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Abstract: This study evaluates the improvement of numerical accuracy in the PSA model
for ethanol dehydration using molecular sieves. By incorporating cubic state equations for
vapor density determination, significant errors were identified when applying the ideal gas
assumption to the ethanol–water mixture, particularly under moderate pressure conditions.
The integration of the Peng–Robinson equation demonstrated a 5–10% improvement in cal-
culation accuracy compared to the ideal gas law. This enhancement is crucial for achieving
reliable predictions under non-ideal conditions, enabling more accurate estimations of real
process dynamics across varying scenarios. Notably, improved accuracy in the PSA model
is essential for designing more efficient and reliable industrial applications, especially at
moderate pressures. The results indicate that the Peng–Robinson equation provides a more
accurate representation of the density of the ethanol–water vapor mixture, contributing
significantly to more accurate simulation results of the PSA process.

Keywords: adsorption; ethanol; pressure swing adsorption; ethanol dehydration;
zeolite clinoptilolite

1. Introduction
In recent years, global biofuel production, including ethanol, has experienced a signifi-

cant increase, with the United States, Brazil, and China emerging as major producers. This
growth stems from global energy reforms aimed at reducing greenhouse gas emissions in
the medium and long term [1,2]. Ethanol, a highly sought-after raw material, distinguishes
itself for its involvement in a diverse range of products, including solvents, refrigerants,
preservatives, antiseptics, perfumes, alcoholic beverages, and fuels [3–5]. Fuel ethanol,
a concentrated alcohol used as an additive to gasoline, undergoes purification processes
to eliminate residual water from prior production stages. While distillation is the most
common technology, followed by extractive distillation, dehydration by molecular sieves
offers a more energy-efficient pathway [6]. However, areas for improvement and further
development in this process still exist.

In molecular sieve adsorption processes, one or more components are extracted from
a gas or liquid stream and adhered to the surface of a solid adsorbent. Industrial processes
typically utilize solid particles arranged in a fixed packed bed. To separate a binary mixture
into the adsorption column, the ethanol–water mixture undergoes pressurization and is fed
through the bed. Figure 1 represents a schematic representation of the adsorption process
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where solid particles in the bed capture water from the blend in a step known as adsorp-
tion [7]. As the bed reaches saturation, the flow halts, requiring column regeneration. The
bed can be either thermally regenerated or fed under vacuum pressure with recirculation
of the enriched product and regenerated by the desorption process. This process, termed
pressure swing adsorption (PSA), is extensively applied in separating gaseous mixtures [8].
In the liquid phase, it is focused on extracting organic compounds from water, while in the
gas phase, it eliminates water from gaseous hydrocarbons and solvents from the air [9].
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Understanding the thermodynamic properties of the pure components of the ethanol–
water binary mixture is essential to improve the comprehension of ethanol dehydration.
Density, a crucial parameter, has often been modeled using the ideal gas law in earlier
investigations of pressure swing adsorption [10–16]. The literature offers information on
the thermodynamic properties of the liquid phase [17] and includes experimental studies
on the viscosity of ethanol at temperatures ranging from 298.15 to 328.15 K [18]. Addition-
ally, there are studies related to binary benzene–ethanol or water–ethanol mixtures [19,20],
applications of state equations associated with the study of the ethanol liquid phase [21,22],
and works correlated to the study of the specific volume of ethanol mixtures and other
alcohols in liquid phase in temperature ranges from 273.15 to 480 K at different pres-
sures [23]. Studies carried out for alcohols in pure state are reported [24–28] at pressures of
2763.39 atm [29,30] and temperatures from 310 to 480 K at 1973.85 atm [31–33]. There
are also studies of thermodynamic properties near to the critical point [34–36]. However,
information regarding ethanol in the gas phase is limited compared to studies in the liquid
phase [37].

The Peng–Robinson equation [38] emerges as a viable and extensively used option in
the oil industry for predicting the thermodynamic properties of both pure components and
binary mixtures [39]. In this research, the error linked to applying the ideal gas law equation
for calculating the density of an ethanol–water vapor mixture in the numerical solution of
the PSA model was contrasted again with those derived using the Peng–Robinson equation,
uncovering more precise outcomes resulting from the inclusion of a more rigorous state
equation, including a correlation for binary interaction parameters in gaseous mixtures.
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Proposing the integration of these elements into the numerical solution of pressure swing
adsorption introduces a novel concept, given that the existing model heavily relies on
the perfect gas law equation, effective under atmospheric conditions at high temperature.
However, our investigation demonstrates that, even at moderate pressure (<10 atm), this
error becomes significant. Studies simulating adsorption by molecular sieves for the
separation of ethanol–water mixture typically assume the ideal gas equation. Our work
challenges this assumption, highlighting its limitations, particularly under moderate-
elevated pressures.

