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Abstract: Based on the characteristics and effective components of steel slag and desul-
furization gypsum, a new type of permeable reactive material was prepared by combin-
ing steel slag and desulfurization gypsum, and a simulation experiment of arsenic- and
antimony-contaminated groundwater remediation was carried out. A combination of X-ray
fluorescent, BGRIMM Process Mineralogy Analyzing System (BPMA), ICP-MS, and SEM-
EDS detection and analysis methods was used to investigate the effects of steel slag particle
size, desulfurization gypsum particle size, steel slag and desulfurization gypsum ratio, and
steel slag-desulfurization gypsum mixed test block particle size on the performance of the
permeable reactive wall to remove arsenic and antimony. The results show that a perme-
able reactive wall composed of steel slag (−4.75 + 1.18 mm) and desulfurization gypsum
(−13.2 + 9.5 mm) in a 4:1 ratio achieved removal rates of 91.85% for As and 90.58% for Sb,
reducing their concentrations below the drinking water standard. The purpose of using
steel slag and desulfurization gypsum to intercept heavy metals and toxic ions in surface
runoff was achieved. Arsenic was adsorbed, physically encapsulated, and lattice solidified
by C-S-H gel. This research provides a cost-effective and environmentally friendly solution
for the storage of steel slag and desulfurization gypsum while addressing heavy metal
pollution in groundwater.

Keywords: steel slag; desulfurization gypsum; permeable reactive barrier; groundwater
pollution; heavy metals; arsenic; intercepting material

1. Introduction
Arsenic pollution poses a serious threat to the health of humans and ecosystems [1].

For the human body, this threat is hidden because it may accumulate in plants to a con-
centration that is harmful to humans, while the plants themselves do not show any signs
of phytotoxicity [2]. In the mining industry, arsenic pollution is usually associated with
gold and copper mining and processing [3,4]. Arsenopyrite or other arsenic-bearing sulfide
minerals in the ore can cause soil pollution, and the contaminated soil can sustainably
cause secondary arsenic pollution in the water body, which is easy to spread the pollution
to a wider range during the flow process [5]. Once the soil is polluted by arsenic, it is very
difficult to control, and the treatment period is long [6,7]. It takes more than 100 years to
remove arsenic pollutants in the soil by plant absorption. In order to solve this problem,
scholars at home and abroad have proposed adsorption, solidification, and other treatment
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technologies, which have partially solved the problem of arsenic solidification, but the high
cost of treatment has discouraged the industry. Researchers have turned to the develop-
ment and optimization of arsenic pollution interception and control materials, limiting the
transmission of arsenic pollutants, and controlling arsenic pollution in a limited range at
the lowest cost [8].

Arsenic pollutants in water mainly exist in ionic and colloidal states [9]. In order to
intercept arsenic pollutants in water, coagulation/flocculation, precipitation, adsorption,
ion exchange, membrane filtration, bioremediation, electrochemical treatment, and other
technical means have been widely studied for decades [10–12]. These technologies have
shown advantages in different aspects in the laboratory, but adsorption is still the most
promising treatment method in terms of technical simplicity and cost-effectiveness [13].
Das et al. [14] compared four different adsorbents and verified the effectiveness of nano-
magnetite and nano-zero-valent iron on arsenic pollution. It was found that graphene oxide-
nano zero-valent iron nanohybrid is the most effective component for removing arsenic
pollution in water [15]. Aluminum oxide is also an effective arsenic adsorbent. Amorphous
aluminum oxide also has a higher adsorption capacity than crystalline aluminum oxide.
The adsorption rate of aluminum oxide to As(V) is the highest in the range of pH = 4~6 [16].

