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Abstract: Green ammonia, as a zero-carbon energy carrier, has emerged as a core process
for achieving energy transition and chemical industry decarbonization through renewable
energy-powered electrolytic hydrogen production integrated with low-carbon Haber—Bosch
ammonia synthesis. However, the strong coupling among multiple units in green ammonia
production systems, combined with operational data characteristics of nonlinearity, uncer-
tainty, noise interference, and multi-timescale dynamics, creates significant challenges in
accurately predicting ammonia yields and key process indicators, ultimately hindering on-
line process parameter optimization and restricting improvements in production efficiency
with effective carbon emission control. To address this, this study proposes a dual-layer
attention LSTM model. The architecture constructs two sequential attention mechanisms:
the first layer being an input attention mechanism for screening critical process indica-
tors, followed by the second layer as a temporal attention mechanism that dynamically
captures time-varying feature weights, enabling the adaptive analysis of sub-window
contribution discrepancies to output variables across multiple time steps. Furthermore,
the model is implemented and validated on a simulation platform of a renewable energy-
coupled green ammonia demonstration project, with comparative analyses conducted
against conventional LSTM and other baseline models. Experimental results demonstrate
that the proposed model effectively adapts to complex scenarios in green ammonia produc-
tion, including fluctuating renewable energy inputs and time-varying reaction conditions,
providing reliable support for yield prediction and energy efficiency optimization. The
developed methodology not only provides a novel approach for intelligent modeling of
green ammonia production systems but also establishes a technical foundation for digital
twin-based real-time control and dynamic scheduling research.

Keywords: green ammonia; deep learning modeling; LSTM

1. Introduction

Green Ammonia, as an emerging zero-carbon energy carrier, is progressively emerg-
ing as a critical technological pathway for global energy transition and carbon neutrality
attainment [1]. Its core production process utilizes renewable energy sources (e.g., wind
power, and photovoltaics) to drive hydrogen production through water electrolysis, which
subsequently combines with atmospheric nitrogen via the low-carbon Haber-Bosch pro-
cess for ammonia synthesis, thereby eliminating the dependence on fossil fuels inherent in
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traditional gray ammonia production. Compared with traditional ammonia production
processes (emitting approximately 1.8 tons of CO; per ton of ammonia), green ammonia
demonstrates an over 90% reduction in life-cycle carbon emissions, exhibiting significant de-
carbonization benefits [2]. Regarding application scenarios, green ammonia serves not only
as a clean fuel directly applicable to hard-to-decarbonize sectors like maritime shipping and
power generation [3] but also functions as an efficient hydrogen storage/transportation
medium, addressing critical bottleneck challenges in hydrogen supply chains including
high storage/transportation costs and safety concerns. Furthermore, as a raw material
for green nitrogen fertilizers in agriculture, green ammonia can drive the transformation
of conventional fertilizer industries toward sustainability. From a societal value perspec-
tive, the development of green ammonia value chains will facilitate large-scale renewable
energy integration and promote deep decarbonization across industrial, transportation,
and agricultural sectors, while creating new economic growth opportunities for regions
abundant in renewable resources yet constrained by energy export limitations. According
to International Energy Agency (IEA) projections, green ammonia is expected to account
for 5% of global energy consumption by 2050, establishing it as a core technology port-
folio supporting carbon neutrality goals. Consequently, the research, development, and
industrialization of green ammonia technology extends beyond environmental benefits to
encompass strategic imperatives for energy security, economic structural upgrading, and
sustainable societal development.

The production of green ammonia—a cleaner alternative to conventional “gray
ammonia”—relies on pairing renewable-powered water electrolysis (P2H) with an opti-
mized Haber-Bosch process [4]. At the heart of this system are two critical steps: hydrogen
production and ammonia synthesis. For electrolysis, proton exchange membrane electrolyz-
ers (PEMECs) are the preferred choice when dealing with erratic wind or solar input, thanks
to their rapid response, though their high cost and limited lifespan remain sticking points.
On the synthesis side, while traditional iron catalysts demand extreme heat and pressure,
newer ruthenium-based alternatives operate efficiently at lower temperatures—but their
expense keeps them from widespread use. The real challenge lies in the system’s layered
dynamics: solar and wind fluctuations play out in seconds, electrolyzers respond over
minutes, and the ammonia reaction unfolds across hours or even days. Bridging these mis-
matched timescales requires sophisticated modeling to untangle the knotted interactions
between energy supply, hydrogen output, and chemical kinetics [5].

