored for image restoration tasks.
Chen et al. [37] proposed a hierarchical desnowing network using dual-tree complex
wavelet representation. Yang et al. [38] developed a wavelet-based U-Net to replace
traditional up-sampling and down-sampling operations. Zou et al. [39] employed wavelet-
transform-based modules to restore texture details. Yang et al. [40] designed a wavelet
structure similarity loss function to enhance training.

3. Proposed Methodology
We propose the Degradation-Background Perception Network (DBPNet), designed to

effectively extract structural information and texture details from degraded images and
generate high-quality, clean images under the guidance of background prompts. DBPNet
consists of two main components: the Frequency Degradation Perception Module (FDPM),
which captures rich structural and detail features in the frequency domain, and the Depth
Background Perception Module (DBPM), which leverages extracted background priors to
guide background modeling. Finally, to enhance the interaction between frequency-domain
features and background priors, we introduce the Selective Focus Attention (SFA) module,
which emphasizes key frequency components and aligns them with background features.

As shown in Figure 1, the proposed DBPNet adopts a classic encoder–decoder archi-
tecture to effectively learn hierarchical representations. The entire structure consists of
three scales of encoders and decoders, along with a latent layer. Both the encoders and
decoders are implemented using the Swin Transformer block [41]. Given a rain-degraded
image of size Xd ∈ RH×W×3, where H × W and C represent spatial dimensions and
channel count, respectively, shallow features of size Xd ∈ RH×W×C are extracted using a
3 × 3 convolution layer. In the encoder stage, the proposed FDPM is used to consciously
extract global structures and texture details in the frequency domain. In the latent layer,
the SFA module integrates deep background information unaffected by degradation into
the pipeline effectively. Finally, the decoder restores clean images across three different
scales. To achieve upsampling, we utilize an inverse pixel rearrangement strategy, which
redistributes channel-wise feature maps into higher-resolution spatial grids. This operation
is followed by convolutional refinement to recover fine structural details.

3.1. Frequency Degradation Perception Module

The frequency spectrum of natural images typically follows a power-law distribution,
where low-frequency components capture the overall structure and smooth regions of the
image, while high-frequency components represent edges, textures, and fine details. How-
ever, rain droplets or streaks tend to couple with the natural frequency characteristics of the
background, leading to the enhancement or attenuation of certain frequency components.
To address this, we propose a Frequency Degradation Perception Module (FDPM) that de-
couples different frequency characteristics, enhances or aligns key frequency components,
and effectively removes degradation effects while preserving essential image details.
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Figure 1. Overall architecture of the proposed Degradation-Background Perception Network (DBP-
Net). It adopts a hierarchical encoder–decoder structure with three core components: the Frequency
Degradation Perception Module (FDPM) for frequency-based rain removal, the Depth Background
Perception Module (DBPM) for depth-guided background modeling, and the Selective Focus At-
tention (SFA) module for aligning frequency-domain features with depth priors. Swin Transformer
blocks are used in the encoder and decoder paths to capture spatial and contextual dependencies.

As shown in Figure 1, for a given degraded feature Xs ∈ RH×W×C, we apply the Fast
Fourier Transform (FFT) to convert the spatial representation into the frequency-domain
representation X f ∈ RH×W×C. The transformation can be expressed as

X f (u, v, c) =
H−1

∑
x=0

W−1

∑
y=0

Xs(x, y, c) · e−j2π( ux
H +

vy
W ), (1)

where (u, v) denotes the frequency-domain coordinates, c represents the channel index,
and j is the imaginary unit.

To separate the high-frequency and low-frequency components of the data effectively,
we design frequency masks based on the spectral properties of the input. The center
of the frequency spectrum is identified by the coordinates ch and cw, where h and w
represent the height and width of the input tensor. Using these central coordinates, we
construct two masks: a low-frequency mask Mlow and a high-frequency mask Mhigh.

