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Abstract: With the widespread adoption of highways in the mountainous regions of south-
western China, the electricity load of numerous tunnels and service areas has increased
rapidly. Constructing photovoltaic (PV) microgrids in service areas has become an impor-
tant means of energy conservation, consumption reduction, and carbon emission mitigation.
However, constrained by mountainous terrain, the PV power generation conditions in
highway service areas exhibit significant micro-terrain variations, making it difficult to
effectively evaluate PV utilization efficiency. This paper proposes a dynamic block opti-
mization model for PV microgrids that considers regional layout constraints. The model
utilizes an intelligent adjustment mechanism to plan PV panel layouts in highway service
areas, optimizing energy utilization efficiency and economic benefits. Additionally, long
short-term memory (LSTM) networks are employed for short-term PV output prediction to
address the challenges posed by varying weather and seasonal changes. This approach com-
prehensively considers the intermittency and instability of PV power generation, enabling
dynamic block optimization to autonomously adjust the PV power output in response to
load fluctuations. Through simulation case studies, the model is validated to effectively
improve the utilization rate and economic performance of PV microgrids under various en-
vironmental conditions and demonstrates superior performance compared with traditional
static block methods.

Keywords: photovoltaic microgrid; dynamic block optimization; energy management;
renewable energy; intelligent control system; long short-term memory network (LSTM)

1. Introduction

With the transformation of the global energy structure and the intensification of climate
change, the development and utilization of renewable energy have become a critical focus
of global energy policies. Since the implementation of the 13th Five-Year Plan, China
has prioritized green energy and sustainable development, enacting a series of policies
to promote the growth of photovoltaic (PV) renewable energy. As PV power generation
increasingly shifts toward small-scale distributed systems, users such as highway service
areas, toll stations, and tunnels—located far from primary load centers—have begun
establishing PV microgrids to reduce reliance on centralized power grids.
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However, the inherent intermittency (stochastic generation outages) and dynamic
instability (frequency excursions > 0.5 Hz) of PV systems challenge grid stability, especially
under composite weather stressors and seasonal irradiation variations. While existing
studies have made progress in hybrid microgrid control strategies [1-8], recent Industrial
Internet of Things (IloT) implementations reveal that 78% of the proposed architecture
remains conceptual, with limited experimental validation under real-world operating
conditions [9]—especially for spatially distributed PV deployments like highway service
areas where equipment heterogeneity and communication latency are prevalent. Similarly,
though advanced optimization methods like genetic algorithm and model predictive
control (GA-MPC) hybrids demonstrate cost-effectiveness in campus-scale microgrids
(achieving $0.19/kWh energy costs [10]), their centralized control paradigms inherently fail
to address the topological constraints of linearly distributed highway PV systems, where
panels are fragmented across parking lots, rooftops, and sloping terrains with varying
shading patterns.

The effective management and optimization of PV output remain critical challenges [1-4].
While existing studies have developed various control strategies for hybrid microgrids—including
grid-connected /islanded operation modes [1], PV-battery energy management [5,6], and
parallel inverter control [7]—these approaches typically assume uniform PV array behavior.
In reality, spatially distributed installations experience 12-18% efficiency losses due to
mismatched conditions [9]. Although coordinated control strategies [8] and auxiliary
voltage regulation methods [11] have been proposed, they face computational limitations
when applied to the large-scale dispersed PV systems (>50 blocks) common in highway
infrastructures [10,12,13]. Emerging digital twin technologies show potential [14] but
currently lack the dynamic reconfiguration capabilities for clustered PV arrays.

Traditional optimization methods exhibit several limitations:

o  MPPT techniques suffer up to 22% efficiency loss in fragmented layouts due to delayed
shadow response [14];

o Configuration optimization often ignores microclimate variations across service
areas [15,16];

e  Environmental adaptation models [17-19] assume homogeneous conditions, unlike
the GA-MPC approach [10], which reduces losses by 31% but requires uniform
irradiation data;

e  Dynamic adjustment systems [20-22] lack the distributed MPPT capabilities for PV
clusters [9];

e  Storage coordination methods [23] cannot simultaneously optimize multiple distant
units [10].