Current modeling approaches for green ammonia production primarily employ mech-
anistic models and data-driven models. Mechanistic modeling constructs systems based on
physicochemical principles (e.g., mass/energy conservation and reaction kinetics), whose
strengths lie in theoretical rigor and strong interpretability that explicitly reveal causal rela-
tionships between reaction pathways and parameters, being particularly applicable to novel
process development or systems with well-defined mechanisms; however, these models
exhibit limited capability in detailed characterization of complex nonlinear processes (e.g.,
catalyst deactivation and multiphase flow coupling), while requiring precise physicochemi-
cal property parameters and boundary conditions that result in prolonged modeling cycles
and elevated computational costs. In contrast, data-driven modeling (e.g., machine/deep
learning) constructs surrogate models by extracting implicit patterns from historical data,
demonstrating three core advantages: (1) efficient fitting of high-dimensional nonlinear
relationships without requiring prior mechanistic knowledge, particularly suited for com-
plex systems with ambiguous mechanisms or strong coupling; (2) rapid response and
adaptive capabilities enabled by online data updating for real-time model optimization to
meet dynamic operational demands; (3) significantly enhanced computational efficiency
compared to mechanistic models, facilitating integration into real-time control or digital
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twin platforms. However, data-driven approaches necessitate substantial high-quality
datasets and remain vulnerable to noise interference, requiring rigorous validation of
model extrapolation capabilities and generalization performance. Collectively, data-driven
modeling provides an efficient toolkit for the intelligent upgrading of green ammonia
production, demonstrating particular strengths in multi-scale optimization and fault diag-
nosis scenarios. Nevertheless, their integration with mechanistic models through hybrid
architectures like physics-informed neural networks (PINNs) is emerging as a cutting-edge
direction to enhance modeling robustness [6,7].

Notably, recent advancements in Real-Time Monitoring Networks (RTMNs) have in-
troduced a novel data collaboration paradigm for dynamic modeling. For instance, Lotrec-
chiano et al. [8] achieved second-level online acquisition of air quality parameters through
distributed sensor arrays, with their data streaming architecture being readily adaptable to
real-time optimization requirements in chemical processes. Current research [9] demon-
strates that combining RTMNSs’ high-frequency data streams with adaptive modeling
approaches can significantly reduce the latency inherent in conventional offline analysis
while enabling minute-level decision support for dynamic scheduling.

In deep learning methods, Long Short-Term Memory (LSTM) [10] have proven to be
highly effective for time-series data prediction, addressing the issues of gradient vanish-
ing and explosion during long-sequence training. LSTM has been applied in chemical
engineering fields including soft sensor modeling [11-13], fault diagnosis [14,15], energy
consumption prediction [16-18], and control optimization [19-21]. In characterizing the
time-varying and dynamic characteristics of catalytic cracking processes [22,23], Zhang [24]
proposed a Recurrent Denoising Autoencoder (RDAE) based on LSTM to extract meaning-
ful temporal features, while reducing input dimensions in the spatial domain. Subsequently,
a Weighted Autoregressive LSTM (WAR-LSTM) structure was developed as a fundamen-
tal unit. By stacking multiple WAR-LSTM layers into a deep WAR-LSTM architecture,
high-level representations were extracted from multivariate data, enabling full utilization
of spatiotemporal information in both feature extraction and model construction. How-
ever, in practical industrial processes governed by physicochemical reaction mechanisms,
process variables often exhibit differential influences on outputs. Input variables with
stronger correlations to outputs should be assigned greater importance in prediction tasks.
Appropriately adjusting input weights has been demonstrated to enhance model predic-
tive performance. Consequently, weight optimization in LSTM models remains a critical
research direction for advancing deep learning algorithms.