The size of the low-frequency region is determined by lowσ = min(ch ,cw)
m , and m is a

scaling hyperparameter (e.g., m = 4). This definition ensures that the low-frequency
mask encompasses approximately one-quarter of the smaller dimension of the spectrum,
effectively isolating the dominant low-frequency components. Studies have shown that
natural images follow a power-law spectral distribution, where the energy at frequency
f satisfies E( f ) ∝ 1/ f 2α, with α ∈ [1, 2]. Under this distribution, the cumulative energy
within a circular region of radius R (centered at the spectral origin) can be computed as

Energy ratio =

∫ R
0 f 1−2α d f∫ fmax

0 f 1−2α d f
=

(
R

fmax

)2−2α

(2)



Processes 2025, 13, 1628 7 of 21

For example, when α = 1.2, which is typical for natural images, the setting R = 1
4 fmax

yields Energy ratio ≈
(

1
4

)0.6
≈ 0.4. This means the low-frequency mask retains ap-

proximately 40% of the total spectral energy, effectively capturing global structures and
illumination patterns while discarding high-frequency rain artifacts.

The low-frequency mask Mlow is set to 1 for all points within the specified low-
frequency region around the spectral center and 0 elsewhere.

Mlow(u′, v′) =

1, if
√
(h′)2 + (w′) ≤ lowσ,

0, otherwise.
(3)

where h′ = u′ − centerh and w′ = v′ − center2
w. u′ and v′ represent the frequency-domain

coordinates. The high-frequency mask Mhigh is then defined as the complement of the
low-frequency mask 1 − Mlow. Then, we use these masks to extract low-/high-frequency
components from the input tensor X f :

Fl = X f ⊗ Mlow, Fh = X f ⊗ Mhigh (4)

Finally, we apply the inverse Fourier transform to obtain the decoupled and adaptive
frequency-domain features. Next, we use a cross-attention mechanism to highlight relevant
features and suppress redundant ones from the extracted adaptive frequency-domain
features. This process can be expressed as

Qh = Wh
q Xs, Kh = Wh

k Fh, Vh = Wh
v Fh, (5)

Ql = W l
qXs, Kl = W l

kFl , Vl = W l
vFl , (6)

CA(Qh, Kh, Vh) = softmax

(
QhKT

h√
dk

)
Vh, (7)

CA(Ql , Kl , Vl) = softmax

(
QlKT

l√
dk

)
Vl , (8)

where, Wh
q , Wh

k , Wh
v , W l

q, W l
k, W l

v ∈ RC×d are learnable linear projection matrices that trans-
form the input features into query, key, and value representations for the cross-attention
operations in both high- and low-frequency branches. CA is the cross-attention operation.
dk is the dimension of the key vector, and the softmax operation ensures that the atten-
tion weights are normalized. Subsequently, we input the corresponding features into a
feed-forward neural network to learn different inductive biases.

3.2. Depth Background Perception Module

In addition to the occlusion and blurring degradation caused by rain, adverse weather
conditions also lead to distortions related to depth. These distortions create artifacts in
areas with distant depth, further degrading the visual quality. Therefore, modeling scene
content becomes another crucial factor for improving performance. Inspired by scene
understanding [42,43], leveraging depth information has been shown to be an effective way
to represent clean scenes. We observe that depth maps estimated by methods like Depth-
Anything [16] remain largely unaffected by degradation, which partially demonstrates the
robustness of intermediate hidden features in scene representation, as shown in Figure 2.
Based on this insight, we propose a Depth Background Perception Module that applies an
explicit constraint to the latent spatial features, enabling the model to focus more effectively
on the background during image reconstruction.
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Rain Samples Depth-Anything 
Results

DINOv2 Depth-Anything 
Features

Figure 2. The motivation for using Depth-Anything [44] lies in its potential as a constraint condition.
Unlike the traditional pre-trained network DINOv2 [45], Depth-Anything demonstrates superior
resilience to degradation, with intermediate features exhibiting significantly enhanced robustness.