In contrast, the cost of using mineral materials as adsorbents for arsenic pollutants is
lower. Among them, natural laterite can reduce the concentration of arsenic in water by
about 10 µg/L [17]. Ordinary Portland cement can also be used to solidify and stabilize
arsenic pollutants, but cement is obviously not suitable as an interception material for
pollutants in water. Although many studies have developed new environmentally friendly
materials to replace ordinary Portland cement [18–20], the current research can only explain
that alkali-activated materials can be used to stabilize and solidify potentially contaminated
soil [21–23]. Fly ash and finely ground blast furnace slag can replace some cement in
geotechnical engineering [24], but there is no report on the successful application of similar
alternative environmentally friendly materials to arsenic pollutant interception materials.
Clay is a fine-grained natural raw material, which has long been widely used as an adsor-
bent for trace heavy metal ions [25]. The solidification ability of clay minerals to arsenic is
lower than that of heavy metals and organic matter, and the adsorption capacity of As (V)
is higher than that of As (III). Clay minerals are abundant in reserves, low in cost, good
in availability, high in specific surface area, good in adsorption, nontoxic, and have great
potential in ion exchange. Compared with other adsorbents, they have many comparative
advantages. Ionic arsenic can also be adsorbed by pyrite. It was found that the adsorption
rate of arsenic by pyrite was close to 100%, and there was a very fast adsorption rate and
low desorption rate [26]. Other natural and synthetic mineral materials, such as activated
carbon, activated alumina, zeolite, carbon nanotubes, metal organic frameworks, graphene
oxide, zero-valent iron, etc., have also been applied to the study of arsenic removal by
adsorption [27]. Some industrial by-products, such as steel slag and fly ash, are also used
as low-cost adsorption materials [28,29].

This study proposes the synergistic utilization of steel slag (SS) and desulfurization
gypsum (DG), two underutilized industrial solid wastes, as permeable reactive materials for
the remediation of arsenic (As) and antimony (Sb)-contaminated water. We systematically
investigated key parameters, including particle size optimization of SS and DG, their
mass ratio, residence reaction time, and the synergistic mechanism of arsenic stabilization.
This study is the first to integrate SS and DG into a permeable reactive barrier system,
addressing both the technological gap of low-cost arsenic interception materials and the
practical challenges of industrial waste stockpiles. This study not only advances the design
of eco-friendly permeable reactive barrier systems but also conforms to the principles of
circular economy and provides a scalable solution for mining and industrial areas.
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2. Experiment
2.1. Raw Materials

Collection of soil from an arsenic-contaminated area in Yunnan was carried out. In
total, 100 kg of contaminated soil was mixed with 25 kg of tap water and soaked, left for
24 h, and the supernatant was taken as the polluted water for the test.

The steel slag (SS) used in the test was obtained from a drum of steel slag provided by
Baowu Huanke Wuhan Metal Resources Co., Ltd. in Wuhan, Hubei Province, China. The
steel slag was broken and sieved into the following four particle sizes: +9.5, −9.5 + 4.75,
−4.75 + 1.18, and −1.18 mm.

The desulfurization gypsum (DG) used in the test was provided by a company in
Handan, Hebei Province. In order to investigate the effect of the particle size of desulfur-
ization gypsum on the filtration of polluted water by steel slag-desulfurization gypsum
permeable reactive materials, desulfurization gypsum needs to be made into particles with
different particle sizes. It was put into a drying box, with the temperature set to 50 ◦C for
24 h. The dried desulfurization gypsum was placed in an angle grinder for continuous
grinding for 1 h. Afterward, 800 g of powdered desulfurization gypsum was transferred
into a mixer, where 17% water was added. The mixture was stirred for 5 min and then
placed into a self-sealing bag to form into a solid piece. The desulfurization gypsum block
was put into the roller press ball machine and pressed into a flat ball with a diameter of
2 cm. The desulfurization gypsum ball was placed in the oven set to 55 ◦C, and the drying
time was 24 h. A hammer was used to crush the desulfurization gypsum ball into particles
of different sizes, and four particle sizes of +13.2, −13.2 + 9.5, −9.5 + 4.75, and −4.75 mm
were screened.

2.2. Experimental Methods
2.2.1. Experimental Materials

In the surface runoff of the contaminated area, the As and Sb contents were 75 and
85 µg/L, respectively, and the Cd content was 42 µg/L, far exceeding the Class III of GB/T
14,848 (hereinafter referred to as “standard”). The Cr content was within the standard of
drinking water (50 µg/L), while the Pb, Zn, and Cu contents were slightly higher than
the standard of drinking water. To maintain the contaminated water concentration, the
experiment was carried out by using tap water to leach contaminated soil and obtain
leachate (i.e., leachate of contaminated soil [TLY]) instead of contaminated surface runoff
(i.e., actual surface runoff [WRJL]). The composition pairs of harmful elements in WRJL,
TLY, and standard are shown in Table 1.