Given that the attention mechanism (AM) enhances neural multi-stage information
processing capability through selective input sequence prioritization and semantic en-
coding in long-term memory, AM has become an essential component of neural network
architectures [25-27]. However, these methods predominantly rely on a single attention
mechanism, which struggles to address the multidimensional challenges in green am-
monia production. Specifically, existing single-layer attention models exhibit three key
limitations: (1) Feature redundancy and noise sensitivity: green ammonia production data
comprises multi-dimensional sensor parameters, yet conventional single-layer attention
mechanisms fail to dynamically filter critical process variables, making them vulnera-
ble to noise interference. (2) Multi-timescale dynamic coupling: the system’s behavior
is governed by cross-scale interactions between renewable energy fluctuations and cat-
alytic reaction dynamics. A monolithic attention mechanism cannot adaptively discern
contribution differences across varying time windows. (3) Limited interpretability: cur-
rent attention frameworks lack co-analysis of feature and temporal dimension weights,
hindering quantitative identification of how key parameters drive output variations.
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Consequently, in complex dynamic system modeling for green ammonia production,
the implementation of an LSTM (Long Short-Term Memory) model integrated with a
dual-layer attention mechanism effectively synthesizes temporal feature selection and
critical state focusing capabilities, thereby significantly improving modeling accuracy and
interpretability. The first-layer temporal attention mechanism adaptively allocates weights
to capture influential temporal segments in production processes (e.g., power fluctuations
during electrolytic hydrogen generation, catalyst activity variations in synthesis towers), ef-
fectively mitigating the historical information memory decay issue inherent in conventional
LSTM architectures. The second-layer variable attention mechanism performs feature-
dimensional weight screening to identify critical driving factors from multidimensional
sensor data (temperature, pressure, Hy /N, ratio, reaction rates, etc.), thereby reducing
interference from redundant/noisy variables. This dual-attention synergy endows the
model with two core advantages: firstly, in highly nonlinear green ammonia production
scenarios (e.g., input instability caused by renewable energy fluctuations), the model dy-
namically adjusts weights to precisely characterize time-varying coupling relationships
among variables; secondly, the attention weight distributions quantitatively visualize the
contribution degrees of different process parameters to outputs (e.g., ammonia yield),
providing interpretable decision-making foundations for process optimization. Further-
more, the architecture significantly enhances training efficiency under industrial-scale
data volumes through feature-time dual-dimensionality reduction, making it particularly
suitable for real-time state prediction and closed-loop control in green ammonia digital
twin systems.

The novelty of this study is reflected in three key aspects:

(1) Input-time dual attention mechanism: the input attention layer dynamically filters
critical process variables to mitigate feature redundancy and noise interference; the
temporal attention layer captures cross-step dependencies, effectively addressing
multi-scale dynamic coupling;

(2) Adaptive weight visualization: through heatmap analysis of dual-attention weights,
we quantitatively resolve the distinct contributions of feature and temporal dimen-
sions to ammonia yield, providing interpretable guidance for process optimization;

(3) Industrial applicability: by performing feature—time dual-dimensionality reduction,
the model significantly improves training efficiency on industrial-scale datasets while
supporting real-time prediction and control requirements

2. Modeling of Green Ammonia Production Process Based on DA-LSTM

Time-varying characteristics are pivotal in process modeling, particularly for complex
chemical production processes [28,29]. Chemical time-series production data modeling
involves treating historical chemical production data as multivariate time series, utiliz-
ing extensive process condition parameters as feature inputs to predict values at future
timesteps [30]. The sliding window method is generally employed to process time-series
datasets [31].

Assuming the chemical production time-series dataset has N-dimensional process
variables, with a batch size of T and a sliding window length (time steps) of L, the time-
series data sliding window feature matrix is denoted as X = (X1, Xy, -+, Xy, -+, X1),
where X; = (x},x%,- . -xi,- . ,xtL), and xé = (xi[l],xi[Z], . ,xﬁ[N]).