Building on this concept, the Depth Background Perception Module integrates depth
cues into the reconstruction process by explicitly distinguishing background information
from foreground elements. By leveraging the depth map’s stable representation, the
module enhances the model’s ability to preserve the background’s spatial coherence while
mitigating the impact of degradation artifacts in distant regions. The depth information
acts as a guide to refine the latent features, ensuring that background details are more
accurately reconstructed, even in challenging weather conditions. Furthermore, the depth-
guided constraint ensures that the reconstructed image retains natural depth relationships,
resulting in a more realistic and artifact-free restoration.

Selective Focus Attention. To enhance the interaction between frequency-domain
features and background priors, we introduce the Selective Focus Attention (SFA) mod-
ule, which leverages an attention mechanism to integrate latent features from the Depth-
Anything model, as shown in Figure 3.

Specifically, given the features Fs from the previous block and the latent features Fd

from the Depth-Anything model, we first apply a linear transformation to Fd and extract the
corresponding mean and maximum values to balance the feature distribution, allowing the
integration of depth-based information, enabling the model to focus on relevant features
while enhancing the background representation during the reconstruction process. We then
multiply Fs by the transformed Fd, which can be expressed as

Fdi = Linear(Fd) = WdFd + bd Fsi = C3(Fs) (9)

Fm
di = mean(Fdi) + max(Fdi) (10)

Fadjusted
d = Fm

di · Fsi (11)

where Linear denotes a fully connected layer applied to the depth-guided features Fd.
Wd ∈ RC×C and bd ∈ RC are learnable parameters. This projection aligns the depth features
with the spatial feature space in the channel dimension. The operator C3 refers to a standard
3 × 3 convolutional layer applied to the spatial features Fs The mean and maximum values
are used to normalize and balance the feature distribution.
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Figure 3. Pipeline of the proposed Selective Focus Attention (SFA) module. The SFA aligns frequency-
domain features (Fs) with depth-guided priors (Fd) extracted from Depth-Anything. The depth
features are enhanced via linear transformation, followed by mean-max fusion. A multi-scale cross-
attention mechanism then integrates the refined depth and frequency information to guide more
accurate background reconstruction.

Next, we define a cross-attention operation where the general features Fsi serve as
queries, while the keys and values are derived from the Depth-Anything features Fadjusted

d .
Notably, the Selective Focus Attention (SFA) module incorporates multi-scale information
for enhanced contextual understanding. To encode spatial positions, we use pointwise
convolutions and apply depthwise separable convolutions with varying kernel sizes (i = 1,
3, and 5) to obtain the queries Qi

s ∈ RC×HW , keys Ki
d ∈ RHW×C, and values Vi

d ∈ RC×HW

needed for self-attention. This process can be expressed as

Qs = ∑
i=0

Wi
QFsi, Kd = ∑

i=0
Wi

KFadjusted
d , Vd = ∑

i=0
Wi

V Fadjusted
d (12)

As = softmax(Qs ⊙ Kd)⊙ Vd (13)

where ⊙ denotes the dot-product operation. By using this attention-based mechanism,
the SFA module effectively leverages both the general features and the depth-guided
features to improve image reconstruction, enhancing the model’s ability to handle complex
degradations and preserve important scene details. The multi-scale attention further
contributes to capturing context from different spatial levels, ensuring that both fine-
grained details and global background structures are appropriately restored.

3.3. Loss Function

Following the multi-resolution training strategy in [36], we design a hierarchical
loss formulation that operates across three spatial scales to ensure comprehensive feature
learning and structural preservation. The composite loss function integrates complementary
constraints in both spatial and frequency domains, formulated as

Ltotal = ∑
s∈{1,0.5,0.25}

[
αLs

spectral + βLs
structural + γLs

textural

]
(14)

where α = 1.0, β = 0.5, and γ = 0.1 denote adaptive weighting coefficients optimized
through grid search on validation data. The multi-scale architecture processes images at
full-resolution (s = 1), half-resolution (s = 0.5), and quarter-resolution (s = 0.25), enabling
the network to learn both global contextual patterns and local texture details.
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Spectral Consistency Loss (Lspectral): The ℓ1-norm-based component ensures pixel-
level fidelity between derained results and ground truth:

