Graphene Oxide-Based Materials for the Remediation of Neurotoxic Organophosphates
Abstract
1. Introduction
2. Review Methodology
3. Properties of GO Relevant for Remediation
3.1. Structure, Synthesis, and Surface Chemistry of GO
3.2. Physicochemical Characteristics and Structure-Property Relationships
3.3. Surface Area and Functional Groups Relevant to Organophosphate Interactions
3.4. GO Among Carbon Allotropes
4. Adsorption of Organophosphates on GO-Based Materials
5. Catalytic and Advanced Remediation Pathways
5.1. Photocatalytic Degradation
- TiO2-GO: highest photocatalytic efficiency, moderate cost, stability issues under prolonged illumination.
- ZnO-GO: effective under ambient/light conditions, inexpensive, but less durable.
- Fe3O4-GO: lower intrinsic activity but excellent recyclability and low-energy recovery.
5.2. Electrochemical Degradation
5.3. Enzyme-Assisted Remediation
5.4. Multifunctionality of GO
6. Mechanistic Synthesis of GO-Based Pathways for OPs Removal
7. Challenges and Limitations
7.1. Regeneration and Reusability
7.2. Stability and Risk of Secondary Contamination
7.3. Scalability and Synthesis Cost
7.4. Ecotoxicity and Biocompatibility
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, S.; den Ouden, F.; Cleys, P.; Klimowska, A.; Bombeke, J.; Poma, G.; Covaci, A. Personal environmental exposure to plasticizers and organophosphate flame retardants using silicone wristbands and urine: Patterns, comparisons, and correlations. Sci. Total Environ. 2024, 927, 172187. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.L.K.; Tieu, A.K.; Tran, B.H. Comprehensive Investigation of Various Organophosphate Intercalated CoAl-LDHs As Additives in Polyalphaolefin. ACS Appl. Eng. Mater. 2024, 2, 10–23. [Google Scholar] [CrossRef]
- Macan Schönleben, A.; den Ouden, F.; Yin, S.; Fransen, E.; Bosschaerts, S.; Andjelkovic, M.; Rehman, N.; van Nuijs, A.L.N.; Covaci, A.; Poma, G. Organophosphorus Flame Retardant, Phthalate, and Alternative Plasticizer Contamination in Novel Plant-Based Food: A Food Safety Investigation. Environ. Sci. Technol. 2025, 59, 9209–9220. [Google Scholar] [CrossRef]
- Furman, B.L. Echothiophate☆. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Milanković, V.; Tasić, T.; Petrović, S.; Leskovac, A. With or Without You?—A Critical Review on Pesticides in Food. Foods 2025, 14, 1128. [Google Scholar] [CrossRef]
- Anićijević, V.a.K.R. Organophosphates as Chemical Warfare Agents. In Organophosphates: Detection, Exposure and Occurrence. Volume 2: Acute Exposure and Treatments; NOVA Science Publisher: Hauppauge, NY, USA, 2022; Volume 2. [Google Scholar]
- Silman, I.; Sussman, J.L. Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr. Opin. Pharmacol. 2005, 5, 293–302. [Google Scholar] [CrossRef]
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Aroniadou-Anderjaska, V.; Figueiredo, T.H.; de Araujo Furtado, M.; Pidoplichko, V.I.; Braga, M.F.M. Mechanisms of Organophosphate Toxicity and the Role of Acetylcholinesterase Inhibition. Toxics 2023, 11, 866. [Google Scholar] [CrossRef] [PubMed]
- Bereda, G. Acute Cardiac Arrhythmias in Organophosphate Poisoning: From Bradycardia to Atrial Fibrillation. Indian J. Clin. Cardiol. 2025, 6, 398–404. [Google Scholar] [CrossRef]
- Arida, R.; Elkader, H.-T.A.A.; Aborajeh, S.; Helmy, M.M.; El-Mallah, A.I.; Abdallah, S.M.; El-Yazbi, A.F. Prolonged Exposure to Organophosphates Worsens the Cognitive Outcome of Prediabetes: Possible Modulation by Arachidonic Acid Supplementation. J. Pharmacol. Exp. Ther. 2024, 389, 506. [Google Scholar] [CrossRef]
- Suarez-Lopez, J.R.; Hood, N.; Suárez-Torres, J.; Gahagan, S.; Gunnar, M.R.; López-Paredes, D. Associations of acetylcholinesterase activity with depression and anxiety symptoms among adolescents growing up near pesticide spray sites. Int. J. Hyg. Environ. Health 2019, 222, 981–990. [Google Scholar] [CrossRef]
- Samareh, A.; Pourghadamyari, H.; Nemtollahi, M.H.; Ebrahimi Meimand, H.A.; Norouzmahani, M.E.; Asadikaram, G. Pesticide Exposure and Its Association with Parkinson’s Disease: A Case–Control Analysis. Cell. Mol. Neurobiol. 2024, 44, 73. [Google Scholar] [CrossRef]
- Voorhees, J.R.; Remy, M.T.; Erickson, C.M.; Dutca, L.M.; Brat, D.J.; Pieper, A.A. Occupational-like organophosphate exposure disrupts microglia and accelerates deficits in a rat model of Alzheimer’s disease. npj Aging Mech. Dis. 2019, 5, 3. [Google Scholar] [CrossRef]
- Ore, O.T.; Adeola, A.O.; Bayode, A.A.; Adedipe, D.T.; Nomngongo, P.N. Organophosphate pesticide residues in environmental and biological matrices: Occurrence, distribution and potential remedial approaches. Environ. Chem. Ecotoxicol. 2023, 5, 9–23. [Google Scholar] [CrossRef]
- López-Benítez, A.; Guevara-Lara, A.; Domínguez-Crespo, M.A.; Andraca-Adame, J.A.; Torres-Huerta, A.M. Concentrations of Organochlorine, Organophosphorus, and Pyrethroid Pesticides in Rivers Worldwide (2014–2024): A Review. Sustainability 2024, 16, 8066. [Google Scholar] [CrossRef]
- Tesi, G.O.; Okpara, K.E.; Tesi, J.N.; Agbozu, I.E.; Techato, K. Assessment of organophosphate pesticides in soils and vegetables from agricultural areas of Delta Central District, Nigeria. Sci. Rep. 2025, 15, 8267. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 25 September 2025).
- Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 25 September 2025).
- Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 25 September 2025).