Earlier investigations into adsorption models have thermal effects associated with
water adsorption in a packed column with zeolite 3A using a temperature swing adsorption
model [4]. For pressure swing adsorption models, Kupiec et al. [7] performed a theoretical
analysis, verifying it experimentally at a laboratory scale, demonstrating concordance
between experimental and simulation results at a temperature of 373.15 K and 1 atm. In
their investigation of water removal from ethanol, Gutiérrez-González et al. [40] solved
two mathematical models and evaluated breakthrough curves at pressures of 3 atm and
433 K. Karimi et al. [13] formulated the numerical solution for a PSA model to separate
an ethanol–water binary mixture, analyzing breakthrough curves for the molar fraction
of water under various operational conditions. Rumbo Morales et al. [14] introduced a
control structure for an adsorption process using a non-linear mathematical model and
designed two controllers (Optimal MPC and Fuzzy PD + I) with the primary objective of
maintaining optimal ethanol purity for use as a fuel.

This study demonstrates that existing equations of state reported in the literature
fail to accurately represent the binary behavior of water and ethanol at moderated and
high temperatures. Consequently, we assessed the use of rigorous methods that inte-
grate the Peng–Robinson equation with correlations for binary interaction parameters in
gaseous mixtures. By incorporating this approach, the accuracy of density calculations
in the pressure swing adsorption (PSA) model for ethanol dehydration is significantly
enhanced. When compared with experimental data using zeolite 3A as the adsorbent,
the Peng–Robinson equation reduced prediction errors by 5–10% compared to the ideal
gas law. These findings provide critical insights into designing PSA processes in indus-
trial applications, where accurate thermodynamic predictions are essential for assessing
operational efficiency. The main contribution of this paper is addressing the problem of
determining, through exhaustive numerical evaluations, whether the additional computa-
tional cost of incorporating a rigorous cubic state equation is justified for solving a PSA
process model using a finite difference algorithm. Furthermore, these findings aim to be
valid for any type of computational finite element algorithm. This paper is structured as
follows: Section 2 outlines the preliminary problem formulation, mathematical model and
process parameters, and solution methodology. In Section 3, we present results and engage
in discussions of numerical findings, which were validated using experimental data from
the literature covering a temperature range of 373.15 K to 1573.15 K and pressures from
0.1 atm to 4 atm. Finally, Section 4 provides the conclusions.

2. Preliminaries and Problem Formulation
2.1. Preliminary Problem Formulation

The motivation for this study stems from the crucial need to incorporate a rigorous
state equation to compute gas-phase density in water–ethanol mixtures. This is essential for
improving the accuracy in the numerical analysis of ethanol dehydration process through
adsorption [4,7,11,14]. The existing literature predominantly employs the ideal gas equation
(Equation (1)) for density calculations [4,7,10,11,40]. The extensive use of the ideal gas
equation in prior studies underscores the need to make a transition towards a more rigorous
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state equation which aims to enhance the precision of gas-phase density calculations in the
numerical solution of the ethanol dehydration process via adsorption.

ρ =
PM
RT

(1)

The proposed addition of a more rigorous state equation was implemented and
validated using existing data from the literature for the binary mixture. The experimental
data available in the literature reveals extensive studies conducted in the liquid phase [36].
Despite the wealth of information in the liquid phase, limited data exists on the density of
the gaseous phase water–ethanol mixtures [36,40], and there is similarly scarce literature
for pure components. The lack of sufficient experimental information makes it impractical
to calculate this parameter using a specialized simulator. Instead, our approach focuses on
the integration of a FORTRAN language programming code capable of calculating density
as functions of pressure, temperature, and binary mixture composition. This strategy aligns
with the goal of developing a practical solution for the numerical solution of the pressure
swing adsorption mathematical model.

The following comments are in order to justify the use FORTRAN language in this
research. Despite the existence of more modern programming languages, such as Python
and C++, FORTRAN was chosen for this study due to its proven efficiency in solving
complex numerical problems in scientific simulations. FORTRAN has stood the test of time
and continues to be widely used in both industry and academia for high-precision calcu-
lations. Its optimized performance in numerical computations, particularly in handling
large datasets and solving advanced mathematical models, makes it an ideal choice for
simulations like pressure swing adsorption (PSA). Moreover, FORTRAN is highly compat-
ible with optimized mathematical libraries, which facilitated the implementation of the
PSA model and the integration of rigorous state equations in this research. The decision to
use FORTRAN also reflects its historical and continued relevance in scientific computing,
particularly in fields that require robust numerical solutions.

2.2. Mathematical Model

A mathematical model, based on rigorous mass and momentum balances, is con-
sidered for the purpose of efficiently separating water from a binary mixture containing
95% ethanol and 5% water. The adsorption process employs clinoptilolite zeolite as the
adsorbent agent and operates under precisely controlled isothermal conditions, with the
objective of producing anhydrous ethanol, as detailed by Kupiec et al. [4]. The assump-
tion of a constant process temperature, both in time and space, serves as a foundational
element in this comprehensive mathematical model. The key assumptions guiding this
model include:

• Only one component is adsorbed from the ethanol–water mixture.
• The pressure drop in the column packing adheres to the Ergun equation.
• Adsorption equilibrium conforms to the Dubinin–Radushkevich equation.
• Mass transfer resistance in the gas phase is considered negligible.
• Dispersion effects in the gas stream are deemed negligible.
• Adsorbent granules are assumed to have a spherical shape.
• The process is maintained as isothermal throughout.
• The mass transfer within the granule is appropriately described by the homogeneous

diffusion mass transfer model.
• The kinetics of mass transfer within the granules are effectively described by the linear

driving force (LDF) model.
• The temperatures of both phases remain constant over both time and space.
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The equations governing this model (Equations (2)–(8)) [4,7] stem from a set of funda-
mental balances. The general mass balance is expressed as follows:

u
P

∂P
∂z

+
∂u
∂z

− ε

P
∂P
∂t

+

(
ρP(1 − ε)RT0

MwP

)
[ksa(q*

m − q−
m)] = 0 (2)

The water mass balance is articulated by the following:

u
∂ymol

∂z
+ ε

∂ymol
∂t

+

(
ρP(1 − ε)RT0

MwP

)(
1 − ymol

)
[ksa(q*

m − q−
m)] = 0 (3)

The momentum balance equation can be described as the following:

∂P
∂z

+

(
150µg(1 − ε)2u

d2
pε

3

)
+

(
1.75(1 − ε)ρgu2

dpε3

)
+

M
RT0

∂Pu
∂t

= 0 (4)

The general mass balance takes into account various factors such as superficial velocity
(u), pressure (P), bed porosity (ε), pellet density (ρp), gas density (ρg), ideal gas constant (R),
temperature (T0), average equilibrium water content (q*

m), averaged bed water content (qm),
molar mass of water (Mw), molar mass (M), and mass transfer coefficient in solid phase
(ksa). The model comprehensively reflects the intricate relationship between these variables,
offering insights into the adsorption process. Similarly, the water mass balance introduces
additional elements such as the change in the water mol fraction (ymol). This equation
captures the dynamic behavior of water vapor within the adsorption system, considering
factors like bed porosity, pellet density, gas constant, temperature, molar mass mixture,
mass transfer coefficient, average equilibrium water content (q*

m), and current content
water (qm). The momentum balance equation further extends the model by encompassing
the Ergun equation, which operates under both laminar and turbulent flow conditions. This
inclusion introduces parameters like gas viscosity (µg), the diameter of adsorbent pellet
(dp), and gas density (ρg). The Ergun equation plays a pivotal role in describing pressure
drop within the packed column, offering a comprehensive representation of momentum
dynamics. Additionally, other pivotal equations for this mathematical model include the
Dubinin–Raduschkevich (D-R) (Equation (5)) equation, which characterizes adsorption
equilibrium, relating the pellet equilibrium water content (q∗m) to process temperature,
pressure, and concentration.

q∗
m = qmsexp

[
−b(Tln(Psat,w/Pymol))

2
]

(5)

The linear driving force equation (LDF) (Equation (6)) is another crucial element,
employed to elucidate the mas transfer rate. This amalgamation of equations forms the
backbone of the mathematical framework, facilitating a comprehensive understanding of
the adsorption process and its dynamics.

∂qm/∂t = ksa(q∗
m − qm) (6)

The initial conditions at the beginning of adsorption step are as follows (Equation (7)):

0 ≤ z ≤ L, t = 0;
-
qm = 0, ymol = 0 (7)

The boundary conditions for the adsorption step are determined by the feed conditions
to the adsorption system (Equation (8)):

0 ≤ z ≤ L, t = 0;
-
qm = 0, ymol = 0 (8)
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The complete dataset used for solving the mathematical model (2)–(8), along with its
respective sources, is available in reference [40]. This dataset has not been included in this
paper to avoid unnecessary length and to maintain focus on the key results.

2.3. Cubic State Equation Parameters

Density calculation for a pure component using the Peng–Robinson equation requires
knowledge of critical properties, including pressure and temperature, as well as the acentric
factor specific to the component under evaluation. Furthermore, in the case of a binary
mixture, the program incorporates a correlation to calculate binary interaction parameters
(kij). Equation (9) embodies the Peng–Robinson equation, a cornerstone in the field of
thermodynamics and widely used in chemical engineering studies [37–41]. This equation
provides a robust framework for predicting thermodynamic properties, offering a compre-
hensive and accurate approach for density calculations essential for the numerical solution
of the ethanol dehydration process via adsorption.

P =
RT

v − b
− a(T)

(v (v + b) + b(v − b))
(9)

In Table 1, the critical properties of water and ethanol are summarized [42]. These
properties are essential for the calculations in the Peng–Robinson equation, which will be
used to predict the thermodynamic behavior of these components under various conditions.
Understanding these properties is crucial for accurately modeling the density and other
related thermodynamic properties in the pressure swing adsorption (PSA) process for
ethanol dehydration.

Table 1. Critical properties of water and ethanol.