Ls
spectral =

1
N

N

∑
i=1

∥Ys
i − Ŷs

i ∥1 (15)

This serves as the foundation for color consistency preservation.
Structural Perception Loss (Lstructural): We adopt a multi-window SSIM formulation

to enhance perceptual quality under misalignment scenarios:

Ls
structural = 1 − ∏

k∈{3,5,7}

[
SSIMk(Y

s, Ŷs)
]wk (16)

where wk denotes window-size dependent weights. Here, SSIM denotes the Structural Simi-
larity Index Measure, which evaluates the perceptual similarity between two image patches
by jointly considering luminance, contrast, and structural components. It is defined as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

where µx, µy are the local means, σ2
x , σ2

y the variances, and σxy the covariance between
predicted and ground truth patches. C1 and C2 are small constants to avoid instability.

In our formulation, we adopt a multi-window SSIM loss, where SSIM is computed
using sliding windows of sizes 3, 5, and 7, each weighted by window-dependent coeffi-
cients wk. This multi-scale strategy enhances sensitivity to both fine textures and larger
structural patterns.

Frequency Discriminative Loss (Ltextural): To address the spectral bias of conventional
losses, we implement a phase-aware Fourier constraint:

Ls
textural = ∑

c∈{real,imag}
∥Fc(Ys)−Fc(Ŷs)∥2

2 + λHS · Lhighpass (17)

where Ys
i ∈ RHs×Ws×3 are the ground truth clean image at spatial scale s ∈ {1, 0.5, 0.25},

i indexes the sample, and Hs, Ws denote the spatial resolution at scale s. Ŷs
i ∈ RHs×Ws×3

is the corresponding predicted image output by DBPNet at the same scale. Fc extracts
real/imaginary components, and Lhighpass penalizes deviations in high-frequency bands
using Butterworth filtering. This dual-domain formulation bridges the gap between spatial
reconstruction and spectral fidelity.

3.4. Implementation Details

The optimization process utilized the ADAM algorithm with cosine learning rate
scheduling, initialized at 4 × 10−4 and progressively refined through 200 training epochs.
Input images were processed as randomly cropped 256 × 256 patches with stochastic
horizontal flipping for spatial augmentation. Implemented in PyTorch 2.50 with mixed-
precision acceleration, the framework completed full training within 48 h on an NVIDIA
RTX 3090 GPU, maintaining batch parallelism through gradient accumulation strategies
for memory-efficient processing.

4. Experiments
4.1. Experiment Datasets

In this study, we utilized several benchmark datasets to evaluate the perfor-
mance of our rain removal model across synthetic and real-world conditions, including
Rain200L/H [46], DID-Data [8], DDN-Data [14], and SPA-Data [10]. The synthetic datasets,
Rain200L [46] and Rain200H [46], consist of images with varied rain streak densities.
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Rain200L includes relatively sparse rain streaks, while Rain200H contains dense rain pat-
terns, providing challenges for different levels of rain removal. Each of these datasets
comprises 1800 rainy images for training and 200 images for testing, allowing a robust
assessment of model effectiveness under controlled conditions. Additionally, DID-Data [8]
and DDN-Data [14] further contribute to synthetic evaluations by including 12,000 and
12,600 rainy images for training, respectively, with diverse rain orientations and densities.
DID-Data provides 1200 test images, and DDN-Data includes 1400 test images, which
capture a wide range of rain conditions to examine model generalizability.

To evaluate model performance in real-world scenarios, we also incorporated the SPA-
Data [10] dataset, a large-scale, real-world rain dataset that includes 638,492 paired images
for training and 1000 paired images for testing. SPA-Data’s extensive collection of real rain
conditions and diverse environmental settings presents a more practical evaluation, closely
reflecting real-life application needs. Together, these datasets facilitate comprehensive
testing across synthetic and authentic rain scenes, enabling a thorough evaluation of the
proposed model’s robustness and adaptability in diverse rain removal tasks.