- Li, W.; Zhan, H.; Dong, C.; Wu, S.; Mulcahy, D.; Duan, J. Detoxication of organophosphate pesticides in source waters by incorporation of an alkaline hydrolysis procedure in conventional drinking water treatment processes. J. Water Process Eng. 2023, 53, 103917. [Google Scholar] [CrossRef]
- Nandhini, A.R.; Harshiny, M.; Gummadi, S.N. Chlorpyrifos in environment and food: A critical review of detection methods and degradation pathways. Environ. Sci. Process. Impacts 2021, 23, 1255–1277. [Google Scholar] [CrossRef]
- Ragnarsdottir, K.V. Environmental fate and toxicology of organophosphate pesticides. J. Geol. Soc. 2000, 157, 859–876. [Google Scholar] [CrossRef]
- Zheng, X.; Zhai, R.; Zhang, Z.; Zhang, B.; Liu, J.; Razaq, A.; Ahmad, M.A.; Raza, R.; Saleem, M.; Rizwan, S.; et al. Graphene-Oxide-Based Fluoro- and Chromo-Genic Materials and Their Applications. Molecules 2022, 27, 2018. [Google Scholar] [CrossRef] [PubMed]
- Mushahary, N.; Sarkar, A.; Basumatary, F.; Brahma, S.; Das, B.; Basumatary, S. Recent developments on graphene oxide and its composite materials: From fundamentals to applications in biodiesel synthesis, adsorption, photocatalysis, supercapacitors, sensors and antimicrobial activity. Results Surf. Interfaces 2024, 15, 100225. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Liu, J.; Bao, C. Measuring the specific surface area of monolayer graphene oxide in water. Mater. Lett. 2020, 261, 127098. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, W.; Khalilov, F.; Xu, N. Graphene Oxide: Preparation and Medical Research. Materials 2025, 18, 2855. [Google Scholar] [CrossRef]
- Jun, B.-M.; Nam, S.-N.; Jung, B.; Choi, J.S.; Park, C.M.; Choong, C.E.; Jang, M.; Jho, E.H.; Son, A.; Yoon, Y. Photocatalytic and electrocatalytic degradation of bisphenol A in the presence of graphene/graphene oxide-based nanocatalysts: A review. Chemosphere 2024, 356, 141941. [Google Scholar] [CrossRef]
- Pandey, G.; Rajput, N.S.; Sharma, U.K.; Chauhan, M.S.; Lamba, N.P. Remediation of environmental issues using graphene based materials for water purification: Synthesis, kinetics, and factors effecting the removal of heavy metal ions. Next Mater. 2025, 8, 100765. [Google Scholar] [CrossRef]
- Goyat, R.; Saharan, Y.; Singh, J.; Umar, A.; Akbar, S. Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review. Molecules 2022, 27, 6433. [Google Scholar] [CrossRef] [PubMed]
- Rameshwar, S.S.; Rajamohan, N. Magnetic graphene based materials for removal of pharmaceutical compounds—Review on applications and machine learning approaches. J. Mol. Struct. 2025, 1328, 141309. [Google Scholar] [CrossRef]
- Gupta, T.; Ratandeep; Dutt, M.; Kaur, B.; Punia, S.; Sharma, S.; Sahu, P.K.; Pooja; Saya, L. Graphene-based nanomaterials as potential candidates for environmental mitigation of pesticides. Talanta 2024, 272, 125748. [Google Scholar] [CrossRef]
- Thakur, S.; Bi, A.; Mahmood, S.; Samriti; Ruzimuradov, O.; Gupta, R.; Cho, J.; Prakash, J. Graphene oxide as an emerging sole adsorbent and photocatalyst: Chemistry of synthesis and tailoring properties for removal of emerging contaminants. Chemosphere 2024, 352, 141483. [Google Scholar] [CrossRef]
- Madduri, S.B.; Kommalapati, R.R. Harnessing Novel Reduced Graphene Oxide-Based Aerogel for Efficient Organic Contaminant and Heavy Metal Removal in Aqueous Environments. Nanomaterials 2024, 14, 1708. [Google Scholar] [CrossRef]
- Zubair, M.; Roopesh, M.S.; Ullah, A. Challenges and prospects: Graphene oxide-based materials for water remediation including metal ions and organic pollutants. Environ. Sci. Nano 2024, 11, 3693–3720. [Google Scholar] [CrossRef]
- Anegbe, B.; Ifijen, I.H.; Maliki, M.; Uwidia, I.E.; Aigbodion, A.I. Graphene oxide synthesis and applications in emerging contaminant removal: A comprehensive review. Environ. Sci. Eur. 2024, 36, 15. [Google Scholar] [CrossRef]
- Thakur, K.; Kandasubramanian, B. Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. J. Chem. Eng. Data 2019, 64, 833–867. [Google Scholar] [CrossRef]
- Jiříčková, A.; Jankovský, O.; Sofer, Z.; Sedmidubský, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Klinowski, J.; Forster, M.; Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, 53–56. [Google Scholar] [CrossRef]
- Nishina, Y. Mass Production of Graphene Oxide Beyond the Laboratory: Bridging the Gap Between Academic Research and Industry. ACS Nano 2024, 18, 33264–33275. [Google Scholar] [CrossRef] [PubMed]
- Donato, K.Z.; Tan, H.L.; Marangoni, V.S.; Martins, M.V.S.; Ng, P.R.; Costa, M.C.F.; Jain, P.; Lee, S.J.; Koon, G.K.W.; Donato, R.K.; et al. Graphene oxide classification and standardization. Sci. Rep. 2023, 13, 6064. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, A.; Jones, D.; Dell’Elce, S.; Treossi, E.; Liscio, A.; Palermo, V. Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy. Carbon 2019, 143, 268–275. [Google Scholar] [CrossRef]
- Sinclair, R.C.; Coveney, P.V. Modeling Nanostructure in Graphene Oxide: Inhomogeneity and the Percolation Threshold. J. Chem. Inf. Model. 2019, 59, 2741–2745. [Google Scholar] [CrossRef]
- Siklitskaya, A.; Gacka, E.; Larowska-Zarych, D.; Malolepszy, A.; Mazurkiewicz, M.; Stobinski, L.; Marciniak, B.; Lewandowska-Andralojc, A.; Kubas, A. Lerf–Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins. Sci. Rep. 2021, 11, 7977. [Google Scholar] [CrossRef]
- Chen, X.; Qu, Z.; Liu, Z.; Ren, G. Mechanism of Oxidization of Graphite to Graphene Oxide by the Hummers Method. ACS Omega 2022, 7, 23503–23510. [Google Scholar] [CrossRef]
- Syed, N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Méndez-Lozano, N.; Pérez-Reynoso, F.; González-Gutiérrez, C. Eco-Friendly Approach for Graphene Oxide Synthesis by Modified Hummers Method. Materials 2022, 15, 7228. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.-W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Korucu, H. Optimization of Graphene Oxide Synthesis Using Hummers Method. Gazi Univ. J. Sci. 2024, 37, 1132–1152. [Google Scholar] [CrossRef]
- Yu, Q.; Wei, L.; Yang, X.; Wang, C.; Chen, J.; Du, H.; Shen, W.; Kang, F.; Huang, Z.-H. Electrochemical synthesis of graphene oxide from graphite flakes exfoliated at room temperature. Appl. Surf. Sci. 2022, 598, 153788. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Kaloni, T.P.; Zhu, Z.Y.; Schwingenschlögl, U. Oxidation of graphene in ozone under ultraviolet light. Appl. Phys. Lett. 2012, 101, 073110. [Google Scholar] [CrossRef]
- Magro, M.R.; Vella, D.A.; Cassar, G. Synthesis of graphene oxide: A refined approach. Carbon Trends 2025, 20, 100509. [Google Scholar] [CrossRef]
- Lyu, J.; Wen, X.; Kumar, U.; You, Y.; Chen, V.; Joshi, R.K. Separation and purification using GO and r-GO membranes. RSC Adv. 2018, 8, 23130–23151. [Google Scholar] [CrossRef] [PubMed]
- Lazarević-Pašti, T.; Anićijević, V.; Baljozović, M.; Anićijević, D.V.; Gutić, S.; Vasić, V.; Skorodumova, N.V.; Pašti, I.A. The impact of the structure of graphene-based materials on the removal of organophosphorus pesticides from water. Environ. Sci. Nano 2018, 5, 1482–1494. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Romero, M.P.; Marangoni, V.S.; de Faria, C.G.; Leite, I.S.; Silva, C.d.C.C.e.; Maroneze, C.M.; Pereira-da-Silva, M.A.; Bagnato, V.S.; Inada, N.M. Graphene Oxide Mediated Broad-Spectrum Antibacterial Based on Bimodal Action of Photodynamic and Photothermal Effects. Front. Microbiol. 2020, 10, 2019. [Google Scholar] [CrossRef]
- Sun, X.; Luo, D.; Liu, J.; Evans, D.G. Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 2010, 4, 3381–3389. [Google Scholar] [CrossRef]
- Dobrota, A.S.; Pašti, I.A.; Mentus, S.V.; Skorodumova, N.V. A DFT study of the interplay between dopants and oxygen functional groups over the graphene basal plane—Implications in energy-related applications. Phys. Chem. Chem. Phys. 2017, 19, 8530–8540. [Google Scholar] [CrossRef]
- Khalili, D. Graphene oxide: A promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen peroxide/KSCN in water. New J. Chem. 2016, 40, 2547–2553. [Google Scholar] [CrossRef]
- Vekhande, H.N.; Bagawade, J.A. Synthesis and characterization of graphene oxide using a modified Hummers method for enhanced quality and yield. Fuller. Nanotub. Carbon Nanostruct 2025, 1–7. [Google Scholar] [CrossRef]
- Aliyev, E.; Filiz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials 2019, 9, 1180. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.L.; Farivar, F.; Jämting, Å.K.; Coleman, V.A.; Gnaniah, S.; Mansfield, E.; Pu, C.; Landi, S.M.; David, M.V.; Flahaut, E.; et al. International Interlaboratory Comparison of Thermogravimetric Analysis of Graphene-Related Two-Dimensional Materials. Anal. Chem. 2023, 95, 5176–5186. [Google Scholar] [CrossRef] [PubMed]
- Farivar, F.; Lay Yap, P.; Karunagaran, R.U.; Losic, D. Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters. C 2021, 7, 41. [Google Scholar] [CrossRef]
- Ajala, O.J.; Tijani, J.O.; Bankole, M.T.; Abdulkareem, A.S. A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100673. [Google Scholar] [CrossRef]
- Mohanta, Z.; Gaonkar, S.K.; Kumar, M.; Saini, J.; Tiwari, V.; Srivastava, C.; Atreya, H.S. Influence of Oxidation Degree of Graphene Oxide on Its Nuclear Relaxivity and Contrast in MRI. ACS Omega 2020, 5, 22131–22139. [Google Scholar] [CrossRef]