Given the historical value set of the target series (Y7,Y2,- - - Y;_1) and the t window at
Y = (yii1, Yir2, - Yip1—1) (I =1,2- -+, L) and t, the predicted value of the time series at

Y= (¥ Ve Vi) = 1,20+, L), where

Vi = f(y},~ Ly bt xf) (1)
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2.1. Basic LSTM Structure

The Long-Short Term Memory (LSTM) neural network, a type of recurrent neural
network (RNN), represents a short-term memory model capable of retaining information
over extended time periods. LSTM demonstrates particular effectiveness in time-series
classification, processing, and prediction, efficiently handling events with unknown time
intervals and time lag issues. An RNN composed of LSTM units forms the basis of the
temporal modeling network architecture for chemical production processes, as illustrated
in Figure 1.
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Figure 1. Three-dimensional schematic diagram of the LSTM model for chemical production temporal
processes. The upper-left section illustrates the primary 3D structure, where the x-axis denotes time,
the y-axis represents features, and the z-axis indicates model depth (i.e., the number of neural
network hidden layers); the lower-central portion displays the x-z cross-sectional view at time t,
demonstrating the LSTM network architecture within the temporal window; the bottom-right inset
details the internal structure of an LSTM unit; the right-side y-z cross-sectional view depicts the multi-
layer neural network configuration at time step 1 of moment t, with each layer’s input incorporating
both the hidden layer state /;;_; and cell state s;_; from time step I — 1.

A conventional LSTM unit consists of an input gate, output gate, and forget gate, as
shown in the lower-right corner of Figure 1. The LSTM unit functions as a cell, where
the cell state is responsible for “remembering” values over arbitrary time intervals. Each
of these three gates can be considered a “traditional” artificial neuron, with activation
determined by sigmoid functions. Let the hidden state at the previous timestep be denoted
as h;_1 and the cell state as 5;_1; then, the LSTM outputs are s; and h;, that is, s; is generated
through the input gate i; and forget gate f;, and subsequently processed via the output gate
0; to obtain A;.

fr=a(We- [y, xf] +bp), @)
i = ‘7<Wi : [hi—llxi] + bz‘), 3)
oy = (Wo- [lu1,x1] +bo), @

g = tanh(Wg . [hl_l,xﬂ + bg>, ®)
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s1 = f19s;-1 +1,0g,, (6)
h; = 0,@tanh(s;), (7)

where We, Wi, Wo, Ws € Rm*(m+1) denotes the weight matrix, b r b;, by, bs € R™ represents
the bias, and m indicates the number of hidden states in the LSTM.

2.2. AM-Based LSTM Structure

The attention mechanism (AM) fundamentally focuses attention on critical information
within vast datasets by filtering key elements while disregarding non-essential components.
By computing the alignment between current input sequences and output vectors, AM
assigns higher attention scores to strongly correlated elements. In temporal prediction
tasks for chemical production modeling, AM can be categorized into two types: spatial
attention for process feature processing and temporal attention for time-dependent process
variable characterization.

The incorporation of attention mechanisms (AMs) into neural network architectures is
primarily motivated by three considerations: First, to achieve superior task performance.
Second, to enhance the model’s interpretability, thereby improving reliability and trans-
parency. Third, to mitigate inherent limitations of recurrent neural networks (RNNs),
such as performance degradation with increasing input sequence length or computational
inefficiency caused by sequential input processing [32].

As an example, the LSTM for spatial attention is shown in Figure 2.

e? = Score(hl—l/sl—l) = Vg tanh(We[hl—lzsl—l} + uexnlf + be)/ (8)

= exp(e?)
P exp(e))

©)

T —— Eﬂlilﬁ—m_l:llz -
Rk ﬂ} _________________________

%m
N N N

Figure 2. Schematic of the LSTM structure for spatial attention.

Among them, v, € RL, W, € REX2m 11, € RL*L and b, € R are the weights and
biases of the AM input layer, which are the learning parameters for training. «}' denotes the
spatial attention weight of the n dimension input feature quantity at time step / indicating
its feature importance. The SoftMax function is employed to compute this weight while
ensuring the summation of all spatial attention weights equals 1.

% = (agxi[1], afxi[2],... ] x{[N]) ", (10)

Thus, by substituting the computed %! for x! in the LSTM architecture and incorporat-
ing Equations (3)~(8), we obtain ;.
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2.3. Green Ammonia Model Based on DA-LSTM

Building upon the aforementioned preparatory work, the green ammonia production
process model proposed in this study employs a Dual-Stage Attention-Based LSTM (DA-
LSTM) architecture, as shown in Figure 3.