4.2. Evaluation Metrics

To evaluate the effectiveness of our proposed model, we utilized two standard image
quality metrics: Peak Signal-to-Noise Ratio (PSNR) [47] and Structural Similarity Index
(SSIM) [48]. These metrics are widely used in image restoration tasks to assess both the
overall fidelity and the structural integrity of restored images. Following previous deraining
methods [49,50], we calculated PSNR and SSIM metrics in the Y channel of YCbCr space.

PSNR is a measure of the peak error between the ground truth and the restored
image, providing an objective evaluation of image quality. It is calculated as the ratio of
the maximum possible signal power to the power of the noise (error) introduced during
the restoration process. On the other hand, SSIM is a perceptual metric that evaluates
the similarity between two images based on luminance, contrast, and structure. Unlike
PSNR, SSIM considers changes in structural information, which correlates more closely
with human visual perception.

In addition to PSNR and SSIM, visual qualitative analysis was also performed to
provide a more comprehensive evaluation of our model’s performance.

4.3. Experiment Results

The proposed method was evaluated on five benchmark datasets in Table 1, each pre-
senting unique rain removal challenges that assess the model’s robustness across both syn-
thetic and real-world rain conditions. We selected Prior-based methods [4,51], CNN-based
methods [14,49,52–57], and transformer-based methods [17–19,58,59] for comparison.

On Rain200L, a synthetic dataset with sparse rain streaks, our method achieved
a PSNR of 41.75 and SSIM of 0.9906, surpassing all competing methods. This result
slightly outperformed NeRD-Rain, which achieved a PSNR of 41.71 and SSIM of 0.9903,
demonstrating the model’s effectiveness in maintaining image fidelity in light rain scenarios.
Our approach benefits from the depth-guided background features, which provide a refined
context to separate rain streaks from background structures, helping to preserve finer details
in lightly degraded images. Figure 4 reports the visual comparison of our method with
other advanced methods, which shows that our method can remove more rain degradation
and shows advantages in restoring the local background.
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Table 1. Comparison of quantitative results on synthetic and real datasets. Bold and underline
indicate the best and second-best results.

Datasets Rain200L Rain200H DID-Data DDN-Data SPA-Data

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Prior-based methods DSC [51] 27.16 0.8663 14.73 0.3815 24.24 0.8279 27.31 0.8373 34.95 0.9416
GMM [4] 28.66 0.8652 14.50 0.4164 25.81 0.8344 27.55 0.8479 34.30 0.9428

CNN-based methods

DDN [14] 34.68 0.9671 26.05 0.8056 30.97 0.9116 30.00 0.9041 36.16 0.9457
RESCAN [52] 36.09 0.9697 26.75 0.8353 33.38 0.9417 31.94 0.9345 38.11 0.9707
PReNet [53] 37.80 0.9814 29.04 0.8991 33.17 0.9481 32.60 0.9459 40.16 0.9816
MSPFN [49] 38.58 0.9827 29.36 0.9034 33.72 0.9550 32.99 0.9333 43.43 0.9843
RCDNet [54] 39.17 0.9885 30.24 0.9048 34.08 0.9532 33.04 0.9472 43.36 0.9831
MPRNet [55] 39.47 0.9825 30.67 0.9110 33.99 0.9590 33.10 0.9347 43.64 0.9844

DualGCN [56] 40.73 0.9886 31.15 0.9125 34.37 0.9620 33.01 0.9489 44.18 0.9902
SPDNet [57] 40.50 0.9875 31.28 0.9207 34.57 0.9560 33.15 0.9457 43.20 0.9871

Transformer-based methods

Uformer [17] 40.20 0.9860 30.80 0.9105 35.02 0.9621 33.95 0.9545 46.13 0.9913
Restormer [18] 40.99 0.9890 32.00 0.9329 35.29 0.9641 34.20 0.9571 47.98 0.9921

IDT [58] 40.74 0.9884 32.10 0.9344 34.89 0.9623 33.84 0.9549 47.35 0.9930
DRSformer [59] 41.23 0.9894 32.18 0.9330 35.38 0.9647 34.36 0.9590 48.53 0.9924