- Benzait, Z.; Trabzon, L. Graphite Size Effect on Chemical Expansion and Graphene Oxide Properties. ACS Omega 2022, 7, 37885–37895. [Google Scholar] [CrossRef]
- Morimoto, N.; Kubo, T.; Nishina, Y. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications. Sci. Rep. 2016, 6, 21715. [Google Scholar] [CrossRef] [PubMed]
- Aldosari, H. The Effect of Carbon/Oxygen Ratio upon Structure-Property Relationships in Polymer/Graphene Nanocomposites. Nano Hybrids Compos. 2022, 37, 59–78. [Google Scholar] [CrossRef]
- Khanmamedova, E. Electrical conductivity properties of graphene oxide. Sci. Collect. «InterConf+» 2023, 32, 594–598. [Google Scholar] [CrossRef]
- Chi, H.; Zhao, M.; Li, Y.; Guo, Y.; Liu, B.; Yue, G.; Miao, Y.; Li, N.; Wang, H. Size-Dependent Photoelectric Properties of Graphene Oxide for a Phosphorescent Green Organic Light-Emitting Diode Achieving a High Device Efficiency. ACS Appl. Nano Mater. 2025, 8, 1925–1934. [Google Scholar] [CrossRef]
- Fajardo, S.; Ocón, P.; Arranz, A.; Rodríguez, J.L.; Pastor, E. MnO2-modified ZIF-67 supported on doped reduced graphene oxide as highly active catalyst for the oxygen reduction reaction. J. Catal. 2024, 432, 115448. [Google Scholar] [CrossRef]
- Mohanta, Z.; Atreya, H.S.; Srivastava, C. Correlation between defect density in mechanically milled graphite and total oxygen content of graphene oxide produced from oxidizing the milled graphite. Sci. Rep. 2018, 8, 15773. [Google Scholar] [CrossRef]
- Ćirić, L.; Sienkiewicz, A.; Djokić, D.M.; Smajda, R.; Magrez, A.; Kaspar, T.; Nesper, R.; Forró, L. Size dependence of the magnetic response of graphite oxide and graphene flakes—An electron spin resonance study. Phys. Status Solidi (B) 2010, 247, 2958–2961. [Google Scholar] [CrossRef]
- Nasr Esfahani, M.; Shahbeigi, S.; Jabbari, M. Effect of oxygen configurations on the mechanical properties of graphene oxide. J. Appl. Phys. 2022, 132, 174302. [Google Scholar] [CrossRef]
- Sharma, B.B.; Kedare, A.; Muralidharan, G.; Govind Rajan, A. Understanding the Effects of Surface and Edge Functionalization on the Mechanical Properties of Graphene and Graphene Oxide. ChemPhysChem 2025, 26, e202400919. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, N.; Yao, W.; Xu, Z.; Bai, H.; Gao, C. Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Adv. 2017, 7, 33600–33605. [Google Scholar] [CrossRef]
- Wu, X.; Lin, T.F.; Tang, Z.H.; Guo, B.C.; Huang, G.S. Natural rubber/graphene oxide composites: Effect of sheet size on mechanical properties and strain-induced crystallization behavior. Express Polym. Lett. 2015, 9, 672–685. [Google Scholar] [CrossRef]
- Belmonte, D.; Mella, C.; Sánchez-Sanhueza, G.; Opazo-Capurro, A.; Aguilar-Bolados, H.; Boury, B.; Urbano, B.F. Impact of graphene oxide lateral dimensions on the properties of methacrylated gelatin nanocomposite hydrogels. J. Mater. Chem. B 2023, 11, 1987–1997. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Li, J.; Shi, Z.; Wang, M.; Sheng, J.; Fei, W. Lateral size effect of reduced graphene oxide on properties of copper matrix composites. Mater. Sci. Eng. A 2021, 820, 141579. [Google Scholar] [CrossRef]
- Méndez-Romero, U.A.; Pérez-García, S.A.; Fan, Q.; Wang, E.; Licea-Jiménez, L. Lateral size reduction of graphene oxide preserving its electronic properties and chemical functionality. RSC Adv. 2020, 10, 29432–29440. [Google Scholar] [CrossRef]
- Coleman, B.R.; Knight, T.; Gies, V.; Jakubek, Z.J.; Zou, S. Manipulation and Quantification of Graphene Oxide Flake Size: Photoluminescence and Cytotoxicity. ACS Appl. Mater. Interfaces 2017, 9, 28911–28921. [Google Scholar] [CrossRef] [PubMed]
- Suter, J.L.; Coveney, P.V. Principles governing control of aggregation and dispersion of aqueous graphene oxide. Sci. Rep. 2021, 11, 22460. [Google Scholar] [CrossRef] [PubMed]
- Szabo, T.; Maroni, P.; Szilagyi, I. Size-dependent aggregation of graphene oxide. Carbon 2020, 160, 145–155. [Google Scholar] [CrossRef]
- Peng, E.; Todorova, N.; Yarovsky, I. Effects of Size and Functionalization on the Structure and Properties of Graphene Oxide Nanoflakes: An in Silico Investigation. ACS Omega 2018, 3, 11497–11503. [Google Scholar] [CrossRef]
- Ma, J.; Dai, S.; Guo, Z.; Shang, L.; Ao, Y.; Jin, L. Impact of graphene oxide lateral sizes on the mechanical and thermal properties of carbon fiber composites. Polym. Compos. 2025, 46, 2061–2072. [Google Scholar] [CrossRef]
- Ji, Z.; Dervishi, E.; Doorn, S.K.; Sykora, M. Size-Dependent Electronic Properties of Uniform Ensembles of Strongly Confined Graphene Quantum Dots. J. Phys. Chem. Lett. 2019, 10, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Cheng, C.; Peng, F.; Hou, W.; Lin, X.; Wang, X. Adsorption properties of graphene materials for pesticides: Structure effect. J. Mol. Liq. 2022, 364, 119967. [Google Scholar] [CrossRef]
- Tadawattana, P.; Kawashima, K.; Sittiwanichai, S.; T-Thienprasert, J.; Mori, T.; Pongprayoon, P. Exploring the Capabilities of Nanosized Graphene Oxide as a Pesticide Nanosorbent: Simulation Studies. ACS Omega 2025, 10, 8951–8959. [Google Scholar] [CrossRef]
- Aris, N.I.F.; Rahman, N.A.; Wahid, M.H.; Yahaya, N.; Abdul Keyon, A.S.; Kamaruzaman, S. Superhydrophilic graphene oxide/electrospun cellulose nanofibre for efficient adsorption of organophosphorus pesticides from environmental samples. R. Soc. Open Sci. 2020, 7, 192050. [Google Scholar] [CrossRef] [PubMed]
- Lazarević-Pašti, T. Carbon Materials for Organophosphate Pesticide Sensing. Chemosensors 2023, 11, 93. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Belenkov, E.A.; Greshnyakov, V.A. Classification schemes for carbon phases and nanostructures. New Carbon Mater. 2013, 28, 273–282. [Google Scholar] [CrossRef]
- Ajayan, P.M. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787–1800. [Google Scholar] [CrossRef]
- Bilal, M.; Shah, J.A.; Ashfaq, T.; Gardazi, S.M.H.; Tahir, A.A.; Pervez, A.; Haroon, H.; Mahmood, Q. Waste biomass adsorbents for copper removal from industrial wastewater—A review. J. Hazard. Mater. 2013, 263, 322–333. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Mohamad Nor, N.; Lau, L.C.; Lee, K.T.; Mohamed, A.R. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—A review. J. Environ. Chem. Eng. 2013, 1, 658–666. [Google Scholar] [CrossRef]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Anićijević, V.J.; Lazarević-Pašti, T.D.; Vasić, V.M.; Vasić Anićijević, D.D. An Insight into the Efficient Dimethoate Adsorption on Graphene-Based Materials—A Combined Experimental and DFT Study. Appl. Sci. 2021, 11, 4014. [Google Scholar] [CrossRef]
- Anićijević, V.; Jelić, M.; Jovanović, A.Z.; Potkonjak, N.; Pašti, I.A.; Lazarević Pašti, T.D. Organophosphorous pesticide removal from water by graphene-based materials—Only adsorption or something else as well? J. Serbian Chem. Soc. 2021, 86, 699–710. [Google Scholar] [CrossRef]
- Jing, L.; Li, P.; Li, Z.; Ma, D.; Hu, J. Influence of π-π interactions on organic photocatalytic materials and their performance. Chem. Soc. Rev. 2025, 54, 2054–2090. [Google Scholar] [CrossRef]
- Pérez, E.M.; Martín, N. π-π interactions in carbon nanostructures. Chem. Soc. Rev. 2015, 44, 6425–6433. [Google Scholar] [CrossRef] [PubMed]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [PubMed]
- Santos, Y.H.; Martinez, A.H.G.; Veiga, A.G.; Rocco, M.L.M.; Zarbin, A.J.G.; Orth, E.S. Site-selective Mono- and Bifunctionalization of Graphene Oxide: Screening Nanocatalysts for Organophosphate Degradation. ChemCatChem 2024, 16, e202301440. [Google Scholar] [CrossRef]
- Santos, Y.; Hostert, L.; Almeida, T.; Zarbin, A.; Souza, V.; Orth, E. Functionalized Crumpled Graphene as Nanocatalysts for Organophosphate Neutralization. J. Braz. Chem. Soc. 2024, 35, e-20240063. [Google Scholar] [CrossRef]
- Suo, F.; Xie, G.; Zhang, J.; Li, J.; Li, C.; Liu, X.; Zhang, Y.; Ma, Y.; Ji, M. A carbonised sieve-like corn straw cellulose–graphene oxide composite for organophosphorus pesticide removal. RSC Adv. 2018, 8, 7735–7743. [Google Scholar] [CrossRef]
- Rahman, A.J.; Ojha, H.; Pandey, A.; Kumar, S.; Singhal, R.; Datta, A.; Singh, B.K. Kinetic, isotherm and thermodynamic adsorption studies of organophosphorus compound (phosmet) on reduced graphene oxide. Diam. Relat. Mater. 2022, 127, 109191. [Google Scholar] [CrossRef]
- Hou, X.; Yu, H.; Zhu, F.; Li, Z.; Yang, Q. Determination of organophosphorus pesticides based on graphene oxide aerogel solid phase extraction column. Se Pu Chin. J. Chromatogr. 2022, 40, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.; Pervez, S.; Karbhal, I.; Tamrakar, A.; Mishra, A.; Verma, S.R.; Deb, M.K.; Ghosh, K.K.; Pervez, Y.F.; Shrivas, K.; et al. Applications of different adsorbent materials for the removal of organic and inorganic contaminants from water and wastewater—A review. Desalination Water Treat. 2024, 317, 100253. [Google Scholar] [CrossRef]
- Pasti, I.; Breitenbach, S.; Unterweger, C.; Fuerst, C. Carbon Materials as Adsorbents for Organophosphate Pesticides in Aqueous Media—Critical Overview; Nova Science Publishers: New York, NY, USA, 2022; p. 251. Available online: https://www.scopus.com/pages/publications/85138978704?origin=resultslist (accessed on 25 September 2025).