Input - . Sliding
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W= (W, Wy, W)

.“-.‘_Ternporal attention mechanism

Figure 3. Evolutionary DA-LSTM-based FCC model structure. The red box represents the sliding
time steps within the time window.

By leveraging dual attention mechanisms, the DA-LSTM model adaptively selects the
most relevant input features and captures long-term temporal dependencies in time series.
The first layer employs an input attention mechanism to adaptively weight feature impor-
tance among green ammonia input variables at each timestep, as detailed in Section 2.2; the
second layer deploys a temporal attention mechanism to extract time-wise weights from all
hidden states generated by the first layer across timesteps.

jj = Score(d;_1,s]_1) = v} tanh(Wy[dj_1,5]_1] + Ughy + ba), (11)

v__eel)
! Z§:1 exp(j])

Among them, vy € R, W; € R™*2P U, € R™ ™ and by € R™ denote the learnable
parameters of temporal attention weights and biases, and p represents the number of
hidden states in the temporal input layer. B! indicates the temporal attention weight at
timestep i when processing timestep /.

By defining the temporal attention weight W = (Wy,--- ,W;,,--- ,Wp), the weight-
based input is derived.

B (12)

_ L
=), WyBJho, (13)
y=1
Given a set of target sequence priors (y1,Y2,...,Yr—1), then
o =WT [yH,EH] +b, (14)

Among them, W e R™1 and b € R.
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By incorporating y/;_ into the temporal LSTM unit and following Equations (16)-(21),
we derive d;.

fi = o (Wp - ldr G +17), (15)
i =0(W-[di_1,J1-1] + b)), (16)

o = (Wy-[di—1,51-1] + 1), (17)
g = tanh(Wé di—1, 1] + bg,), (18)
s; = f]Os)_; +1i,0g], (19)

d; = 0j®tanh(s)), (20)

Among them, d;, b’f, b, b}, b, € RP denote the state of the implicit layer of the time
input layer and all its deviations; W}r W/, W,, W, € RP* (P+1) denote the weighting matrix.
Therefore, the predicted value of time series ¢ at timestep [ is formulated as follows:

y; = flinear (dlr 5;)1 (21)

where f;,0qr denotes the linear mapping function. Ultimately, the predicted output value
Y; of time series t is obtained.

3. Case Studies
3.1. Data Description and Pre-Processing

The green ammonia process modeling is based on operational data collected from a
dynamic simulation model built in Honeywell UniSim R460.1@ software, with predicted
process variables including ammonia production yield and first bed outlet temperature,
utilizing data from load adjustment conditions spanning 90-50% of production capacity
where the dataset contains 593 measurable process tags. Through field experience and
domain knowledge, 56 process tags were systematically selected.

Select 56 key variables from 593 process tags, and the specific process is as follows:
based on the green ammonia production process flowchart, prioritize retaining the core
production process parameters for mechanism driven initial screening; furthermore, expert
experience verification is utilized: the joint process engineer evaluates the operability of the
initial screening variables to achieve expert experience verification, while excluding two
types of variables: (1) uncontrollable parameters such as environmental temperature, which
cannot be controlled in real time due to external climate influences; (2) high-redundancy
parameters: such as pressure values repeatedly measured by parallel sensors. The final
selection of 56 variables covers four aspects of green ammonia production, including
reaction kinetics, energy efficiency, material balance, and equipment status.

The Honeywell UniSim simulation platform employed in this study strictly adheres
to the design parameters and operational specifications of an actual green ammonia plant
(referencing a 100,000-ton/year demonstration project in Sichuan), with comprehensive
simulation model calibration and industrial consistency validation conducted as follows:
(1) Mechanistic parameter calibration: laboratory kinetic data for iron-based catalysts
(Fe304/v-Al,O3) were used to calibrate activation energy parameters in the Arrhenius
equation. (2) Dynamic response validation: step-response tests (e.g., £10% fluctuations
in renewable power input) comparing simulation data with historical plant data demon-
strated 92% dynamic trajectory matching for key variables (e.g., synthesis reactor pressure
and ammonia production rate). (3) Multi-condition coverage: the simulation dataset en-
compasses typical plant operating conditions (90-50% load) and incorporates actual failure
modes (e.g., catalyst deactivation) to ensure model capability in capturing abnormal states.
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3.2. Model Building and Training

Missing values were processed using linear interpolation, and the temporal dimen-
sions of the data were aligned. The preprocessing procedures are detailed in the referenced
literature. The dataset was chronologically partitioned into training, validation, and test
sets at an 8:1:1 ratio. Multiple models were trained on the training data, with hyperparame-
ters selected based on validation set performance and final evaluations conducted on the
test set.