Three fundamental limitations emerge from prior work:

e  Spatial-Temporal Decoupling: Current models treat PV blocks as static entities [24] or
assume uniform environmental impacts [10], ignoring the dynamic coupling effects
where shadow migration across service area subzones creates time-varying power
mismatches (e.g., morning roof shading vs. afternoon canopy shading).

e  Scalability—Accuracy Tradeoff: GA-based sizing [10] and IIoT monitoring [9] either
sacrifice resolution for scalability (coarse-grained cluster control) or become computa-
tionally prohibitive (per-panel optimization).

e Digital-Physical Disconnect: DT platforms [14] prioritize virtual prototyping over
real-time reconfiguration, lacking embedded algorithms to translate weather forecasts
into optimal block topology adjustments for highway PV arrays.

Given the distributed placement of PV panels in highway service areas (e.g., parking
lots, rooftops), this study proposes a dynamic block optimization model that employs
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an intelligent adjustment mechanism to optimize PV block configurations under varying
environmental and grid demands. The model integrates advanced optimization algorithms
with operational data, utilizing long short-term memory (LSTM) networks for short-term
PV output prediction to achieve optimal power matching and cost control. Furthermore, it
dynamically adjusts the PV generation in response to load fluctuations, enhancing system
utilization efficiency and economic performance. Against the backdrop of China’s vigorous
promotion of green energy transition and carbon neutrality goals, this research not only
holds practical significance but also provides theoretical and methodological support for
deploying efficient PV microgrids in complex terrains, aligning with global strategies for
sustainable development and clean energy utilization.

2. Planning Strategy for Highway Photovoltaic Microgrids
2.1. Photovoltaic Microgrid

The load characteristics of highway service areas exhibit notable time-varying and
uncertain behavior. Influenced by traffic flow, weather conditions, and traffic incidents,
load demand fluctuates significantly across different time periods, particularly during peak
morning/evening hours and nighttime troughs. Additionally, sudden changes in traffic
volume and vehicle parking demands further amplify load uncertainty. Consequently,
service area systems require high flexibility and real-time responsiveness to ensure stable
and reliable operation.

A photovoltaic microgrid is a compact integrated power system comprising PV gen-
eration, intelligent control units, electrical loads, and energy storage devices. A typical
configuration is illustrated in Figure 1. Through grid-connected PV systems, it provides an
effective power supply for highway service areas distant from the main grid. Operating
under a “self-consumption with surplus electricity fed back to the grid” mode, it not only
meets local power demands but also enables bidirectional interaction with the traditional
grid, facilitating energy sharing and optimized utilization [22]. As illustrated in Figure 2,
the photovoltaic (PV) installation areas within the expressway service area microgrid are
geographically dispersed and exhibit distinct zoning characteristics, including but not
limited to the following: office and dormitory building rooftops, highway-side slopes, and
parking lot canopies.
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Figure 1. Structure of a photovoltaic microgrid.

Integrating PV generation units into microgrids is a common approach for renew-
able energy utilization. Traditional microgrids typically employ centralized PV panel
configurations to uniformly distribute power within designated areas [23,24]. However,
in high-penetration distributed PV microgrid environments, system uncertainties—such
as voltage violations and imbalances—may significantly impact node voltages and power
flow distribution [25]. To address these issues, conventional strategies include deploying
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energy storage systems and regulating reactive power output. Nevertheless, energy storage
deployment faces constraints such as energy density limitations, cycle life degradation,
safety and environmental concerns, and resource dependencies, resulting in relatively high
costs [26].

l Parking lot solar canopies ‘

Figure 2. Conceptual diagram of a highway service area photovoltaic microgrid.

As shown in Figure 3, the photovoltaic (PV) systems installed along mountainous
expressway service areas face significant micro-terrain variations, including different de-
grees of roadside slopes and rooftop installations. These variations cause fluctuations in
solar irradiance and power generation efficiency among different PV blocks, ultimately
affecting the overall PV utilization efficiency and system stability. To address this challenge,
this study proposes a dynamic block optimization model for PV microgrids that considers
regional layout constraints.

Figure 3. Geospatial distribution map of PV installations along mountainous expressway service areas.

2.2. Photovoltaic Matrix Block Partitioning

As shown in Figure 4, photovoltaic matrix block partitioning involves distributing PV
panels across distinct zones (e.g., office buildings ‘block #1’, dormitories ‘block #2’, parking
lots ‘block #3” etc.) based on installation environments to optimize energy utilization and
management efficiency. In service area microgrids, the spatial distribution of PV panels
is particularly critical. Each block is configured according to local irradiance conditions,
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available area, and load demands, enabling flexible layouts. Through block partitioning, PV
systems achieve independent and centralized dispatchability, improving energy utilization
rates and power supply reliability. This approach replaces traditional centralized energy dis-
tribution, better aligning with the self-sufficient microgrid requirements of off-grid loads.
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Figure 4. Block partition structure diagram of microgrid.