- Wanjeri, V.W.O.; Sheppard, C.J.; Prinsloo, A.R.E.; Ngila, J.C.; Ndungu, P.G. Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J. Environ. Chem. Eng. 2018, 6, 1333–1346. [Google Scholar] [CrossRef]
- Yadav, S.; Goel, N.; Kumar, V.; Singhal, S. Graphene Oxide as Proficient Adsorbent for the Removal of Harmful Pesticides: Comprehensive Experimental Cum DFT Investigations. Anal. Chem. Lett. 2019, 9, 291–310. [Google Scholar] [CrossRef]
- Han, Q.; Yang, L.; Liang, Q.; Ding, M. Three-dimensional hierarchical porous graphene aerogel for efficient adsorption and preconcentration of chemical warfare agents. Carbon 2017, 122, 556–563. [Google Scholar] [CrossRef]
- Nikou, M.; Samadi-Maybodi, A.; Yasrebi, K.; Sedighi-Pashaki, E. Simultaneous monitoring of the adsorption process of two organophosphorus pesticides by employing GO/ZIF-8 composite as an adsorbent. Environ. Technol. Innov. 2021, 23, 101590. [Google Scholar] [CrossRef]
- Nasiri, M.; Ahmadzadeh, H.; Amiri, A. Organophosphorus pesticides extraction with polyvinyl alcohol coated magnetic graphene oxide particles and analysis by gas chromatography-mass spectrometry: Application to apple juice and environmental water. Talanta 2021, 227, 122078. [Google Scholar] [CrossRef]
- Sohrabi, N.; Mohammadi, R.; Ghassemzadeh, H.R.; Heris, S.S.S. Equilibrium, kinetic and thermodynamic study of diazinon adsorption from water by clay/GO/Fe3O4: Modeling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq. 2021, 328, 115384. [Google Scholar] [CrossRef]
- Dolatabadi, M.; Naidu, H.; Ahmadzadeh, S. Adsorption characteristics in the removal of chlorpyrifos from groundwater using magnetic graphene oxide and carboxy methyl cellulose composite. Sep. Purif. Technol. 2022, 300, 121919. [Google Scholar] [CrossRef]
- Perović, M.; Obradović, V.; Zuber-Radenković, V.; Mitrinović, D.; Knoeller, K.; Turk Sekulić, M. Integrated analysis of ammonium origins in a Serbian anoxic alluvial aquifer: Insight from physicochemical, isotopic, microbiological data. Appl. Geochem. 2024, 171, 106103. [Google Scholar] [CrossRef]
- Perović, M.; Obradović, V.; Zuber-Radenković, V.; Knoeller, K.; Mitrinović, D.; Čepić, Z. The comprehensive evaluation of nitrate origin and transformation pathways in the oxic alluvial aquifer in Serbia. Environ. Sci. Pollut. Res. 2024, 31, 33030–33046. [Google Scholar] [CrossRef]
- Živančev, N.; Kovačević, S.; Perović, M.; Čalenić, A.; Dimkić, M. Influence of oxic and anoxic groundwater conditions on occurrence of selected agrochemicals. Water Supply 2019, 20, 487–498. [Google Scholar] [CrossRef]
- Morguen, M.; Rach, A.; Colbeau-Justin, C.; Robert, D.; Keller, V. Self-Decontaminating Photocatalytic Textiles: Layer-by-Layer Deposition of Commercial TiO2 References for DMMP Degradation. ACS Appl. Eng. Mater. 2025, 3, 1995–2006. [Google Scholar] [CrossRef]
- Henych, J.; Štengl, V.; Mattsson, A.; Tolasz, J.; Österlund, L. Chemical warfare agent simulant DMMP reactive adsorption on TiO2/graphene oxide composites prepared via titanium peroxo-complex or urea precipitation. J. Hazard. Mater. 2018, 359, 482–490. [Google Scholar] [CrossRef]
- Kumar, R.; George, L.; Jun, Z.; Mukherji, S. Photocatalytic activity of graphene oxide-TiO2 nanocomposite on dichlorvos and malathion and assessment of toxicity changes due to photodegradation. Chemosphere 2022, 308, 136402. [Google Scholar] [CrossRef]
- Kumar, R.; Mukherji, S. Photocatalysis of dichlorvos using graphene oxide-TiO2 nanocomposite under visible irradiation: Process optimization using response surface methodology. Nanotechnology 2021, 32, 405708. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mukherji, S. Assessment of Photocatalytic Efficiency of Graphene Oxide–TiO2 Nanocomposite for Removal of Binary Mixtures of Organophosphorus Pesticides from Water. ACS EST Water 2024, 4, 4075–4082. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Farahmand, N.; Łomot, D.; Sobczak, K.; Bandosz, T.J.; Colmenares, J.C. Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors. Chem. Eng. J. 2020, 395, 125099. [Google Scholar] [CrossRef]
- Martínez-Perales, C.; Machín, A.; Berríos-Rolón, P.J.; Sampayo, P.; Nieves, E.; Soto-Vázquez, L.; Resto, E.; Morant, C.; Ducongé, J.; Cotto, M.C.; et al. From Pollutant Removal to Renewable Energy: MoS2-Enhanced P25-Graphene Photocatalysts for Malathion Degradation and H2 Evolution. Materials 2025, 18, 2602. [Google Scholar] [CrossRef] [PubMed]
- Uyen, N.N.; Tu, L.A.; Le, P.H. Graphene quantum dot-decorated TiO2 nanowires/nanotubes: Enhanced photocatalysis for methylene blue and pesticide degradation. Appl. Phys. A 2025, 131, 302. [Google Scholar] [CrossRef]
- Mohamed, R.M. UV-assisted photocatalytic synthesis of TiO2-reduced graphene oxide with enhanced photocatalytic activity in decomposition of sarin in gas phase. Desalination Water Treat. 2012, 50, 147–156. [Google Scholar] [CrossRef]
- Sumantrao, S.K.; Kariyajjanavar, P.; Vidyasagar, C.C.; Shridhar, A.H.; Ghagane, S.C.; Chigari, S.S.; Bonageri, G.; Ansari, M.Z.; Alsubaie, A.S. Sunlight-driven GO/ZnO nanocomposite for photocatalytic degradation of Chlorpyrifos insecticide and its biological activities. J. Environ. Chem. Eng. 2025, 13, 115437. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, F.; Xu, Z.; Di, X.; Zhang, Q. Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite. RSC Adv. 2020, 10, 11929–11938. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Mirhosseini, H.; Hekmatiyan, A.; Abdolahi, L.; Mehrabi, F.; Shahmirzaei, M. Efficient degradation of parathion as a pollutant and diazinon as a nerve agent by reaction mechanism with rGO-Co3O4/ZnO nanocomposite photocatalyst. J. Environ. Chem. Eng. 2023, 11, 110912. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hossaini, H.; Fatahi, N.; Jafari, Z.; Jafari, F.; Jafari Motlagh, R. Photocatalytic removal of organophosphorus pesticide by the WO3-Fe3O4/rGO photocatalyst under visible light. Environ. Sci. Pollut. Res. 2024, 31, 2555–2568. [Google Scholar] [CrossRef]
- Tabasum, S.; Rani, S.; Sharma, A.; Dhupar, N.; Singh, P.P.; Bagri, U.; Kumar, D. Efficient Photocatalytic Degradation of Chlorpyrifos Pesticide from Aquatic Agricultural Waste Using g-C3N4 Decorated Graphene Oxide/V2O5 Nanocomposite. Top. Catal. 2024, 67, 725–736. [Google Scholar] [CrossRef]
- Naynava, S.K.; Lorestani, B.; Cheraghi, M.; Sobhanardakani, S.; Shahmoradi, B. Efficient Degradation of Diazinon Pesticide under Visible Light Irradiation Using CeO2 Functionalized Magnetite Graphene Oxide Heterojunction-Based Photocatalyst. Water Air Soil Pollut. 2024, 235, 274. [Google Scholar] [CrossRef]
- Samy, M.; Ibrahim, M.G.; Gar Alalm, M.; Fujii, M.; Diab, K.E.; ElKady, M. Innovative photocatalytic reactor for the degradation of chlorpyrifos using a coated composite of ZrV2O7 and graphene nano-platelets. Chem. Eng. J. 2020, 395, 124974. [Google Scholar] [CrossRef]
- Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis of titanium nanoplate decorated by Pd and Fe3O4 nanoparticles immobilized on graphene oxide as a novel photocatalyst for degradation of parathion pesticide. Polyhedron 2020, 179, 114371. [Google Scholar] [CrossRef]
- Fakhri, H.; Farzadkia, M.; Boukherroub, R.; Srivastava, V.; Sillanpää, M. Design and preparation of core-shell structured magnetic graphene oxide@MIL-101(Fe): Photocatalysis under shell to remove diazinon and atrazine pesticides. Sol. Energy 2020, 208, 990–1000. [Google Scholar] [CrossRef]
- Chinnappa, K.; Karuna Ananthai, P.; Srinivasan, P.P.; Dharmaraj Glorybai, C. Green synthesis of rGO-AgNP composite using Curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. Environ. Sci. Pollut. Res. Int. 2022, 29, 58121–58132. [Google Scholar] [CrossRef]
- Henych, J.; Mattsson, A.; Tolasz, J.; Štengl, V.; Österlund, L. Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites. Catal. Sci. Technol. 2019, 9, 1816–1824. [Google Scholar] [CrossRef]
- Dipak, P.; Gahlaut, U.P.S.; Goswami, Y.C. Visible light photocatalytic reduction of toxic chemical organophosphate monocrotophos using reduced graphene oxide derived from bamboo leaves. Sustain. Chem. One World 2024, 4, 100031. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hossaini, H.; Asadi, A.; Jafari, Z. Persulfate activation by magnetic SnS2-Fe3O4/rGO nanocomposite under visible light for detoxification of organophosphorus pesticide. J. Mol. Liq. 2022, 364, 119975. [Google Scholar] [CrossRef]
- Zangiabadi, M.; Shamspur, T.; Saljooqi, A.; Mostafavi, A. Evaluating the efficiency of the GO-Fe3O4/TiO2 mesoporous photocatalyst for degradation of chlorpyrifos pesticide under visible light irradiation. Appl. Organomet. Chem. 2019, 33, e4813. [Google Scholar] [CrossRef]
- Gupta, V.K.; Eren, T.; Atar, N.; Yola, M.L.; Parlak, C.; Karimi-Maleh, H. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liq. 2015, 208, 122–129. [Google Scholar] [CrossRef]
- Mohammadi, M.; Maleki, A.; Zandi, S.; Mohammadi, E.; Ghahremani, E.; Yang, J.-K.; Lee, S.-M. Photocatalytic decomposition of aqueous diazinon using reduced graphene/ZnO nanocomposite doped with manganese. Desalination Water Treat. 2020, 184, 315–325. [Google Scholar] [CrossRef]
- Kong, E.D.H.; Chau, J.H.F.; Lai, C.W.; Khe, C.S.; Sharma, G.; Kumar, A.; Siengchin, S.; Sanjay, M.R. GO/TiO2-Related Nanocomposites as Photocatalysts for Pollutant Removal in Wastewater Treatment. Nanomaterials 2022, 12, 3536. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Khalid, S.; Yasin, T.; Mazare, A. A Review on the Progress and Future of TiO2/Graphene Photocatalysts. Energies 2022, 15, 6248. [Google Scholar] [CrossRef]
- Zhang, L.; Du, L.; Yu, X.; Tan, S.; Cai, X.; Yang, P.; Gu, Y.; Mai, W. Significantly enhanced photocatalytic activities and charge separation mechanism of Pd-decorated ZnO-graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2014, 6, 3623–3629. [Google Scholar] [CrossRef]
- Yu, T.; Breslin, C.B. Graphene-Modified Composites and Electrodes and Their Potential Applications in the Electro-Fenton Process. Materials 2020, 13, 2254. [Google Scholar] [CrossRef]
- Jia, J.; Li, Z.; Tian, Y.; Li, X.; Chen, R.; Liu, J.; Liang, J. Electrosynthesis of H2O2 via two-electron oxygen reduction over carbon-based catalysts: From microenvironment control to electrode/reactor design. Energy Rev. 2024, 3, 100069. [Google Scholar] [CrossRef]
- Ozturk, D. Fe3O4/Mn3O4/ZnO-rGO hybrid quaternary nano-catalyst for effective treatment of tannery wastewater with the heterogeneous electro-Fenton process: Process optimization. Sci. Total Environ. 2022, 828, 154473. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, Y.; Bai, Y.; Song, J.; Sun, G. Recent Advances in the Electron Transfer Mechanism of Fe-Based Electro-Fenton Catalysts for Emerging Organic Contaminant Degradation. Catalysts 2025, 15, 549. [Google Scholar] [CrossRef]
- Sankar, M.; He, Q.; Engel, R.V.; Sainna, M.A.; Logsdail, A.J.; Roldan, A.; Willock, D.J.; Agarwal, N.; Kiely, C.J.; Hutchings, G.J. Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chem. Rev. 2020, 120, 3890–3938. [Google Scholar] [CrossRef]
- Senthilnathan, J.; Younis, S.A.; Kwon, E.E.; Surenjan, A.; Kim, K.-H.; Yoshimura, M. An efficient system for electro-Fenton oxidation of pesticide by a reduced graphene oxide-aminopyrazine@3DNi foam gas diffusion electrode. J. Hazard. Mater. 2020, 400, 123323. [Google Scholar] [CrossRef]
- Chai, D.; Chen, Y.; Jiang, Z.; Li, Z.; Zhang, X.; Chen, X.; Wang, Y.; Cui, K. Insight on magnetic nitrogen-doped graphene oxide composite electrode constructing heterogeneous Electro-Fenton system for treating organophosphorus pesticide wastewater. Sep. Purif. Technol. 2024, 345, 127419. [Google Scholar] [CrossRef]
- Ayoubi-Feiz, B.; Mashhadizadeh, M.H.; Sheydaei, M. Degradation of diazinon by new hybrid nanocomposites N-TiO2/Graphene/Au and N-TiO2/Graphene/Ag using visible light photo-electro catalysis and photo-electro catalytic ozonation: Optimization and comparative study by Taguchi method. Sep. Purif. Technol. 2019, 211, 704–714. [Google Scholar] [CrossRef]
- Yadav, P.; Sharma, P.; Roy, T.; Kumar, A.; Kumar, D.; Mudila, H.; Kumar, S.P.; Ghotekar, S.; Mubarak, N.M.; Hosseini-Bandegharaei, A.; et al. Exploring catalytic applications of graphene-transition metal oxide nanocomposites for next-generation catalysis: A review. Inorg. Chem. Commun. 2025, 178, 114506. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of Graphene and Related Materials. Chem. Rev. 2014, 114, 7150–7188. [Google Scholar] [CrossRef]
- Lumbaque, E.C.; Radjenovic, J. Electro-oxidation of persistent organic contaminants at graphene sponge electrodes using intermittent current. Chem. Eng. J. 2023, 476, 146910. [Google Scholar] [CrossRef]
- Mohd Razib, M.S.; Latip, W.; Abdul Rashid, J.I.; Knight, V.F.; Wan Yunus, W.M.Z.; Ong, K.K.; Mohd Kasim, N.A.; Mohd Noor, S.A. An Enzyme-Based Biosensor for the Detection of Organophosphate Compounds Using Mutant Phosphotriesterase Immobilized onto Reduced Graphene Oxide. J. Chem. 2021, 2021, 2231089. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Xin, Y.; Gu, Z.; Zhang, L.; Guo, X. Effective remediation and decontamination of organophosphorus compounds using enzymes: From rational design to potential applications. Sci. Total Environ. 2023, 867, 161510. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Z.; Lu, X. Construction of Novel Enzyme–Graphene Oxide Catalytic Interface with Improved Enzymatic Performance and Its Assembly Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 11349–11359. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Xia, M.; Li, S.; Zhang, X.; Zhang, Y. Mimicking the Active Sites of Organophosphorus Hydrolase on the Backbone of Graphene Oxide to Destroy Nerve Agent Simulants. ACS Appl. Mater. Interfaces 2017, 9, 21089–21093. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, L.; Xia, M.; Zhang, X.; Zhang, Y. Catalytic degradation of organophosphorous nerve agent simulants by polymer beads@graphene oxide with organophosphorus hydrolase-like activity based on rational design of functional bimetallic nuclear ligand. J. Hazard. Mater. 2018, 355, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Hamid, F.H.; Rasyid, F.R.; Mashuni, M.; Ahmad, L.O.; Jahiding, M. Enhanced rGO/ZnO/Chitosan Nanozyme Photocatalytic Technology for Efficient Degradation of Diazinon Pesticide Contaminated Water. Adsorption 2024, 31, 22. [Google Scholar] [CrossRef]