Molar Weight
g/mol ω TC

K
PC

MPa ZC
VC

m3kmol−1
Tn
K

Ethanol 46.07 0.644 513.9 6.38 0.240 0.1673 351.4
Water 18.01528 0.345 647.1 22.06 0.229 0.0560 373.2 1

1 Data compiled under standard conditions from [42].

To calculate density, the program uses Equations (10)–(12) for the calculation of P-R
equation parameters of pure components [39]. For the calculation of density in a binary
mixture, it is imperative to consider the correlation outlined in Equations (12)–(15) [39].

a = 0.45724(R2T2
c/PC)α (10)

b = 0.7780(RTc/Pc) (11)

α =
[
1 + m

(
1 − T1/2

r

)]2
(12)

m = 0.37464 + 1.54226ω− 0.26992ω2 (13)

Equations (12) and (13) introduce binary empirical parameters aimed at enhancing the
accuracy of predicting mixture thermodynamic properties while preserving the predictive
nature of the procedure. The correlation guiding this process is expressed as follows:

1 − kij =
[
2
(
TciTcj

)1/2/
(
Tci + Tcj

)]Zcij
(14)

Zcij =
(
Zci + Zcj

)
/2 (15)
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Here Zci and Zcj denote the critical compressibility factors for both components. For
the binary mixture, parameters a and b are replaced by am and bm with the following mixing
rules [26].

am = ∑
i

∑
j

xixj
(
aiaj
)1/2(1 − kij

)
(16)

bm = ∑
i

xibi (17)

To calculate density in the adsorption column, the Fortran language program requires
operating pressure and temperature. In cases involving the calculation of water–ethanol
mixture density, the program employs specific instructions using the fixed-point method
to compute the specific volume and subsequently obtain mixture density. The fixed-point
method is an iterative scheme based on the rearrangement of a function f(x) = 0, where the
variable x is rearranged explicitly:

x = g(x) (18)

Equation (18) provides a formula to predict a new value of x (specific volume) based on
its value in the previous iteration [43]. With a given initial value for the root xi, Equation (18)
is used iteratively to obtain a new approximation xi+1, as shown in the following iterative
formula (Equation (19)) [43]:

xi+1 = g(xi) (19)

The method requires the calculation of the approximate error using the normalized
error formula (Equation (20)) [43]:

εa =
∣∣ (x i+1 − xi

)
/xi+1

∣∣100% (20)

2.4. Solution Methodology

The solution methodology for developing the software for the numerical solution of
pressure swing adsorption (PSA) model in the ethanol dehydration process is outlined in
the following stages:

Stage 1: Implementation of the Peng–Robinson equation.

In the initial stage, the sourced code for the Peng–Robinson equation (Equation (9))
has been implemented as a function module in a subroutine (Equation (21)).

g(v) = bm +
RT

P + am
v(v + bm) + bm(v − bm)

(21)

This equation plays a crucial role in accurately calculating the density of the gaseous
state ethanol–water binary mixture with predetermined precision. It is a function of
temperature, pressure, and composition of the binary mixture.

Stage 2: Subroutines for specific volume and density calculation.

The second stage involves creating two subroutines that utilize the fixed-point iterative
method to calculate the specific volume and density in the numerical solution calculations
(Equations (9)–(17)).

Stage 3: Integration of subroutines and function.

In the third stage, we integrated the subroutines and the Peng–Robinson function.
This requires grouping variables into program modules and declaring them as common
blocks since they intervene in the FUNCTION module of the Peng–Robinson equation,
initial conditions values for the finite difference method, and subroutines for the fixed-
point method. The complete programming code of the mathematical model of pressure
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swing adsorption (Equations (2)–(8)) employs the centered finite difference method to
discretize Equations (2)–(6). The finite difference method consists of transforming each
partial differential equation into a set of ordinary differential equations, which are then
solved by the fourth-order Runge–Kutta method. The program provides results such as
breakthrough curves (molar fraction of water at the outlet of the adsorption column), initial
density at the entrance of the adsorption column, and the density of the binary mixture
during the numerical solution calculations. Figure 2 illustrates the steps and instructions
executed by the program to solve the numerical method and obtain the density.
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To validate the program results, we conducted a literature review to obtain databases
of water–ethanol density in the gaseous state. While the available literature had limited
information, we compared the program’s calculated data with experimental data.

3. Results
In this section, the results of the programming code for calculating vapor mixture

density within the available experimental data range are evaluated, with a comparison
between the calculated results and experimental data for pure water and ethanol vapor.
The program records numerical data in .dat format, enabling detailed graphical analysis.
The testing and implementation phase involved various checks to ensure the accuracy and
reliability of the program, as outlined below.

Density calculation for pure components:

• Calculation of water density and comparison with experimental data of superheated water
vapor reported by Cengel and Boles [44] at different specified pressures and temperatures.
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• Calculation of water density and comparison with experimental data of vapor water
reported by [35] and the International Association for the Properties of Water and
Steam (IAPWS) [45] at different specified pressures and temperatures.

• Calculation of ethanol density and comparison with experimental data of vapor
ethanol reported by the International Association for the Properties of Water and
Steam (IAPWS) [45] at different specified pressures and temperatures.

• Extrapolation of vapor water density to the experimental conditions reported in the
International Association for the Properties of Water and Steam (IAPWS) [45] for
vapor ethanol.

• Extrapolation of ethanol density in gaseous phase to the experimental conditions
reported in Cengel and Boles [44] for vapor water.

• Graphical comparison of extrapolated data with experimental data reported in
the literature.