The baseline LSTM model parameters were determined via grid search [33], with batch
size T = 32, time step L = 18, and hidden state dimension m = 64. Further configurations
included a learning rate of 0.002, decay exponent of 0.98, decay rate of 90, and 50 training
epochs. To mitigate overfitting, dropout was applied to the LSTM hidden layer, with the
model employing the Adam optimizer [34] for parameter updating. Dropout (p = 0.2)
is applied to the LSTM hidden layer to randomly mask neurons, forcing the model to
learn robust features. Weight decay (A = 1 x 10~%) in the Adam optimizer constrains the
parameter space, preventing the dual-attention weights from overfitting to training-set-
specific patterns.

The performance evaluation of the dual-layer attention LSTM for time-series prediction
involved comparative experiments with baseline models, including Random Forest (RF),
Support Vector Machine (SVM), Artificial Neural Network (ANN), and conventional LSTM
models. To ensure fair comparison, all baseline models were optimized through either grid
search or Bayesian Optimization, with their optimal parameter configurations presented in
Table 1.

Table 1. Hyperparameter optimization configurations of baseline models.

. Optimization
Model Hyperparameters Search Range Optimal Value Method
RF Tree count, Max depth 50-500, 5-30 300, 25 Grid Search
RBEF/Linear, 0.1-100, Bayesian
SVM Kernel, C, vy 0.001-1 RBE 10, 0.01 Optimization
ANN Hidden layers, Learning rate 1-3 layers, 16-256 2 layers (128—64), 0.001 Grid Search
’ neurons, 0.0001-0.01 a
LSTM Timesteps, Hidden units L =6-24,32-128 L =18, 64 units Grid Search

The Python algorithm developed using the Torch framework was executed in the
JetBrains PyCharm 2019.3.3 x64 environment on a computational platform equipped with
an Intel(R) Core TM i7-7700K CPU @ 4.20 GHz, 8 GB RAM, and Windows 10 OS.

3.3. Model Evaluation Indicators

To evaluate model accuracy, this study employs the Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as evaluation
metrics, defined as follows:

1 N 2
RMSE = .| — Y (7. — i), 22
Nr ; Wt — 1) (22)
13
MAE = — Y |7 — i, 23
Ny P v (23)
1 Nt yi _yi
MAPE = — 4 (24)
Nt 1:21 vi
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where ! is the actual value, y§ denotes the predicted value, and Nt represents the number
of test set samples.

4. Results and Discussion
4.1. Analysis of Model Performance Results

To evaluate the performance of the dual-layer attention LSTM in time-series predic-
tion, comparative experiments were conducted with baseline models including Random
Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN), and conven-
tional LSTM models, with the final prediction results presented in Table 2. The proposed
model demonstrates reduced average random error across RMSE, MAE, and MAPE met-
rics, effectively enhancing predictive performance for time-series data in green ammonia
production processes.

Table 2. Model prediction comparisons of RMSE, MAE, and MAPE.

Model RMSE MAE MAPE

RF 0.855 0.082 3.620

Ammonia SVM 0.620 0.078 3213
ot ANN 0.429 0.079 3.489
p LSTM 0.113 0.065 3.186
DA-LSTM 0.084 0.044 2.740

RF 0.544 0.092 0.294

. . SVM 0.562 0.098 0.275
1:;: beerjti’;g ANN 0.440 0.069 0.206
P LSTM 0.038 0.036 0.183
DA-LSTM 0.026 0.022 0.086

Specifically, as an ensemble learning method, Random Forest (RF) demonstrates rela-
tively strong performance in handling nonlinear data, but its limited capability to capture
temporal dependencies in time-series data results in lower prediction accuracy. Support
Vector Machine (SVM), while advantageous in processing high-dimensional data and small-
sample problems, suffers from poor adaptability to time-series data due to the sensitivity
of kernel function selection and parameter tuning, making it difficult to capture complex
temporal patterns. Traditional Artificial Neural Networks (ANNs), though theoretically
capable of approximating any nonlinear relationship, lack inherent memory mechanisms
for time-series data and thus fail to effectively utilize historical information for predic-
tion. In contrast, the standard LSTM model can better capture long-term dependencies
in time series through its gating mechanisms, yet it still exhibits insufficient utilization of
critical temporal features when processing multivariate, high-dimensional green ammonia
production data.