- Alexandre, A.d.C.; Letícia, C.A.; Daniela, R.S.; Silviana, C.; Tamiris, M.A.; Giovanna, C.G.; Flávia, V.S.; Teodorico, C.R. Computational enzymology for degradation of chemical warfare agents: Promising technologies for remediation processes. AIMS Microbiol. 2017, 3, 108–135. [Google Scholar] [CrossRef]
- Khoj, M.A.; Awwad, N.S.; Ibrahium, H.A.; Awad, A.M.; Hassan, A.F. Enhanced Adsorption and Photo-Fenton Degradation of Diazinon Pesticide Utilizing Nanomagnetite/Graphene Oxide Composite: Kinetic and Thermodynamic Studies. J. Inorg. Organomet. Polym. Mater. 2024, 34, 3483–3500. [Google Scholar] [CrossRef]
- Dolatabadi, M.; Świergosz, T.; Wang, C.; Ahmadzadeh, S. Accelerated degradation of groundwater-containing malathion using persulfate activated magnetic Fe3O4/graphene oxide nanocomposite for advanced water treatment. Arab. J. Chem. 2023, 16, 104424. [Google Scholar] [CrossRef]
- Arfaeinia, H.; Rezaei, H.; Sharafi, K.; Moradi, M.; Pasalari, H.; Hashemi, S.E. Application of ozone/magnetic graphene oxide for degradation of diazinon pesticide from aqueous solutions. Desalination Water Treat. 2018, 107, 127–135. [Google Scholar] [CrossRef]
- Assafi, A.; Zarouki, M.A.; Hejji, L.; Aoulad El Hadj Ali, Y.; Chraka, A.; Pérez-Villarejo, L.; Sánchez-Soto, P.J.; Souhail, B.; Azzouz, A. Olive pomace-derived graphene quantum dots decorated with iron oxide nanoparticles for efficient malathion removal from environmental water: Theoretical and experimental studies. Diam. Relat. Mater. 2025, 155, 112255. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, Y.; Xi, C.; Tang, T.; Chen, Z. Enhanced adsorption of malathion and phoxim by a three-dimensional magnetic graphene oxide-functionalized citrus peel-derived bio-composite. Anal. Methods 2021, 13, 2951–2962. [Google Scholar] [CrossRef] [PubMed]
- Barzegarzadeh, M.; Amini-Fazl, M.S.; Sohrabi, N. Ultrasound-assisted adsorption of chlorpyrifos from aqueous solutions using magnetic chitosan/graphene quantum dot-iron oxide nanocomposite hydrogel beads in batch adsorption column and fixed bed. Int. J. Biol. Macromol. 2023, 242, 124587. [Google Scholar] [CrossRef]
- Rahmatpour, A.; Hesarsorkh, A.H.A. Self-assembly of graphene oxide containing bio-nanocomposite hydrogels for removal of chlorpyrifos and methylene blue. Int. J. Biol. Macromol. 2025, 320, 145850. [Google Scholar] [CrossRef] [PubMed]
- Alipoori, S.; Rouhi, H.; Linn, E.; Stumpfl, H.; Mokarizadeh, H.; Esfahani, M.R.; Koh, A.; Weinman, S.T.; Wujcik, E.K. Polymer-Based Devices and Remediation Strategies for Emerging Contaminants in Water. ACS Appl. Polym. Mater. 2021, 3, 549–577. [Google Scholar] [CrossRef]
- Song, L.; Zhao, T.; Yang, D.; Wang, X.; Hao, X.; Liu, Y.; Zhang, S.; Yu, Z.-Z. Photothermal graphene/UiO-66-NH2 fabrics for ultrafast catalytic degradation of chemical warfare agent simulants. J. Hazard. Mater. 2020, 393, 122332. [Google Scholar] [CrossRef]
- Najafi, A.; Maddah, B.; Fakhraian, H. The effect of adding carbon nanotubes to 3D graphene on the adsorption of DMMP from airflow. Diam. Relat. Mater. 2024, 142, 110806. [Google Scholar] [CrossRef]
- Šťastný, M.; Tolasz, J.; Štengl, V.; Henych, J.; Žižka, D. Graphene oxide/MnO2 nanocomposite as destructive adsorbent of nerve-agent simulants in aqueous media. Appl. Surf. Sci. 2017, 412, 19–28. [Google Scholar] [CrossRef]
- Arcibar-Orozco, J.A.; Giannakoudakis, D.A.; Bandosz, T.J. Copper Hydroxyl Nitrate/Graphite Oxide Composite as Superoxidant for the Decomposition/Mineralization of Organophosphate-Based Chemical Warfare Agent Surrogate. Adv. Mater. Interfaces 2015, 2, 1500215. [Google Scholar] [CrossRef]
- Jang, S.; Ka, D.; Jung, H.; Kim, M.-K.; Jung, H.; Jin, Y. Zr(OH)4/GO Nanocomposite for the Degradation of Nerve Agent Soman (GD) in High-Humidity Environments. Materials 2020, 13, 2954. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lu, L.; Xu, Q.; Tang, S.; Yu, Y. Using Post-graphene 2D Materials to Detect and Remove Pesticides: Recent Advances and Future Recommendations. Bull. Environ. Contam. Toxicol. 2021, 107, 185–193. [Google Scholar] [CrossRef]
- Silva, V.B.; Santos, Y.H.; Hellinger, R.; Mansour, S.; Delaune, A.; Legros, J.; Zinoviev, S.; Nogueira, E.S.; Orth, E.S. Organophosphorus chemical security from a peaceful perspective: Sustainable practices in its synthesis, decontamination and detection. Green Chem. 2022, 24, 585–613. [Google Scholar] [CrossRef]
- Hassanzadeh-Afruzi, F.; Esmailzadeh, F.; Taheri-Ledari, R.; Maleki, A. High adsorption capability of chlorpyrifos and Congo red in aqueous samples by a functionalized dextrin/graphene oxide composite. Int. J. Environ. Sci. Technol. 2023, 20, 10731–10750. [Google Scholar] [CrossRef]
- Kamel, A.H.; Abd-Rabboh, H.S.M.; Abd El-Fattah, A.; Boudghene Stambouli, G.; Adeida, L. Metal oxides and their composites for the remediation of organic pesticides: Advanced photocatalytic and adsorptive solutions. RSC Adv. 2025, 15, 6875–6901. [Google Scholar] [CrossRef]
- Aziz, K.; Naz, A.; Raza, N.; Manzoor, S.; Kim, K.-H. Reduced and modified graphene oxide with Ag/V2O5 as a ternary composite visible light photocatalyst against dyes and pesticides. Environ. Res. 2024, 247, 118256. [Google Scholar] [CrossRef]
- Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z.; Wang, H. Aggregation Kinetics of Graphene Oxides in Aqueous Solutions: Experiments, Mechanisms, and Modeling. Langmuir 2013, 29, 15174–15181. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.; Zhang, Q.; Li, C.; Bao, C.; Liu, X.; Xiao, P. Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto Graphene Oxide. J. Chem. Eng. Data 2013, 58, 209–216. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, S.; Zhang, L.; You, T.; Xu, F. Adsorption of Heavy Metals by Graphene Oxide/Cellulose Hydrogel Prepared from NaOH/Urea Aqueous Solution. Materials 2016, 9, 582. [Google Scholar] [CrossRef]
- Nirmala, N.; Shriniti, V.; Aasresha, K.; Arun, J.; Gopinath, K.P.; Dawn, S.S.; Sheeladevi, A.; Priyadharsini, P.; Birindhadevi, K.; Chi, N.T.L.; et al. Removal of toxic metals from wastewater environment by graphene-based composites: A review on isotherm and kinetic models, recent trends, challenges and future directions. Sci. Total Environ. 2022, 840, 156564. [Google Scholar] [CrossRef]