2.3. Dynamic Block Optimization Model for Construction Phase
2.3.1. Objective Function

The power generation capacity of different microgrids is constrained by geographical,
climatic, and solar irradiance conditions. To simultaneously reduce node voltage deviations
and network losses in distributed PV microgrids, enhance the system’s economic efficiency,
and minimize the gap between the PV power output and the grid’s absorption capacity, this
scheme requires predefined block partitioning and power allocation for PV panels during
the grid construction phase. Notably, ref. [27] proved that optimal microgrid partitioning
can reduce voltage deviations by 12-18% compared with traditional radial networks.

Based on these operational requirements, we propose the following original optimiza-
tion framework extending the work in [27]: Assuming that the objective is to minimize the
total discrepancy between PV generation and load demand while maximizing the potential
output of each block, the problem can be formulated as follows:

T
Min: ] =Y |Ppy(t) — Pioad(t)| + ACost, (1)
t=1

where Ppy (t) is the PV power generation at time ¢, Pjyq4(t) is the load demand at time ¢, A
is the weighting factor balancing cost and power matching, and Cost denotes the total cost
of PV blocks.

2.3.2. Block-Based Layout Optimization Model for Construction Phase

To determine the optimal number of blocks and load allocation for each block during
the construction phase, a constrained optimization model is defined. The objective is to
minimize the discrepancy between the total power generation and total load demand while
satisfying the capacity, cost, and block configuration requirements. The optimization model
can be formulated as follows:

Nblock

Min : ]layout = Z

i=1

Pl — Pl |+ ACost, @)




Processes 2025, 13, 1377

60f14

where Npjock is a represents the maximum number of blocks, ng) is the PV generation of

the i-th block, Pl(oii 4 is the load demand of the i-th block, and Cost() is the construction cost

of the i-th block.
The total PV capacity constraint is as follows:

Nlogk (i) total
Y. Pl = sl 3)
i=1

where P! is the total allowable PV capacity of the system.
The PV block capacity constraints can be formulated as:

C) > Conin, Vi, @)

where Cl()lﬁ) « 18 the maximum installable capacity of the i-th block (determined by the
on-site available area) and Cpi, is the minimum capacity requirement per block.

The output constraint (actual output of each block shall not exceed its maximum
installable capacity) is as shown:

0< Pt <l vivt (5)

The cost constraint (the total construction cost must remain within budget) can be

written as follows:
Nblock

Y Cost) < Costyimt 6)
i=1

The cost function (the cost of each block is determined by its capacity via an exponential
relationship) is as follows:

Cost) = a x (c(i)) ° )

where a and b are the parameters of the exponential function defining the cost-capacity
relationship. Note: preliminary estimates indicate that the capital cost of PV modules
decreases by approximately 20% for every doubling of capacity, reflecting economies
of scale.

3. Energy Supply Strategy for Highway Photovoltaic Microgrids

3.1. Dynamic Block Optimization Model for Operation and Maintenance Phase
3.1.1. Short-Term Load and PV Generation Prediction Model Based on LSTM

To achieve high-precision load forecasting and optimize the dispatch strategy for off-
grid PV microgrids, this study employs a long short-term memory (LSTM) network for load
demand prediction. LSTM is an improved variant of recurrent neural networks (RINNs)
that utilizes a unique gating mechanism to effectively capture both long-term and short-
term dependencies in time-series data, addressing the vanishing and exploding gradient
problems inherent in traditional RNNs. The LSTM model is particularly well-suited for
handling complex load demand data and has demonstrated excellent performance in load
forecasting tasks.

The structure of an LSTM unit consists of three core gating mechanisms: the Forget
Gate, the Input Gate, and the Output Gate. These gates determine which information is
retained, updated, or output. Following the established framework in [28], the specific
computational processes are described as follows:
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Forget Gate: determines how much of the previous memory state C;_1 is retained. The
calculation formula is:

fi = a(wf i1, Xe] + bf), (8)

where f; is the output of the Forget Gate, Wf is the weight matrix, b ¢ is the bias term, and ¢
is the Sigmoid activation function.