• Comparison of calculated density for superheated water vapor by the Peng–Robinson
equation, ideal gas equation, and experimental data consulted in the literature.

• Calculation of percentage error of results by the ideal gas equation with respect to
experimental data.

• Evaluation of breakthrough curves obtained with the implemented subroutines.
• Results from the molar fraction of water at the outlet of the adsorption column at

different specified pressures, compositions, and temperatures.
• Calculation of the feed density of the water–ethanol mixture.
• Density calculation throughout the simulation process.

Density Comparison for Pure Components

The results presented in Table 2 correspond to the calculations performed with the
program for superheated vapor water across for pressures ranging from 0.098 to 0.98 atm at
different temperatures. The table compares the numerical values obtained for the density
in kg/m3 with those reported in the literature by Cengel and Boles [44].

Table 2. Comparisons of calculated density with literature data for superheated steam.

Pressure 0.098 atm 0.48 atm 0.98 atm

Temperature (K) ρ * (kg/m3) ρ Calculated
(kg/m3) ρ * (kg/m3) ρ Calculated

(kg/m3) ρ * (kg/m3) ρ Calculated
(kg/m3)

373.15 0.058153 0.058567 0.292509 0.291706 0.589657 0.590651
423.15 0.051248 0.051633 0.257089 0.256890 0.516342 0.519437
473.15 0.045817 0.046168 0.229558 0.229538 0.460320 0.463710
523.15 0.041432 0.041751 0.207443 0.207473 0.415593 0.418874
573.15 0.037813 0.038105 0.189247 0.189291 0.378946 0.381999
673.15 0.032193 0.032441 0.161046 0.161082 0.322300 0.324890
773.15 0.028027 0.028243 0.140178 0.140203 0.280466 0.282690
873.15 0.024816 0.025008 0.124105 0.124122 0.248268 0.250218
973.15 0.022266 0.022437 0.111342 0.111354 0.222717 0.224451
1073.15 0.020191 0.020346 0.100962 0.100969 0.201943 0.203504
1173.15 0.018470 0.018612 0.092353 0.092358 0.184717 0.186137
1273.15 0.017019 0.017150 0.085097 0.085101 0.170198 0.171504
1373.15 0.015780 0.015901 0.078899 0.078901 0.157798 0.159007
1473.15 0.014708 0.014821 0.073542 0.073544 0.147085 0.148208
1573.15 0.013773 0.013879 0.068866 0.068868 0.137732 0.138784

* Data provided by Cengel and Boles [44].

Table 3 corresponds to the calculations performed with the program for superheated
vapor water across for pressures ranging from 1.97 to 3.94 atm at different temperatures.
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The table compares the numerical values obtained for the density in kg/m3 with those
reported in the literature by Cengel and Boles [44].

Table 3. Comparisons of the calculated density with the literature for superheated steam.

Pressure (atm) 1.97 2.96 3.94

Temperature (K) ρ * (kg/m3) ρ Calculated
(kg/m3) ρ * (kg/m3) ρ Calculated

(kg/m3) ρ * (kg/m3) ρ Calculated
(kg/m3)

423.15 1.041819 1.045941 1.577237 1.579780 2.12368332 2.1212351
473.15 0.925506 0.931998 1.395810 1.404984 1.8714676 1.8827926
523.15 0.834098 0.840821 1.255572 1.265899 1.68010753 1.6941665
573.15 0.759746 0.766119 1.142400 1.152389 1.526974 1.5408376
673.15 0.645436 0.650855 0.969415 0.977901 1.29424707 1.3060366
773.15 0.561350 0.565953 0.842659 0.849792 1.12440407 1.1342088
873.15 0.496766 0.500750 0.745495 0.751598 0.99445096 1.0027622
973.15 0.445565 0.449075 0.668539 0.673873 0.89164705 0.89884377
1073.15 0.403959 0.407100 0.606046 0.610788 0.80821143 0.81456888
1173.15 0.369473 0.372319 0.554271 0.558546 0.73910923 0.74481845
1273.15 0.340420 0.343026 0.510663 0.514564 0.68092524 0.68611848
1373.15 0.315609 0.318013 0.473427 0.477020 0.63125734 0.63602555
1473.15 0.294171 0.296406 0.441260 0.444593 0.58835296 0.5927698
1573.15 0.275462 0.277551 0.413191 0.416302 0.55091562 0.5550369

* Data provided by Cengel and Boles [44].

The evaluation of superheated steam density, as outlined in Tables 2 and 3, demon-
strates a close alignment between the calculated density and the literature data reported
by Cengel and Boles [44], indicating the effectiveness of this methodology in capturing
the thermodynamic behavior of superheated stream. In Table 4, a detailed comparison
is presented, juxtaposing our results with those obtained by Bazaev et al. [35] and the
International Association for the Properties of Water and Steam (IAPWS) [45].

Table 4. Test measurements of pure water density.