Table 1. Composition of contaminated surface runoff and leachate from contaminated soil (unit:
µg/L).

Elements As Sb Cr Pb Cd Cu Hg Zn

WRJL 75 85 7.4 12 42 1580 <0.01 1070
TLY 81 86 7.1 15 51 1360 <0.01 1550

Standard 10 / 50 10 5 1000 1 1000

Table 1 reveals that the contents of harmful elements, namely, As, Sb, Cd, Pb, and Zn,
were slightly higher in TLY than in WRJL, and the contents of Cr and Cu were slightly
lower in WRJL. The content of heavy metal elements was less than 0.01 µg/L. As the
overall element composition was roughly consistent with that of the contaminated soil
collected on-site, the contaminated leachate could thus be used to replace the contaminated
surface runoff.
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2.2.2. Physicochemical Properties of Experimental Materials

The mass fractions of the major elements in the two materials were analyzed using
X-ray fluorescence spectrometry (XRF). The chemical compositions of SS and DG are shown
in Table 2. The physical phase compositions of SS and DG are shown in Figure 1a,b. In
addition, the surface morphology of some composites was examined using BPMA, as
shown in Figures 2 and 3.

Table 2. Chemical composition of steel slag and desulfurization gypsum (unit: %).

Elements Ca Fe Mg Mn Si Al As

Steel slag (SS) 30.35 18.96 4.08 2.14 6.83 1.58 0
Desulfurization gypsum (DG) 21.8 0.251 0 0 0.876 0.328 0

Elements Cd Cr Cu Hg Pb Sb Zn
Steel slag (SS) 0 0.123 0.001 0 0 0 0.012

Desulfurization gypsum (DG) 0 0.001 0 0 0 0 0.003
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Table 2 indicates that the steel slag mainly contains calcium (30.35%), iron (18.96%),
silicon (6.83%), and magnesium (4.08%), with other elements making up the remaining
percentage. Figures 1a and 2 combined show that the main materials of steel slag are
magnesium ferrite, calcium ferrite, and calcium silicate, which have different degrees of
encapsulation among one another. The quartz content is 3.94%, which is embedded in
the edge or interior of magnesium ferrite and calcium ferrite, and the contents of other
minerals, such as apatite, fluorite, and calcium iron pyroxene, are less.

The main elements in desulfurization gypsum are calcium, silicon, aluminum, iron,
and other small trace elements. Figures 1b and 3 combined show that the main mineral
in desulfurization gypsum is dihydrate gypsum (93.18%), followed by ordinary pyroxene
(2.84%) and quartz (2.15%).

2.2.3. Permeable Reactive Barrier Simulation Experiments

The steel slag and desulfurization gypsum of different particle sizes were mixed
proportionally and placed in a 1000 mL beaker with the height of the material fixed at
10 cm. Then, 400 mL of polluted water was taken and poured into the beaker. After a certain
period of standing time, it was poured out and filtered to obtain the treated contaminated
water, and the arsenic and antimony content was measured. The experimental mixing
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proportions of permeable reactive materials were as shown in Table 3. Series A, B, and
C were designed to control the particle sizes of SS (+9.5, −9.5 + 4.75, −4.75 + 1.18, and
−1.18 mm), DG (+13.2, −13.2 + 9.5, −9.5 + 4.75, and −4.75 mm), and the ratios of SS to
DG in SS-DG composites (4:1, 2:1, 1:1, and 1:2), respectively. Series D shows the effect of
the particle size of the specimen after SS-DG mixing on the filtration of polluted water.
Specifically, −0.074 mm steel slag and desulfurization gypsum were mixed in the ratio of
4:1, and then 15% water was added and stirred well. The uniformly mixed specimens (about
12 g at a time) were put into the press mold, and the pressure of the air compressor was set
at 20 kN. The mixed specimens were broken into different-sized particles with a hammer
and screened into the following three fractions: 13.2 mm, +9.5 mm, −9.5 + 4.75 mm, and
−4.75 mm. Series E was simulated by controlling the different residence times of the
polluted water through the thickness reaction wall with residence times set to 20, 60, 100,
200, 400, and 800 s. For each series, six sets of parallel experiments were conducted, and
the average value was calculated as the final result.