NeRD-Rain-S [19] 41.30 0.9895 32.06 0.9315 35.36 0.9647 34.25 0.9578 48.90 0.9936
NeRD-Rain [19] 41.71 0.9903 32.40 0.9373 35.53 0.9659 34.45 0.9596 49.58 0.9940

Ours 41.75 0.9906 32.42 0.9376 35.63 0.9703 34.49 0.9653 49.70 0.9912

Input
32.07

Ground truth
∞

IDT
44.71

DRSformer
45.58

Restormer
45. 72

NeRD
46.08

Ours
46.91

Input
21.69

Ground truth
∞

IDT
34.78

DRSformer
34.56

Restormer
35.76

NeRD
34.27

Ours
36.75

Figure 4. Visualization results on the Rain200L dataset. It is best to zoom in to see the difference.

For Rain200H, containing dense rain streaks and presenting a more challenging re-
moval task, our approach achieved a PSNR of 32.42, with NeRD-Rain closely following
at 32.40. This subtle improvement, along with our SSIM score of 0.9366, which nearly
matched IDT’s 0.9344, indicates the model’s capacity to handle high-density rain by effec-
tively capturing and preserving structural details. The integration of depth information
into our model aids in accurately identifying background layers, even in heavily degraded
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images, enabling improved separation of rain from crucial background textures. As shown
in Figure 5, our results also show good restoration effects in distant local areas of the scene.

Input(10.97) SPDNet(25.86) IDT(26.92) DRSformer(26.83)

Restormer(26.27) NeRD(27.01) Ours(27.38) Ground truth

Input(11.46) SPDNet(29.02) IDT(30.33) DRSformer(31.18)

Restormer(30.70) NeRD(30.78) Ours(31.53) Ground truth

Figure 5. Visualization results on the Rain200H dataset. It is best to zoom in to see the difference.
Our results are closer to ground truth and have clearer textures.

In the DID-Data dataset, which includes images with diverse rainfall directions and
densities, our method achieved a PSNR of 35.63 and an SSIM of 0.9703, outperforming
all other approaches. This PSNR represents a 0.3% increase over NeRD-Rain’s 35.53,
underscoring our model’s robustness in processing complex rain patterns, where depth
guidance enables enhanced consistency in background detail preservation. Similarly, on
DDN-Data, another synthetic dataset with varying rain orientations and densities, our
model achieved a PSNR of 34.49 and an SSIM of 0.9653, outperforming NeRD-Rain, which
achieved 34.45 and 0.9596, respectively. Figures 6 and 7 showcase the visual results of our
model’s performance on the DID-Data and DDN-Data datasets, respectively. As seen in
the figures, our method effectively restores images by removing rain degradation while
preserving fine details, such as edges and textures, in both low- and high-frequency regions.
Compared to NeRD-Rain, our model demonstrates better preservation of background
structures and more accurate reconstruction of distant objects, especially in areas affected
by varying rain directions and densities.

In the real-world SPA-Data dataset, our model attained a PSNR of 49.70, marking
a 0.24% improvement over NeRD-Rain’s 49.58, and an SSIM of 0.9912, closely following
NeRD-Rain’s 0.9940. SPA-Data’s high diversity in real-world rain scenarios showcases
our model’s generalization capabilities. Figure 8 shows the visual comparison of various
methods. It can be seen that the restored results of our method are closer to the actual
ground truth and retain more details.
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Input(18.94) SPDNet(32.50) IDT(32.50) DRSformer(32.90)

Restormer(32.43) NeRD(32.84) Ours(33.35) Ground truth

Input(18.33) SPDNet(31.57) IDT(31.72) DRSformer(33.19)

Restormer(33.11) NeRD(33.75) Ours(34.19) Ground truth

Figure 6. Visualization results on the DID-Data dataset. It is best to zoom in to see the difference.