The proposed dual-layer attention mechanism LSTM model enhances its capability
to capture critical temporal information by incorporating attention mechanisms. The
first attention layer extracts the significance of different time steps in input sequences to
dynamically adjust the weights of input information; the second attention layer optimizes
the representation of LSTM hidden states, further enhancing the model’s ability to express
temporal features. This integration of dual attention mechanisms enables the model to
more accurately identify pivotal time points with the greatest impact on predictions in
green ammonia production processes, thereby significantly improving predictive accuracy.

Furthermore, the proposed model demonstrates exceptional performance in reducing
mean random error. Random errors typically arise from data noise, measurement inaccura-
cies, or model overfitting to non-critical information. The dual-layer attention mechanisms
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effectively mitigate such interference by focusing on critical temporal features, thereby
suppressing irrelevant noise. This capability proves particularly crucial in green ammo-
nia production scenarios, where conventional models often struggle to capture authentic
process trends due to the inherent high noise levels and volatility in production data.

To further verify the model’s generalization capability and reduce overfitting risks,
we conducted additional sensitivity analyses:

(1) Multi-ratio hold-out validation: while preserving time-series sequence integrity, we
retrained the model using different data split ratios (e.g., 7:1.5:1.5; 8.5:0.75:0.75).
Results demonstrate that the DA-LSTM model maintains remarkable robustness, with
only a £3.2% fluctuation in ammonia yield prediction RMSE across different splits
(see Table 3);

(2) Blocked k-fold cross-validation: to maintain temporal dependencies, we implemented
a time-series blocked partitioning strategy (k = 5), reserving 10% of data as a buffer
zone between training and test sets. The cross-validation shows that the DA-LSTM
model achieves superior stability (mean RMSE = 0.089; ¢ = 0.006) compared to the
baseline LSTM model (RMSE = 0.118; o = 0.011), confirming its robust temporal
dynamics capture capability.

Table 3. The multiple proportion reserve method validation results of RMSE.

Data Partitioning Ratio Ammonia Production First Bed Exit Temperature
8:1:1 0.084 0.026
6:2:2 0.087 0.028
7:2:1 0.081 0.025

These experiments collectively demonstrate the DA-LSTM model’s consistent perfor-
mance across varying data distributions. Its dual-level attention mechanism—through
dynamic feature selection and temporal weighting—effectively suppresses overfitting risks.

To evaluate the computational overhead of the dual-attention mechanism, we com-
pared the training efficiency between DA-LSTM and the baseline LSTM model under
identical hardware configurations. As shown in Table 4, while DA-LSTM demonstrates
significantly higher training time and memory requirements compared to conventional
LSTM—representing a limitation of our approach—this cost is justified by its superior
predictive accuracy.

Table 4. Training efficiency comparison between DA-LSTM and baseline LSTM.

Training Time per Peak GPU Memory Total Training

Model Batch (s) (GB) Time (h)
LSTM 0.35 6.8 12
DA-LSTM 0.82 12.3 9.5

4.2. Visual Analysis of Attentional Weights

In dynamic modeling and optimization control, the attention mechanism effectively
captures the influence of critical temporal points on output results by assigning distinct
weights to each time step in input sequences. Specifically, the magnitude of attention
weights directly reflects the significance level of corresponding temporal information,
where input units with higher weights play a determinative role in shaping outputs. As
illustrated in Figure 4, heatmap visualization of ammonia yield and first bed outlet tem-
perature predictions clearly demonstrates the varying degrees of impact from different
time steps, thereby enabling precise identification of pivotal temporal points. This soft
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feature selection method based on attention weights not only fully utilizes localized in-
formation within sampling windows but also achieves efficient time-series importance
sampling in large-scale complex chemical systems. The approach provides a powerful tool
for dynamic modeling and optimization control, significantly enhancing predictive accu-
racy and control efficiency, particularly excelling in handling nonlinear, high-dimensional
chemical processes.
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Figure 4. Heat map of attentional weights.