The concentrations of arsenic and antimony in the water were determined by Induc-
tively Coupled Plasma Mass Spectrometry (ICP-MS, Optima 8300, PerkinElmer, USA) and
the corresponding removal rate were calculated. The removal rate was calculated according
to Equation (1). Desulfurization gypsum and steel slag particles of different sizes are shown
in Figures 4 and 5.

R =
(C0 − Ct)

C0
× 100% (1)

where C0 and Ct are the initial concentration of heavy metal ions and the concentration
after permeation reaction (µg/L), respectively.
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Table 3. Mixing proportions of permeable reactive materials.

No. Parameters The Particle Size
of SS/mm

The Particle Size
of DG/mm SS: DG

The Particle Size
of SS-DG

Materials/mm

Residence
Time/s

A The particle
size of SS

+9.5, −9.5 + 4.75,
−4.75 + 1.18, and

−1.18
Unbroken 1:1 — 20

B The particle
size of DG −4.75 + 1.18

+13.2,
−13.2 + 9.5,

−9.5 + 4.75, −4.75
1:1 — 20

C SS: DG −4.75 + 1.18 −13.2 + 9.5 4:1, 2:1, 1:1,
1:2 — 20

D
The particle

size of SS-DG
materials

−0.074 −0.074 4:1 13.2, +9.5, −9.5 +
4.74, −4.75 20

F Residence
time −4.75 + 1.18 −13.2 + 9.5 4:1 — 20, 60, 100,

200, 400, 800

3. Results and Discussion
3.1. Effects of Steel Slag Particle Size on the Removal of Arsenic and Antimony

Figure 6 reveals that the concentration of As in polluted water decreases with the
decrease in steel slag particle size, that is, the smaller the steel slag particle size, the better
the removal effect of As. The concentration of Sb in polluted water decreases first and then
increases with the decrease in steel slag particle size, with the removal rate of Sb increasing
first and then decreasing with the decrease in steel slag particle size. The steel slag of
−4.75 + 1.18 mm has the best removal effect on Sb. On the whole, when the particle size of
steel slag is −4.75 + 1.18 mm, the removal effect of Sb is the best, and the removal rate can
reach 56.98%. At this time, the removal rate of As reaches 76.54%, which is a good removal
performance. This is due to the fact that when the particle size of steel slag decreases,
the SS-DG composite material has a larger specific surface area and adsorption sites and



Processes 2025, 13, 1033 8 of 15

therefore exhibits adsorption of more As [30]. However, when the particle size of steel slag
is less than 1.18 mm, the pore size of the composite material becomes smaller, which may
weaken the adsorption capacity of Sb [31].
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3.2. Effects of Particle Size of Desulfurized Gypsum on the Removal of Arsenic and Antimony

Figure 7 shows that with the decrease in particle size of desulfurization gypsum, the
content of As in polluted water decreases first and then increases, and the removal of As in-
creases first and then decreases. The desulfurization gypsum of −9.5 + 4.75 mm has the best
removal effect on As. Figure 7 reveals that with the decrease in particle size of desulfurized
gypsum, the content of Sb in the polluted water decreases first and then remains basically
unchanged [32]. When the particle size of the desulfurized gypsum is −13.2 + 9.5 mm, the
removal effect of Sb begins to appear. Considering that the crushing processing cost of
−13.2 + 9.5 mm desulfurized gypsum is lower than that of −9.5 + 4.75 mm desulfurized
gypsum and it achieves an As removal rate of 81.85% while being less prone to muddying,
−13.2 + 9.5 mm desulfurized gypsum is preferred.
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3.3. Effects of the Ratio of Steel Slag and Desulfurization Gypsum on the Removal of Arsenic
and Antimony