Input(27.42) SPDNet(37.56) IDT(38.52) DRSformer(39.30)

Restormer(39.20) NeRD(38.96) Ours(39.44) Ground truth

Input(29.12) SPDNet(36.85) IDT(37.39) DRSformer(37.68)

Restormer(37.43) NeRD(37.64) Ours(37.85) Ground truth

Figure 7. Visualization results on the DND-Data dataset. It is best to zoom in to see the difference.
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DRSformer(27.86)Input(34.41) SPDNet(27.68) IDT(30.18)

Restormer(27.76) NerD(29.62) Ours(37.83) Ground truth

DRSformer(38.38)Input(30.71) SPDNet(35.31) IDT(37.09)

Restormer(37.07) NerD(36.68) Ours(39.42) Ground truth

Figure 8. Visualization results on the SPA-Data dataset. It is best to zoom in to see the difference.

In summary, the consistent top performance across both synthetic and real datasets
validates our model’s advanced capabilities in rain removal. By leveraging depth-guided
features to maintain background fidelity and frequency-domain analysis to identify and
mitigate high-frequency degradations, our model achieves superior results, excelling in
rain removal across diverse conditions and degradation complexities.

5. Ablation Study
5.1. The Effectiveness of Each Component

To validate the effectiveness of each proposed module in DBPNet, we conducted a
comprehensive ablation study. The experiments are designed to progressively disable or
replace key components and analyze their contributions. Specifically, we evaluated the
following configurations:

1. Baseline (w/o FDPM and DBPM): A version of DBPNet that removes both the Fre-
quency Degradation Perception Module (FDPM) and Depth Background Perception
Module (DBPM), relying only on spatial features for rain removal.

2. Baseline + FDPM: Adds FDPM to the baseline to evaluate the impact of frequency-
domain decomposition and cross-attention on degradation feature extraction.

3. Baseline + DBPM: Adds DBPM to the baseline to assess the role of depth-based
background priors in guiding reconstruction.

4. Full DBPNet w/o SFA: Removes the Selective Focus Attention (SFA) module from the
full DBPNet, to test the importance of selectively enhancing frequency-background
interactions.

5. Full DBPNet: The complete model with all proposed modules enabled.
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Discussion Impact of FDPM: Adding FDPM to the baseline significantly improved
PSNR and SSIM on both datasets (+0.73 PSNR on DID-Data), highlighting the importance
of explicitly decomposing frequency components for targeted degradation removal.

Impact of DBPM: Incorporating DBPM further boosted performance (+1.1 PSNR on
DID-Data), demonstrating that depth-based priors enhance background consistency and
reduce artifacts caused by depth-related distortions.

Role of SFA: The SFA module contributes the final refinement by aligning frequency-
domain features with background priors. Removing SFA resulted in a notable drop in
PSNR and SSIM, indicating its role in achieving robust and precise reconstructions.

Full Model: The complete DBPNet achieved state-of-the-art results on both datasets,
showcasing the effectiveness of integrating all proposed components to handle complex
rain patterns and preserve depth-consistent details.

This analysis confirms that each module in DBPNet is essential for optimal perfor-
mance, with complementary contributions from FDPM, DBPM, and SFA (Table 2).

Table 2. Quantitative results of the ablation study on DID-Data and DDN-Data.

Datasets DID-Data DDN-Data

Metrics PSNR SSIM PSNR SSIM

Baseline (w/o FDPM, DBPM) 34.12 0.9532 33.54 0.9487

Baseline + FDPM 34.85 0.9587 34.12 0.9556

Baseline + DBPM 35.22 0.9604 34.25 0.9563

Full DBPNet w/o SFA 35.48 0.9651 34.38 0.9594

Full DBPNet 35.63 0.9703 34.49 0.9653

5.2. Frequency Mask Design Analysis

We evaluated the impact of different frequency mask designs used in the Frequency
Degradation Perception Module (FDPM) on the performance of our model. Specifically,
we tested two frequency mask variants and compared their effectiveness in removing
rain degradation on the Rain200L and Rain200H datasets. The following variants of the
frequency mask were tested:

1. High-Frequency-Only Mask: A mask that only retains high-frequency components
while discarding low-frequency components.