- Singh, S.; Naik, T.S.S.K.; Shehata, N.; Aguilar-Marcelino, L.; Dhokne, K.; Lonare, S.; Chauhan, V.; Kumar, A.; Singh, J.; Ramamurthy, P.C.; et al. Novel insights into graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J. Mol. Liq. 2023, 369, 120821. [Google Scholar] [CrossRef]
- Gong, Y.; Yu, Y.; Kang, H.; Chen, X.; Liu, H.; Zhang, Y.; Sun, Y.; Song, H. Synthesis and Characterization of Graphene Oxide/Chitosan Composite Aerogels with High Mechanical Performance. Polymers 2019, 11, 777. [Google Scholar] [CrossRef]
- Pinelli, F.; Nespoli, T.; Rossi, F. Graphene Oxide-Chitosan Aerogels: Synthesis, Characterization, and Use as Adsorbent Material for Water Contaminants. Gels 2021, 7, 149. [Google Scholar] [CrossRef]
- Yang, J.; Guo, S.; Dong, H.; Liu, Y.; Wang, J.; Quan, G.; Zhang, X.; Lei, J.; Liu, N. Enhanced visible-light-driven photocatalysis of ibuprofen by NH2 modified MIL-53(Fe) graphene aerogel: Performance, mechanism, pathway and toxicity assessment. Colloids Surf. A Physicochem. Eng. Asp. 2025, 726, 137769. [Google Scholar] [CrossRef]
- Chhetri, S.; Kuila, T. Polymer composites with 3D graphene architectures as high-performance EMI shielding materials: A review. RSC Appl. Polym. 2024, 2, 507–533. [Google Scholar] [CrossRef]
- Chowdhury, I.; Duch, M.C.; Mansukhani, N.D.; Hersam, M.C.; Bouchard, D. Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. Environ. Sci. Technol. 2013, 47, 6288–6296. [Google Scholar] [CrossRef]
- Ahmed, F.; Rodrigues, D.F. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study. J. Hazard. Mater. 2013, 256–257, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Jyothi, B.A.; Sri, A.S.; Bhuvaneshwari, K.; Sravani, A.J.; Madhavi, V. A comprehensive emphasis on graphene technology and its bioscience applications. Sustain. Chem. One World 2025, 6, 100063. [Google Scholar] [CrossRef]
- Safian, M.T.-u.; Umar, K.; Mohamad Ibrahim, M.N. Synthesis and scalability of graphene and its derivatives: A journey towards sustainable and commercial material. J. Clean. Prod. 2021, 318, 128603. [Google Scholar] [CrossRef]
- Johnson, R.; Zafar, M.A.; Thomas, S.; Jacob, M.V. A critical review on vacuum and atmospheric microwave plasma-based graphene synthesis. FlatChem 2025, 50, 100812. [Google Scholar] [CrossRef]
- Syama, S.; Mohanan, P.V. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int. J. Biol. Macromol. 2016, 86, 546–555. [Google Scholar] [CrossRef]
- Abuzeyad, O.H.; El-Khawaga, A.M.; Tantawy, H.; Elsayed, M.A. An evaluation of the improved catalytic performance of rGO/GO-hybrid-nanomaterials in photocatalytic degradation and antibacterial activity processes for wastewater treatment: A review. J. Mol. Struct. 2023, 1288, 135787. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Rodrigues, D.F. Chronic toxicity of graphene and graphene oxide in sequencing batch bioreactors: A comparative investigation. J. Hazard. Mater. 2018, 343, 200–207. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; White, J.C.; Xing, B. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environ. Sci. Technol. 2014, 48, 9995–10009. [Google Scholar] [CrossRef]
- Chang, Y.; Yang, S.-T.; Liu, J.-H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011, 200, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.-P.; Sun, T.; Junaid, M.; Yang, L.; Ma, Y.-B.; Cui, Z.-S.; Wei, D.-P.; Shi, H.-F.; Pei, D.-S. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 2019, 247, 595–606. [Google Scholar] [CrossRef]
- Sundar, L.S.; Ashraf, M.W. Synthesis and characterization methods of graphene oxide nanomaterial for biomedical and toxicity applications: A comprehensive review. Inorg. Chem. Commun. 2025, 174, 113936. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Kaliannagounder, V.K.; Rajan, R.; Ramesh, T.; Kim, C.S.; Park, C.H.; Liu, B.; Yun, S.-I. Silver nanoparticles decorated reduced graphene oxide: Eco-friendly synthesis, characterization, biological activities and embryo toxicity studies. Environ. Res. 2022, 210, 112864. [Google Scholar] [CrossRef]
- Tewari, C.; Tatrari, G.; Kumar, S.; Pandey, S.; Rana, A.; Pal, M.; Sahoo, N.G. Green and cost-effective synthesis of 2D and 3D graphene-based nanomaterials from Drepanostachyum falcatum for bio-imaging and water purification applications. Chem. Eng. J. Adv. 2022, 10, 100265. [Google Scholar] [CrossRef]





| Method | Key Chemicals/Tools | GO Quality | Advantages | Limitations |
|---|---|---|---|---|
| Hummers | KMnO4, NaNO3, H2SO4 | Medium | Scalable, fast | Toxic NOx (in original) |
| Improved/Modified Hummers | KMnO4 + H2SO4/H3PO4 | High | Safe, reproducible, large flakes | Requires acid handling |
| Brodie/Staudenmaier | KClO3, HNO3 | High | High oxidation | Dangerous ClO2 gas |
| Electrochemical | Electrolyte + power supply | Medium–High | Green, tunable | Smaller flakes |
| Ultrasonic/mild oxidation | H2O2, O3 | Low–Medium | Green | Low oxidation degree |
| Plasma/UV | O2 plasma, O3, UV | Surface only | Thin-film control | Not for bulk |
| Gas-phase/thermal | O2, CO2, NO2 | Low | Simple | Poor oxidation control |
| Parameter | Graphene Oxide | Pristine Graphene |
|---|---|---|
| Dominant kinetics | Pseudo-second-order | Pseudo-first-order |
| Adsorption rate | Slower (chemisorption) | Faster (physisorption) |
| R2 values | 0.994–0.999 | 0.92–0.98 |
| Rate constant | 10−3–10−2 g mg−1 min−1 | 10−2–10−1 min−1 |
| Model | Graphene Oxide | Pristine Graphene | Surface Character |
|---|---|---|---|
| Freundlich | Predominant (R2 > 0.95) | Moderately applicable | Heterogeneous |
| Langmuir | Moderately applicable | Predominant (R2 > 0.95) | Homogeneous |
| Type of GO-Based Material/Dose of Adsorbens | Type of Sample | Target Pollutant(s)/Concentrations | Experimental Conditions (Matrix, pH, Temperature) | Adsorption Capacity (mg g−1)/Isotherm Model | Notable Features | Limitations | Reference |
|---|---|---|---|---|---|---|---|
| Fe3O4@SiO2@GO-PEA nanocomposite/15 mg | Spiked aqueous samples, real environmental water samples (Vaal River and Vaal Dam, South Africa) | Chlorpyrifos, malathion, and parathion/1 µg/mL pesticide mix | 10 mL water matrix, pH 7, 25 °C | 11.1, 10.6, and 10.9, respectively/Sips model | Magnetic separation, fast kinetics, wide pH applicability, reusable for 10 cycles | Reduced magnetization, moderate capacity compared to some carbons | [111] |
| HPGA/2 mg | Air samples (synthetic air spiked with DMMP | Dimethyl methylphosphonate (DMMP)/0.5 mg L−1 | Dry air, room temperature | 148 | 3D hierarchical porous aerogel, high SSA, excellent gas diffusion, ≥100 reuse cycles. | Requires thermal desorption, capacity depends on aerogel porosity | [113] |