Figure 8 shows that the smaller the mass ratio of steel slag to desulfurized gypsum,
the greater the As content in the polluted water, indicating that the removal effect of As
also worsens. When the ratio of steel slag to desulfurized gypsum is 4:1, the content of As
in polluted water is 9.1 µg/L, which is lower than the standard of drinking water. Similarly,
Figure 8 indicates that with the decrease in the mass ratio of steel slag to desulfurized
gypsum, the Sb content in the polluted water after treatment gradually increases, and the
removal rate of Sb also decreases.
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3.4. Effects of Particle Size of SS-DG Mixed Test Block on the Removal of Arsenic and Antimony

During the test, a large number of small bubbles emerged on the unbroken SS-DG
mixed test block, indicating that the mixed test block has a porous structure. The mixed test
blocks of +9.5, −9.5 + 4.75, and −4.75 mm were pulverized during the test, and obvious
colloids were formed in the solution. The particle volume was significantly reduced,
where the smaller the particle size of the test block, the more serious the pulverization
phenomenon. The unbroken and +9.5 mm SS-DG mixed test block has a good effect on
the removal of As and Sb, while the +9.5 mm mixed test block has the best removal effect
on As and Sb. At this time, the removal rate of As is 93.33%, and the removal rate of Sb is
82.91% (Figure 9).

Table 4 shows the comparison of the removal effect of heavy metals by direct mixing
of steel slag and desulfurization gypsum and making mixed test blocks. It reveals that
although the SS-DG mixed test block as a filter material has a better removal effect on
heavy metals than direct mixing, the As content after treatment is lower than the drinking
water standard, while the Sb content is higher than the drinking water standard. Given the
high production cost of the SS-DG mixed test block and the ease of pulverizing with the
increase in use time, direct mixed steel slag and desulfurization gypsum are still used as
filter materials.
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Table 4. Comparison of the removal effect of heavy metals by direct mixing of steel slag and
desulfurization gypsum and making mixed test blocks.

Filter Material Composition As Content
(µg/L)

As Removal Rate
(%)

Sb Content
(µg/L)

Sb Removal Rate
(%)

+4.75 mm − 1.18 mm steel slag,
−13.2 mm + 9.5 mm desulfurization

gypsum mixed with 4:1.
9.1 88.77 21 75.58

Mixed test block
Unbroken 6.1 92.47 15 82.56
+9.5 mm 5.4 93.33 14.7 82.91
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3.5. Permeable Reactive Wall Thickness Simulation Test

The steel slag with a particle size of −4.75 + 1.18 mm and the desulfurization gypsum
block with a particle size of −13.2 + 9.5 mm were mixed uniformly at a ratio of 4:1 and then
loaded into six 1000 mL beakers to a height of 10 cm. Assuming that the flow rate of surface
runoff is 0.1 m/s, 400 mL of polluted water was taken and poured out after being left to
stand in the beakers for 20, 60, 100, 200, 400, and 800 s, respectively. The thicknesses of the
permeable reactive wall were simulated to be 2, 6, 10, 20, 40, and 80 m, respectively [33].
After filtration, the contents of arsenic and antimony were measured.

With the increase in the thickness of the permeable reactive wall, the contents of As
and Sb in the treated polluted water gradually decrease, and the decreasing trend gradually
slows down (Figure 10). When the thickness of the permeable reactive wall is 40 m, that is,
the polluted water stays in the beaker for 400 s, the content of As in the treated polluted
water is 6 µg/L, and the content of Sb is 3.9 µg/L, which is lower than the standard of
drinking water. The removal rate of As is 91.85%, and the removal rate of Sb is 90.58%.
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3.6. EDS Analysis of Arsenic Enrichment Area

Figure 11 shows the microscopic morphology of the medium after treatment of contam-
inated water with the permeation reactive material made from steel slag and desulfurization
gypsum. According to the results of Table 5 EDX elemental composition, it can be seen
that the main hydration products of the permeable reactive composites are C-S-H gel and
Ettringite. It is suggested that As is mainly solidified by the C-S-H gel formed by the
hydration of steel slag and desulfurization gypsum. The C-S-H gel has a large specific
surface area and pore space, which can adsorb and physically encapsulate arsenic ions and
their compounds [34]. The interception mechanism of arsenic and associated pollutants
using all-solid waste interception materials is shown in chemical Equations (2)–(5) [35].
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Table 5. EDX element composition of the compounds in SEM images (wt.%).