Temperature
(K) Pressure (atm) ρ 1

(kg/m3)
ρ 2

(kg/m3)
ρ Calculated

(kg/m3)

573.15 55.889465 25.67 25.69 25.973215
623.15 63.330866 25.61 25.59 26.182194
673.15 70.308414 25.55 25.52 26.166225
623.15 127.21441 64.93 65.2 68.380424

1 Data provided by Bazaev et al. [35]; 2 data provided by IAPWS [45].

Tables 5 and 6 present the calculated density for vapor ethanol, comparing it with
literature data from the International Association for the Properties of Water and Steam
across various pressure and temperature values [45].

Tables 5–7 collectively reveal a close alignment between the calculated numerical
results for vapor phase ethanol and the experimental data reported in the literature (Wilson
et al. [41]). An integral aspect to contemplate in this research is the feasibility of extrapo-
lation beyond the existing experimental dataset. This observation highlights the robust
performance of the employed methodology in accurately determining the density of the
ethanol density across various temperature and pressure ranges. This confirmation further
solidifies its applicability beyond the initially measured conditions.
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Table 5. Calculated density for pure state ethanol compared to the literature for a pressure range of
1.6–2.2 atm and a temperature range of 373 to 388 K.

Temperature 373.07 K 388.17 K

Pressure
(atm) ρ * (kg/m3) ρ (kg/m3) Pressure

(atm) ρ * (kg/m3) ρ (kg/m3)

1.6847 2.6751 2.6154 1.7520 2.6448 2.6072
1.7816 2.8428 2.7708 1.8972 2.8667 2.8302
1.8829 3.0025 2.9342 2.0301 3.0787 3.0351
1.9916 3.1971 3.1100 2.1820 3.3201 3.2708
2.1019 3.3825 3.2894 2.4309 3.7207 3.6596
2.1923 3.5501 3.4370 2.7151 4.1870 4.1076
2.2821 3.7099 3.5841 3.0850 4.8221 4.6979

* Data provided by Cengel and Boles [44].

Table 6. Calculated density for pure state ethanol in pure state compared to the literature for a
pressure range of 0.5–3.1 atm and a temperature range of 398 to 400 K.

Temperature 398.15 K 400.81 K

Pressure
(atm) ρ * (kg/m3) ρ (kg/m3) Pressure

(atm) ρ * (kg/m3) ρ (kg/m3)

0.5441 0.7763 0.7734 1.84619 2.68083 2.65690
0.7175 1.0252 1.0225 2.01703 2.93178 2.91027
0.9223 1.3201 1.3183 2.24145 3.27225 3.24518
1.1335 1.6309 1.6253 2.44751 3.58689 3.55477
1.3462 1.9462 1.9366 2.79905 4.13703 4.08764
2.7715 4.1075 4.0765 3.32398 4.97087 4.89477
3.1165 4.6549 4.6096 3.77341 5.71092 5.59710

* Data provided by Wilson et al. [41].

Table 7. Calculated density for pure state ethanol in pure state compared to the literature for a
pressure range of 0.7–2.9 atm and a temperature range of 423 to 473 K.

Temperature 423.15 K 473.15 K

Pressure
(atm) ρ * (kg/m3) ρ (kg/m3) Pressure

(atm) ρ * (kg/m3) ρ (kg/m3)

0.74491 0.99600 0.99728 0.56066 0.66854 0.66838
0.92423 1.23774 1.24005 0.76880 0.91398 0.91807
1.11816 1.50222 1.50380 0.99726 1.18967 1.19314
1.30379 1.75558 1.75746 1.23136 1.46706 1.47608
1.49723 2.02106 2.02302 1.47018 1.75732 1.76587
1.68750 2.28681 2.28550 1.71069 2.05440 2.05889
2.93800 4.02534 4.04279 1.89149 2.27990 2.27994

* Data provided by Wilson et al. [41].

In Figure 3, approximate results are observed compared to those presented in the
literature for specific temperature and pressure conditions. The figure represents extrap-
olated density for vapor water under the pressure and temperature conditions reported
by Wilson et al. [41] for superheated water vapor and experimental data evaluated by
Smith et al. [42]. A noticeable agreement becomes apparent when the numerical results
obtained with the Fortran program are graphically compared to the literature datasets,
highlighting the validity and precision of the methodology employed and substantiating
the program’s capability to effectively capture the thermodynamic behavior of water vapor
density under superheating conditions.
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(1984) [41], Smith et al. (2018) [42].

Figure 4 presents the extrapolated density data obtained for vapor ethanol under the
pressure and temperature conditions reported by Cengel and Boles [44] for superheated
water and experimental data consulted in Wilson et al. [41]. The figure underscores the
adaptability of the methodology to handle extrapolated density calculations for ethanol
in the vapor phase, confirming its capability to deliver accurate results across varying
thermodynamic conditions.

In Figure 5, the results calculated by the Fortran program, utilizing the perfect gas law
equation and the Peng–Robinson equation, are illustrated in comparison with experimental
data reported by Cengel and Boles [44] from Tables 2 and 3 for superheated water. It is
noteworthy that a deviation increases between the experimental calculated data as pressure
increases and temperature decreases, particularly with the ideal gas equation.