Input Gate: controls the degree to which the current input X; updates the memory
state, determined jointly by the Input Gate i; and the candidate memory C;:

iy = O'(Wf g, X + bf) , ©)
C = tanh(WC . [ht—lzxt} + bc)
where C; is the candidate memory state, W; and W are the corresponding weight matrices,
and b; and b are the bias terms.
Memory Update: combines the results of the Forget Gate and Input Gate to update
the current memory state Cy:
Ci=fr-Ci1+ir- Cp. (10)

Output Gate: determines the output value of the current memory state C; and updates
the hidden state h;:
or = 0(Wo - [h—1, X¢] + bo)

, 11
ht = 0t - tanh(Ct) ( )

where o; is the control signal of the Output Gate, W, is the weight matrix, and b, is the
bias term.

Short-Term Load Forecasting: Short-term load forecasting aims to predict future elec-
tricity demand over a short time horizon, providing a basis for real-time dispatch decisions.
The LSTM model excels at capturing temporal dependencies in load demand data, enabling
it to model both short-term fluctuations and long-term trends. This study develops an
original forecasting framework based on the following author-derived formulations.

Input Data:

Xload = (12)
[Pload(t - 1)/ Pload(t - 2)/ ceey Pload(t - 1’1)]

where Pyy,q(t — i) represents the load demand at the i-th time step. Output: the predicted
load for the next time step Pioad (1)
Loss Function: The mean squared error (MSE) is used as the loss function, defined
as follows:
1d . ?
Losspy = i; (va(t) - va(t)) (13)
Short-Term PV Generation Forecasting Model: The input data for the PV genera-
tion forecasting model includes historical irradiance, weather features (e.g., temperature,

humidity, cloud cover), and PV generation data sequences, expressed as follows:
Xpv = [I(t=1,T(t=1),..., Pov(t —n))], (14)

where I(t — i) is the irradiance at the i-th time step, T(t — i) is the temperature at the i-th
time step, and Ppy (t — ) is the PV generation at the -th time step. Output: the predicted PV
generation for the next time step Ppy (t).

Loss Function: Similarly, the mean squared error (MSE) is used as the loss function,

defined as follows: )
1& ~
Losspy = =) (va(t) - va(t)) : (15)

t=1
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3.1.2. Dynamic Block Adjustment Optimization for Operation and Maintenance

During the operation and maintenance phase, the operating states of each block are
dynamically adjusted based on real-time load forecasts and changes in PV generation
(similar to the model’s predictive framework in [29]). At a given time ¢, the relationship
between the total power generation Py, (#) and total load demand Pjy,q4 (f) can be expressed

as follows:
Nblock (i)
Ptotal(t) = 'Zl va(t)
i=
Nblock (Z) : (1 6)
Pload(t) = Pload(t)

The block operating states are adjusted according to the following logic:

If Piotal (t) > Pload (t), some blocks may be shut down (reducing generation or switch-
ing to energy storage mode) to maintain balance.

If Piotal(f) < Pioad(t), additional energy storage systems or inactive blocks may be
activated to provide supplementary power.

This dynamic adjustment mechanism can be formulated as:

Nblock

Powi(t) = Y. &i(6)PS)(E), (17)
i=1

where J;(t) is a control variable indicating whether the i-th block is active (J;(f) = 1 or
inactive d;(t) = 0).

3.2. Algorithm Flow of the Dynamic Block Optimization Model

The proposed PV microgrid optimization algorithm in this study consists of two
phases: the construction phase and the operation and maintenance phase. Each phase has
distinct input parameters and optimization objectives, as illustrated in Figure 5. The model
inputs and outputs are summarized in Table 1.

Start

Input Basic
Parameters in
Initialization Phase

!

Dynamic Block
Optimization Model

(Construction Phase)
l Short-Term Load
Forecasting & Short-
Optimal Block Term PV Generation
Configuration Forecasting
'

Dynamic Block
Optimization Model
(Operation and

Maintenance Phase)

Operating State N
Plan for Each Block
(On/Off or Other
Strategies)
Activate Backup
Blocks/Compensati
on Measures

Total

Generation

Meets Load
o

End

Figure 5. Flowchart of the dynamic block optimization model for PV microgrids.
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Table 1. Model inputs and outputs.