Compounds Ca O Al Si S Fe As

Point 1 Ettringite 63.31 8.51 4.89 5.99 16.02 0.81 0.47
Point 2 C-S-H gel 17.89 43.36 2.42 29.25 0.61 6.47

Arsenic leaching mechanism (in pollution site):

As2S3 + O2 + H2O→2AsO4
2− + 3SO4

2− + 10H+ (2)
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Arsenic stabilization mechanism (in the intercepting material layer):

CaO+ SO4
2− + H+→CaSO4 + H2O (3)

CaO + AsO4
2− + H+→CaAsO4 + H2O (4)

Arsenic curing mechanism (in the intercepting material layer): typical steel slag
contains a large amount of divalent metal oxide components (CaO + MgO + FeO) [36],
and the total content can reach more than 70%. These components can stimulate the
sediment colloids intercepted by the interception wall to form C-S-H gel and can also
capture Al2O3 and Fe2O3 in the steel slag silicate minerals with the participation of CaSO4

to form ettringite and other double salt minerals (shown in Equation (5) and Figure 11).
Arsenic-containing contaminants stabilized as CaAsO4 minerals are further solidified in
C-S-H gel and Ettringite minerals [37].

2(Al3+,Fe3+) + 12(Ca2+, Mg2+, Fe2+) + 18OH− + 6SO4
2− + 55H2O→2(3(CaO, MgO,

FeO)·(Al2O3, Fe2O3)·3(CaSO4)·32(H2O)) (ettringite)
(5)

The ionic and colloidal arsenic elements in the water were intercepted by the intercep-
tion material layer (Figure 12). Among them, the ionic arsenic element was stabilized as
CaAsO4 mineral to lose migration activity and is wrapped and solidified with colloidal
arsenic element in the newly formed C-S-H gel and ettringite mineral, thereby eliminating
arsenic pollution in the water body [38].
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4. Conclusions
(1) The effects of the particle sizes of steel slag and desulfurization gypsum, the ratio of

steel slag to desulfurization gypsum, and the particle size of the SS-DG mixed test
block on the removal of arsenic and antimony by the permeable reactive wall were in-
vestigated. Results indicated that the steel slag with a particle size of −4.75 + 1.18 mm
and the desulfurization gypsum block with a particle size of −13.2 + 9.5 mm mixed
evenly at a ratio of 4:1 make a 40 m permeable reactive wall. After treatment, the As
content in the polluted water was 6 µg/L, and the Sb content was 3.9 µg/L, which
was lower than the standard of drinking water. The removal rates of As and Sb were
91.85% and 90.58%, respectively. The purpose of using steel slag and desulfurization
gypsum to intercept heavy metals and toxic ions in surface runoff was achieved.
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(2) The formation of C-S-H gel and ettringite in the dielectric material is the main way
to stabilize As. This stabilization occurs through several processes, including the
adsorption, physical encapsulation, and lattice solidification of C-S-H gel, as well as
the ion exchange reaction of ettringite with arsenic ions and arsenate. Together, these
mechanisms can synergistically improve the stabilization effect of As.

(3) Although this study confirmed the efficient removal of arsenic and antimony by SS-
DG composites, the following limitations and research gaps still exist: the experiments
were based on laboratory simulation conditions without considering the effects of
the dynamic flow of groundwater and the interfering effects of competing ions in
practical applications; the long-term stability of the materials and the adsorption
mechanism still need to be verified; in addition, the engineering feasibility of large-
scale applications and the assessment of the environmental benefits of the whole
life cycle. In addition, the engineering feasibility of large-scale application and the
assessment of the environmental benefits of the whole life cycle have not been carried
out. In the future, it is necessary to combine dynamic flow field experiments and field
pilot tests to improve the practicality and sustainability of the technology.
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