Expanding further, the core principle of the attention mechanism lies in dynamically
adjusting the contribution of input sequence information at different positions to the
output by computing weights for each timestep. In chemical engineering systems, this
mechanism holds particular significance, as the dynamic behaviors of such systems are often
governed by states at a few critical timesteps. For instance, in ammonia synthesis processes,
parameters such as reactor temperature, pressure, and gas flow rate at varying timesteps
exert significant impacts on final production yield and quality. Through the attention
mechanism, the model can automatically identify these critical timesteps and assign them
higher weights, thereby capturing the system dynamics with enhanced precision.

Additionally, the attention mechanism exhibits strong interpretability. Through
heatmap visualization, we can intuitively identify which timesteps exert the most signifi-
cant influence on prediction outcomes. This visual analytical approach not only enhances
the understanding of the model’s decision-making process but also provides valuable
references for process optimization. For instance, if temperature variations at a specific
timestep demonstrate substantial impacts on ammonia production yield, operational focus
can be strategically directed toward temperature control at this critical temporal phase to
achieve more efficient manufacturing.

When dealing with large-scale complex chemical systems, traditional modeling ap-
proaches often face the curse of dimensionality and high computational complexity. In
contrast, attention mechanisms effectively reduce model complexity through soft feature
selection while retaining critical information. This methodology not only enhances predic-
tion accuracy but also significantly reduces computational resource consumption, enabling
practical applications in real-time control and optimization.

In summary, the application of attention mechanisms in dynamic modeling and
optimization control provides an efficient, flexible, and interpretable tool for addressing
complex chemical engineering systems. Through rational allocation of attention weights,
models can more accurately capture system dynamic behaviors, thereby enabling more
precise predictions and more efficient control. This approach not only holds significant
application value in ammonia synthesis processes but can also be extended to other intricate
chemical processes, offering robust support for the intelligentization and automation of
industrial production.
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While this study primarily focuses on process prediction and optimization, the dual-
layer attention mechanism of DA-LSTM naturally lends itself to fault detection tasks
through two key capabilities: (1) The input attention layer suppresses non-critical sen-
sor noise while amplifying fault-related features such as temperature spikes or pressure
anomalies. This complements traditional LSTM autoencoder approaches that rely on re-
construction errors. (2) The temporal attention layer identifies the exact onset of abnormal
events, such as early-stage catalyst deactivation, by detecting abrupt shifts in time-step
weights. This is visually supported by the heatmap in Figure 4. When integrated with
Real-Time Monitoring Networks, the DA-LSTM model generates interpretable fault contri-
bution heatmaps across both feature and temporal dimensions. For example, engineers can
quickly pinpoint root causes like abnormal electrolyzer voltage patterns.

5. Conclusions

To address the complexity and mechanistic uncertainties inherent in green ammo-
nia processes while overcoming the structural limitations of traditional LSTM attention
mechanisms, this study proposes a dual-layer attention mechanism integrated with LSTM
deep learning for green ammonia process modeling. Initially, a dual-layer attention LSTM
architecture is constructed: the first layer incorporates an input attention mechanism to
extract relevant process indicators, while the second layer employs a temporal attention
mechanism to adaptively capture time-dependent weightings within sequential processes.
Experimental results validate the model’s applicability and effectiveness. Comparative
analyses with alternative modeling approaches demonstrate that the dual-layer attention
LSTM not only achieves superior extraction of critical process indicators but also enhances
ammonia yield prediction accuracy. Furthermore, the developed model exhibits exceptional
interpretability and adaptability across diverse green ammonia prediction scenarios.

While the adaptive deep learning approach proposed in this study demonstrates
enhanced capability in processing temporal relationships and accurately predicting critical
process indicators, certain limitations remain. First, the high computational demands
and prolonged processing times inherent to deep learning algorithms necessitate further
enhancement of the model’s agility and computational efficiency. Second, the model
requires additional validation through open-source benchmark datasets and industrial data
to comprehensively verify its efficacy.
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