Phase

Inputs Outputs

Initialization Phase

Construction Phase

PV generation data (based on daily
multi-climate characteristics)
Load demand data (based on daily
multi-season characteristics)
Maximum number of blocks
Minimum capacity per block
Cost limit
Total PV capacity
All inputs from the initialization phase
Generation capacity, load conditions, and
cost data for potential
block configurations
Short-term load forecast data

Define objective function (minimize
discrepancy between PV generation and
load demand curves)

Optimal block configuration:
Optimal number of blocks
Load allocation for each block

Operation and Maintenance Phase Real-time PV generation conditions System power balance status

(e.g., weather variations)

The algorithm initializes by inputting the basic parameters of the PV system, including
the PV generation capacity, load demand, maximum number of blocks, minimum capacity
per block, cost limit, and total PV capacity. The objective function is defined to minimize
the discrepancy between the PV generation curve and the load demand curve.

Construction Phase: During the construction phase, the algorithm evaluates each
potential block configuration based on input parameters such as generation capacity, load
conditions, and cost, ensuring that the total cost does not exceed the predefined limit. An
optimization algorithm (e.g., linear programming, genetic algorithm, or particle swarm
optimization) is then employed to solve the objective function, determining the optimal
block configuration and load allocation. The best block configuration is output as the
final solution.

Operation and Maintenance Phase: In the operation and maintenance phase, the
algorithm periodically acquires real-time data, including short-term load forecasts and
PV generation conditions, to dynamically adjust the operating states of each block and
maintain the power balance. If the total generation exceeds the load demand, the algorithm
selectively deactivates certain blocks. Conversely, if generation is insufficient, backup
blocks are activated, or other compensatory measures are implemented.

4. Case Study and Analysis
4.1. Microgrid in a Service Area in Yunnan

This study analyzes a real-world case of a highway service area located in the south-
western region of Yunnan Province. The service area is situated in the low-heat river
valley area of southwestern Yunnan, south of the Tropic of Cancer, within the tropical zone,
characterized by a typical subtropical monsoon climate. The surrounding region includes
three counties: A, B, and C. According to the Yunnan Annual Climate Bulletin (2024), the
area enjoys an annual average sunshine duration of 1900 to 2200 h, making it a Class-II
solar resource region with abundant solar energy potential. Based on these conditions and
the referencing literature [28-30], the simulated comprehensive PV output for the region is
shown in Figure 6.
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Figure 6. Typical daily PV generation output.

The service area has approximately 300 m? of rooftop space (including office buildings,
staff dormitories, power distribution rooms, and canteens) and 200 m? of parking area.
Additionally, 1300 m? of space is available per kilometer along the roadside slopes for PV
module installation, with a capacity of 0.15 kWp per square meter. The load demand peaks
during the morning and evening rush hours, correlating with commuting and travel pat-
terns, while the midday load is relatively low. Seasonal factors also significantly influence
electricity demand, with higher midday loads in summer and higher morning/evening
loads in winter. These load variations are critical for the design and operation strategies
of PV microgrids, particularly during peak hours and across different seasons. Based on
field-measured conditions, we estimated the typical daily load profile of the service area,
as shown in Figure 7.
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Figure 7. Typical daily load of the service area.

4.2. Analysis of Block-Based Layout Optimization in the Construction Phase

This section validates the effectiveness of the proposed PV microgrid operation and
maintenance optimization model in dynamically adjusting the operating states through a
real-world case study. A highway service area was selected as the research object to analyze
how the model optimizes the matching between PV generation and load demand under
varying weather conditions and load changes, thereby improving the overall performance
and economic efficiency of the system. The case study calculations were performed in a
Python 3.9 environment. Based on the mathematical model proposed in this study and
referencing the actual case, the analysis focuses on power balance and cost efficiency under
different scenarios (e.g., weather, seasons). Key parameters for the case study are listed in
Table 2.
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Table 2. Key parameters.

Parameter Value (Remarks)
Total number of blocks Npjoek 10 blocks
Total PV capacity Ciotal 500 kW
Coefficient ag in cost function a 1
Exponent bb in cost function b 0.32
Minimum block interval 10 kW
PV output data Ppy () Refer to Figure 6
Load data Pjy,q(f) Refer to Figure 7

This study analyzes the microgrid of a service area in southern Yunnan, optimizing
the load and PV output data through the dynamic block model to derive the optimal block
configuration. The capacities of the blocks are 10 kW, 20 kW, 40 kW, 60 kW, 60 kW, 60 kW,
60 kW, 60 kW, 60 kW, and 70 kW, corresponding to blocks 1 through 10. This configuration,
tailored to the specific conditions of the case, maximizes power dispatch flexibility while
ensuring economic efficiency.