Figure 6 represents the data obtained by the FORTRAN program and data reported by
Wilson et al. [41] from Table 5 for vapor ethanol with the Peng–Robinson equation. The
results are also compared with the ideal gas equation under the same conditions employed
by Wilson et al. [41]. It is evident that as pressure increases, the calculations by the ideal
gas equation become less accurate. Therefore, if higher pressures studies are intended, the
ideal gas equation is not a suitable alternative for continued use in mathematical models,
particularly in pressure swing adsorption for ethanol dehydration processes. On the other
hand, the Peng–Robinson equation more accurately calculates the density for ethanol and
water under the experimental conditions used in the literature.
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Figure 7 shows the percentage error from the calculated data using the ideal gas law
concerning the experimental data in Tables 5–7 as well as Figure 6. The figure reveals that
the error increases with rising operating pressure. While the error may not be a significant
factor when handling vacuum or atmospheric pressure, it becomes noteworthy when
exceeding 1.5 atmospheres. Specifically, at pressures greater than 2 atmospheres, the calcu-
lated error exceeds 3%, and at a temperature of 373.07 K and pressures surpassing 1.5 atm
the error surpasses 4.5%. Between temperature range of 373.07 and 400.81 K, and pressures
ranging from 0.5 to 3.5 atmospheres, the calculated error reaches 9% as the operating
pressure increases. This observation is crucial, especially considering the operating pres-
sures involved in pressure swing adsorption processes for ethanol dehydration reported in
previous studies [7,13,14,37]. At low pressures, the density calculated by the ideal gas law
may not significantly affect the PSA model. However, at moderate pressure, it becomes a
crucial factor to consider. Therefore, the inclusion of a more rigorous state equation, such as
the Peng–Robinson equation, in the calculation of the water–ethanol vapor mixture density
would complement studies of ethanol dehydration process. Until this point, the presented
results encompass stages 1 and 2 of Section 2.4: Solution Methodology.
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The following results showcase the integration of the function and subroutine modules
for the Peng–Robinson equation and the fixed-point iterative method into the PSA model
code; this corresponds to the stage 3 of solution methodology. The numerical results
obtained through the developed PSA simulator are depicted in Figure 8.
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Figure 8. Molar fraction of water at the adsorption column outlet.

Figure 8 illustrates the breakthrough curve stages (numbers 1–3) for the water–ethanol
mixture during the PSA process, highlighting the adsorption efficiency of zeolite clinoptilolite.

1. Section 1: Initially, the molar fraction of water at the outlet is zero. This indicates
complete retention of water molecules within the packed bed, achieved by adsorption
into the zeolite clinoptilolite. This behavior persists for approximately the first 900 s,
signifying the high affinity and selective adsorption of water due to the zeolite’s pore
size, which is compatible with the molecular dimension of water.

2. Section 2: Beyond 900 s, the molar fraction of water at the outlet begins to rise. This
increase is due to the progressive saturation of the zeolite clinoptilolite’s adsorption
sites. As these cavities fill, the capacity to retain additional water diminishes, allowing
more water molecules to pass through the adsorption column.

3. Section 3: After roughly 1000 s, the adsorption sites within the zeolite clinoptilolite are
fully saturated with the water molecules. This saturation reflects that the adsorbent
can no longer retain additional water. Consequently, the water concentration at the
outlet aligns with the feed concentration.

Figure 8 demonstrates the dynamic behavior of the adsorbent bed during the PSA
process, confirming the effectiveness of zeolite clinoptilolite for molecular water retention
and validating the employed model. The breakthrough curves, as evaluated in Figure 9,
compare the numerical solutions obtained using two different approaches: one employing
the ideal gas law and the other utilizing the Peng–Robinson equation, both under identical
operating conditions (1 atm, 373 K and a feed mole fraction of 0.200 of water concentration).
Figure 9 illustrates that under the same conditions, the process reaches bed saturation in
approximately 500 s when density is calculated using the ideal gas law. In contrast, when
employing the Peng–Robinson equation, the process takes almost twice as long, as shown
in Figure 8.
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In this scenario, water presented in the binary mixture is effectively retained, ridding
the mixture of water for about 900 s. Subsequently, as the molar fraction of water starts
to increase, the feed water concentration is eventually reached at the process output; that
is, there is no water retention after saturation is reached. This observed behavior closely
aligns with experimental breakthrough curves reported by Leo-Avelino et al. [46] where
similar conditions regarding particle size and the adsorbent agent (zeolite clinoptilolite)
were employed. Both studies show a consistent adsorption process, with the packed bed
reaching saturation at 900 s. It is noteworthy that the numerical solution presented here
is based on implementing the Peng–Robinson equation. Comparatively, breakthrough
curves reported by Kupiec et al. [7], Rossi et al. [14], and Gutierrez-Gonzalez et al. [40]
were derived using a mathematical model with the ideal gas law for binary mixture density
at atmospheric pressure conditions. The results obtained for natural zeolite clinoptilolite
exhibit similarities to those presented for artificial zeolites in the works of Kupiec et al. [7]
and Kupiec et al. [4].