2. Low-Frequency-Only Mask: A mask that retains only low-frequency components,
ignoring high-frequency details.

Table 3 shows the results of the decomposition experiments. The original model
outperforms all variants on both the Rain200L and Rain200H datasets. It achieves the
highest PSNR and SSIM values, demonstrating that the frequency separation of low- and
high-frequency components is crucial for effective rain removal and image reconstruction.
The High-Frequency-Only Mask shows a more noticeable decrease in both PSNR and
SSIM. By neglecting the low-frequency components, it fails to retain important structural
information and leads to poorer image quality, particularly for complex rain patterns
where both low and high frequencies contribute to the overall image reconstruction. The
Low-Frequency-Only Mask results in a moderate performance drop. While it helps retain
structural integrity in the background, it loses finer details such as texture and edges, which
are necessary for precise rain removal, particularly in high-frequency regions.
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Table 3. Quantitative results of the frequency masks on Rain200L and Rain200H datasets.

Datasets Rain200L Rain200H

Metrics PSNR SSIM PSNR SSIM

Full DBPNet (Original) 27.83 0.8967 29.52 0.9125

High-Frequency-Only Mask 26.85 0.8751 28.72 0.9009

Low-Frequency-Only Mask 27.05 0.8773 28.46 0.9044

5.3. Depth Representation Alternatives

We explored different alternatives for depth representation in our model. We examined
different ways of incorporating a feature map. Specifically, we evaluated the following
depth representation alternatives: 1. DINOV2: Utilizes feature maps derived from the
DINOV2 model, which provides high-quality depth estimations in challenging conditions.
2. No Depth Information: A baseline where no depth information is used for reconstruction
or background modeling. 3. Depth-Anything Depth: Incorporates depth information
extracted from the Depth-Anything model.

Table 4 presents the quantitative results of the depth representation alternatives on the
Rain200L and Rain200H datasets. The DBPNet model, which incorporates Depth-Anything
Depth, achieves the best performance across both datasets. This confirms the effectiveness
of integrating depth cues for improving rain removal and image reconstruction, helping
the model better preserve essential details and separate background and foreground in-
formation. The No Depth Information model results in the lowest scores in both PSNR
and SSIM. The model without depth fails to preserve critical details and improves signif-
icantly with depth cues. On both datasets, using DINOV2 Depth consistently improves
performance compared to the No Depth Information baseline. Figure 9 shows the visual
comparison results.

Table 4. Quantitative results of the depth on Rain200L and Rain200H datasets.

Datasets Rain200L Rain200H

Metrics PSNR SSIM PSNR SSIM

DINOV2 27.60 0.8925 29.22 0.9095

No Depth Information 26.47 0.8654 28.36 0.8913

Depth-Anything 27.83 0.8967 29.52 0.9125

DINOV2(27.36) No Depth 
Information(26.83)

Depth-Anything(27.51)

Depth-Anything(38.13)No Depth 
Information(37.12)

DINOV2(37.72)Input(26.63) Ground Truth

Input(10.97) Ground Truth

Figure 9. Visualization results of different feature-guided models.
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6. Conclusions
In this paper, we proposed the Degradation-Background Perception Network (DBP-

Net), a novel framework designed to address the challenges of rain degradation in images.
By combining frequency-domain analysis and depth-based background priors, DBPNet
enhances the ability to effectively remove rain artifacts while preserving critical scene de-
tails. The framework includes two key components: the Frequency Degradation Perception
Module (FDPM), which separates and refines high- and low-frequency components of the
image, and the Depth Background Perception Module (DBPM), which leverages depth
information to guide background reconstruction, thereby improving background detail
retention. Additionally, we introduce the Selective Focus Attention (SFA) module, which
strengthens the relationship between frequency-domain features and background priors,
ensuring precise image reconstruction and efficient rain removal. Experimental results on
the five real and synthetic rain datasets show that DBPNet outperforms existing methods,
achieving superior PSNR and SSIM scores. Future directions could involve extending
DBPNet to handle other image degradations and exploring the integration of additional
scene understanding techniques to further enhance the model’s generalization capabilities.
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