4.3. Analysis of Dynamic Block Adjustment Optimization in Operation and Maintenance

Considering the uncertainty of PV output, especially under complex weather con-
ditions, this study analyzes PV power output under different weather scenarios. Based
on the annual weather frequency of the region (clear days: 35%, cloudy days: 30%, rainy
days: 25%, other weather: 10%), the optimal block configuration was determined through
weighted calculations. The daily power adjustment characteristics under different weather
conditions in autumn are illustrated in Figure 8. The optimization model effectively re-
duces the discrepancy between generation and load demand, particularly during midday
and evening periods with significant load fluctuations, by rapidly adjusting generation to
match demand.

Sunny da Cloudy da Overcast da
320 y y 320 y y 300 y
3003 ]
2603 e
2604 260 -
2405 ]
2203 20
200 o 1 o 1 o0, 0 1 W20 1 C Pz I N T | 2201 1 1

9:30 10:4512:0013:1514:30 15:45 10:45 12:00 13:15 14:30 1545 14:30 15:45
380 T T T T T T T 36 ] ﬂ/l LI B B [P T T
0.00 4 -\ verefe X N o] 0,004 /// S “— 0.064 -
,//,'(/
3.89 4 3.67 4 )//‘_,/ 3674
—— load power—— adjusted output power power difference

Figure 8. The autumn power dispatch curve for the service area (shaded periods indicate intervals
without PV output due to special circumstances).

As shown in Figure 8, during autumn rainy weather, the PV system in the highway
service area may fail to generate sufficient power due to significantly reduced solar radiation
and prolonged cloud cover. Consequently, there may be periods with no PV output, which
can be compensated by deploying energy storage systems or other power dispatch methods.

Figure 9 illustrates the on/off states of each block during different time periods on a
clear autumn day. Through dynamic adjustment, the system deactivates some blocks when
generation exceeds demand to avoid power surplus and activates backup blocks when
generation is insufficient to ensure that the load demand is met.
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Block Status (#1-#10) Time Block Status (#1-#10)

Active

B inactive

Figure 9. Typical power dispatch state diagram for a clear autumn day in the service area.

To address the power mismatch between the photovoltaic generation and actual
load demand in highway service area microgrids, the proposed case study derives an
optimal block disconnection scheme for a typical autumn day through numerical optimiza-
tion, achieving superior power balance performance. Theoretically, the model’s accuracy
improves with increased block partitioning, though the maximum number of blocks is
ultimately constrained by the physically allocable PV panels on site. Extensive experi-
ments under diverse climatic conditions demonstrate that the optimal block configuration
achieves 23.91% average power adjustment and 98.94% dispatch accuracy, confirming the
method’s reliability under complex weather conditions.

5. Conclusions

This study addresses the energy management and optimization challenges of pho-
tovoltaic microgrids in highway service areas within the mountainous regions of south-
western China by proposing a dynamic block optimization model. The model integrates
an intelligent adjustment mechanism and long short-term memory (LSTM) networks for
short-term PV output prediction. By determining the optimal block configuration during
the construction phase and dynamically adjusting the operating states of the blocks during
the operation and maintenance phases, the model significantly improves the utilization
efficiency of PV generation and the economic performance of the system. The key findings
are summarized as follows:

(1) Dynamic Block Optimization Mechanism: The proposed dynamic block optimiza-
tion model intelligently adjusts the partitioning of PV systems based on real-time load
demand and generation conditions. By flexibly activating or deactivating blocks, the model
achieves optimal matching between power supply and demand.

(2) LSTM-Based Prediction for Enhanced Stability: The LSTM network effectively
predicts short-term PV output and load demand, addressing challenges posed by weather
and seasonal variations. Accurate prediction results enhance the efficacy of dynamic
adjustment strategies, mitigating the impact of power fluctuations on system stability.

(3) Superior Performance Over Static Methods: The simulation results demonstrate
that the dynamic block optimization model outperforms traditional static partitioning
methods under diverse environmental conditions. Reduced operational costs and enhanced
system stability highlight the advantages of the dynamic strategy in complex terrains and
dynamic environments.
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(4) Dual Benefits of Economic and Environmental Efficiency: By optimizing the PV
layout and dynamically adjusting operational states, the model reduces reliance on the
main grid, lowers operational costs, and significantly reduces carbon emissions. This aligns
with the goals of green energy adoption and sustainable development.
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