The breakthrough curves depicted in Figure 10 compare the results obtained under
identical operating conditions (2 atm, 370.02 K and ymol0 = 0.200 for water concentration)
using both the numerical solution incorporating the ideal gas law and the one employing
the Peng–Robinson equation for the density calculation. Under these conditions, as per
the ideal gas law, the process leading to bed saturation initiates saturation around 200 s,
culminating complete saturation at 435 s. In contrast, applying the more rigorous Peng–
Robinson equation initiates saturation at approximately 490 s.

Figure 11 presents a comparison between the experimental data reported by Leo-
Avelino et al. [46] and the numerical solution for the adsorption process using Mexican
zeolite clinoptilolite. The experimental data includes results for three different types
of zeolites: Zeolite #1, Zeolite #2, and Zeolite #3. The numerical solution accounts for
various conditions, including particle size, feed water concentration, bed porosity, column
dimensions, and the adsorbent agent. The comparison reveals a similar pattern during
the adsorption stage, with the packed bed reaching saturation in approximately 1480 s
for the numerical solution. This closely aligns with the experimental data for Zeolite #1
and Zeolite #3. Notably, the experimental data for Zeolite #2 shows a slightly higher
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molar fraction of water at earlier times, indicating a faster breakthrough compared to
the other zeolites and the numerical solution. The use of the Peng–Robinson equation
in the numerical model is crucial as it provides a more accurate representation of the
thermodynamic properties of the ethanol–water mixture under varying conditions. This
accuracy is reflected in the close agreement between the numerical and experimental results,
the slight discrepancies observed with Zeolite #2 might be attributed to variations in particle
size, feed concentration, or other experimental conditions not fully captured in the model.
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In comparison, Gutiérrez-González et al. [40] observed similar breakthrough behavior
using PSA model for ethanol dehydration, which did not initially incorporate the Peng–
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Robinson equation. The inclusion of this equation in the present study’s model has clearly
enhanced the accurateness of the numerical solution, bringing it closer to the experimental
data. The alignment of the numerical results with the experimental data underlines the
effectiveness of the Peng–Robinson equation in improving the simulation accuracy for
predicting the adsorption behavior of water–ethanol mixture using Mexican clinoptilolite.
This enhancement is critical for capturing the dynamic behavior of the adsorption process,
confirming its applicability in practical scenarios for ethanol dehydration and reinforcing
the reliability of the simulation in predicting outcomes at real-world conditions.

Figure 12 illustrates breakthrough curves with ymol0 = 0.150 feed molar fraction in
the ethanol–water mixture, utilizing operating conditions and parameters from Guevara
Luna et al. [6] and Kupiec et al. [4]. In this test, pressure emerges as a crucial factor
influencing the duration of the adsorption cycle. Under atmospheric feed pressure, the
adsorption process concludes in a longer timeframe when compared to the scenario where
moderate pressures are applied. Notably, for this mixture composition, saturation of the
bed is achieved between 400 and 650 s for pressure ranging from 1.5 to 3.9 atm, marking a
significant reduction from the 1400 s required under atmospheric conditions.
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under different conditions.

The test illustrated in Figure 13 was conducted under various operating conditions,
specifically with a feed mol fraction of ymol0 = 0.200, representing the water concentration
in the binary mixture. Under these conditions, the program calculates that the process
reaches bed saturation between 250 and 500 s for pressure ranging from 1.5 to 3.9 atm.
The breakthrough curve at atmospheric pressure reaches saturation in 1100 s, extend-
ing the time required for the adsorption process to conclude. The behavior observed in
Figure 13 aligns with what has been reported in previous studies [7,14,37,46]. Additionally,
the time intervals are consistent with those reported in the work by Karmi et al. [13].
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Finally, it is important to mention that despite the application of synthetic zeolites
in the chemical industry being more widespread, in this paper, the use of natural zeolite
clinoptilolite was addressed with the view that its use offers a more cost-effective solution
for small-scale bioethanol-producing industries, such as small worker-owned industrial
cooperatives in rural areas, which often lack sufficient financial resources to cover the
expenses associated with synthetic zeolites. In this regard, the current research provides
an alternative for small-scale industries to address the potential variability arising from
fluctuations in the composition of the primary mineral characteristic of natural zeolites.

4. Conclusions
The implementation of the Peng–Robinson equation in the PSA model has not only

highlighted its impact on numerical solutions but has also contributed to comprehensively
expanding water and ethanol datasets across varying pressure and temperature conditions.
The observed improvements in calculation accuracy, with reductions in prediction errors
by 5–10% compared to the ideal gas law, underscore the significance of employing a more
rigorous state equation, particularly at moderate to high pressures and low to moderate
temperature. These enhancements are crucial for achieving reliable and accurate predictions
of real process dynamics in industrial applications. The improved dataset provides valuable
insights into the thermodynamic behavior of ethanol–water mixtures and serves as a
foundation for future research. The results from the breakthrough curves and the detailed
understanding of the adsorption cycle contribute significantly to refining the PSA process
for ethanol dehydration. This study lays the groundwork for future investigations into
packed bed regeneration, pressure drop modeling, and mass flow optimization, all of which
will further enhance the efficiency and reliability of PSA processes in ethanol dehydration.
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