| Activated carbon derived from sieve-like cellulose/GO composites (ACCE/G)/50 mg | Spiked aqueous samples (10 mL water) | Chlorpyrifos/2 mg L−1 | 10 mL water, pH 1–7 tested (no strong pH 7, room temperature | 152.5/Langmuir model | High porosity and surface area, reusable ≥8 cycles | Limitations: tested only in spiked water; requires organic solvent for regeneration; performance may vary with complex matrices | [106] |
| GO/ZIF-8 composite/20 mg | Spiked aqueous samples (10–50 mL water) | Chlorpyrifos and diazinon/1–10 mg L−1 | Water matrix, pH 7, 25 °C | 103.72, and 90.17, respectively/Langmuir model | High porosity and GO/ZIF-8 synergy, stable, selective toward OPPs | / | [114] |
| GO/CNF/5 mg | Spiked aqueous samples, river and lake water, cabbage, rice | Methyl parathion, ethoprophos, sulfotepp, and chlorpyrifos/0.05–10 mg L−1 | Water or food-extract matrix | 9.20, 3.44, 3.42 and 3.97, respectively/Langmuir model | Rapid adsorption (15 min) | / | [89] |
| Magnetic GO coated with polyvinyl alcohol (PVA@MGO nanocomposite)/15 mg | Apple juice and environmental water | Diazinon, fenitrothion, chlorpyrifos, profenofos, and ethion/10–120 mg L−1 | Food and water matrix, pH 6, 25 °C | 161.29, 172.41, 217.39, 175.44, and 222.22, respectively/Langmuir model | Strong π-π and H-bond interactions, superparamagnetic, fast extraction (7 min), very low LODs (20–80 pg mL−1). | Low selectivity toward different pesticide classes | [115] |
| rGO/0.0005–0.035 g | Spiked aqueous samples (Milli-Q water, 20 mL) | Phosmet/20–100 mg L−1 | Milli-Q water, pH 6.8, 15–45 °C | 2680/Langmuir model | Very high capacity at low dose, exothermic adsorption | Strong dependence on adsorbent dose and temperature | [107] |
| Magnetic composite clay/GO/Fe3O4/1.14 g | Spiked aqueous samples (distilled/Milli-Q water) | Diazinon/1–5 mg L−1 | Distilled water, pH 6.9, 25.9 °C | 7.384/Langmiur model | High adsorption efficiency (98.79%); fast kinetics, exothermic and spontaneous adsorption, reusable up to 20 cycles | Moderate capacity | [116] |
| Magnetic GO and carboxymethyl cellulose (MGOC) composite/0.4 g L−1 | Groundwater and polluted water | Chlorpyrifos/14 mg L−1 | Groundwater matrix, 20 °C | 108.3/Langmuir model | Green, recyclable composite, strong chlorpyrifos affinity | / | [117] |
| Composite System/Dose of Photocatalyst | Type of Sample | Target Pollutant(s)/Concentration | Light Source | Degradation Efficiency/Kinetics | Notable Features | Limitations | Reference |
|---|---|---|---|---|---|---|---|
| TiO2-rGO-MoS2 ternary/1 g L−1 | Aqueous pesticide solution (laboratory-prepared) | Malathion/10 mg L−1 | UV/Vis | Tunable activity depending on MoS2 loading | Improved electron-hole separation | Performance dependent on MoS2 ratio, no toxicity or mineralization data | [127] |
| GO-ZnO nanocomposite/5–20 mg | Aqueous pesticide solution (laboratory-prepared) | Chlorpyrifos/10–40 ppm | Sunlight | 93.6% in 90 min | Simple hydrothermal synthesis | Moderate surface area (2.99 m2/g), decreased efficiency above 15 mg catalyst dose | [130] |
| GO-TiO2/20–200 mg L−1 | Aqueous pesticide solution (laboratory-prepared) | Dichlorvos, malathion/0.5–20 mg L−1 | Visible | ~90% removal, mineralization confirmed | Stable under multiple cycles | Real-water matrix not tested | [123] |
| GO-TiO2/20–200 mg L−1 | Aqueous pesticide solution (laboratory-prepared) | Dichlorvos/0.5–20 mg L−1 | Visible | 69% degradation, 64% mineralization | Stable performance | Real-water matrix not tested | [124] |
| GO-TiO2 nanocomposite/60 mg L−1 | Distilled water, secondary treated wastewater, lake water | Dichlorvos, malathion | UV/Vis | ~80% degradation after 80 min | Mineralization degree high, better performance vs. bare TiO2, toxicity reduction assessed via Ellman assay | / | [125] |
| rGO-AgNP composite using Curcubita maxima extract/0.25–2.5 mg L−1 | Aqueous pesticide solution (laboratory-prepared) | Chlorpyrifos/200–5000 ppb | Sunlight | ~75.5% degradation in 105 min | Green synthesis | Efficiency drops > 1 ppm, real-water matrix not tested | [139] |
| TiO2/GO nanocomposite | Controlled atmosphere (in situ DRIFTS cell) | Dimethyl methyl-phosphonate/9.9 µg min−1 | Solar light | ~80% degradation after 120 min | Enhanced photocatalytic activity due to GO | / | [140] |
| WO3-Fe3O4/rGO composite/0.5–1.5 g L−1 | Aqueous pesticide solution (laboratory-prepared) | Diazinon/5–15 mg L−1 | Visible | 94% degradation in 100 min | / | Real-water matrix not tested, performance decreases above 5 mg L−1 | [133] |
| rGO-Co3O4/ZnO NCs/10–120 mg L−1 | Aqueous pesticide solution (laboratory-prepared) | Parathion, diazinon/5–30 ppm | Visible | >99% in 140 min | Excellent recyclability | Real-water matrix not tested, no mineralization data | [132] |
| g-C3N4/GO/V2O5 | Aqueous pesticide solution (laboratory-prepared) | Chlorpyrifos | Visible | 88–90% in 120 min | High stability over cycles | Real-water matrix not tested, no mineralization data | [134] |
| GO/Fe3O4/CeO2/10–40 mg | Aqueous pesticide solution (laboratory-prepared) | Diazinon/30 mg L−1 | Visible | 97.9% in 60 min | Enhanced charge separation via CeO2 functionalization | Real-water matrix not tested | [135] |
| GQDs/TiO2 WT composite | Aqueous pesticide solution (laboratory-prepared) | Methiocarb, carbofuran, and dimethoate | Visible | 2× faster than TiO2 alone | Extended absorption range | [128] | |
| rGO derived from bamboo leaves/10–25 mg L−1 | Aqueous pesticide solution (laboratory-prepared) | Monocrotophos/10–400 ppm | Visible | 98% removal with a degradation rate of 0.036 ppm/min | Green synthesis | Real-water matrix not tested, no mineralization or toxicity data | [141] |
| SnS2-Fe3O4/rGO/0.5 g L−1 | Aqueous pesticide solution (laboratory-prepared) | Diazinon/5 mg L−1 | Visible | ~100% degradation in 40 min; TOC reduced 78%; pseudo-first-order kinetics | High catalytic performance and reusability | Real-water matrix not tested | [142] |
| ZnO/rGO nanocomposite/0.1–1 g L−1 | Aqueous pesticide solution (laboratory-prepared) | Dimethoate/5 mg L−1 | UV/Vis | Photodegradation rate 4× and efficiency 1.5× higher than bare ZnO; pseudo-first-order kinetics | / | Real-water matrix not tested | [131] |
| GO-Fe3O4/TiO2/0.005–0.1 g | Aqueous pesticide solution (laboratory-prepared) | Chlorpyrifos/10 mg L−1 | Visible | 97% degradation in 60 min | High photocatalytic activity and stability upon reuse | No TOC/mineralization data, real-water matrix not tested | [143] |
| GNPs/ZrV2O7 | Aqueous pesticide solution (laboratory-prepared) | Chlorpyrifos/44.9 mg L−1 | Visible | ~100% degradation in 60 min; pseudo-first-order kinetics | Innovative photocatalytic reactor design | Real-water matrix not tested, no mineralization or toxicity data | [136] |
| CoFe2O4@TiO2/rGO nanocomposite/0.05–0.6 g L−1 | Aqueous pesticide solution (laboratory-prepared) | Chlorpyrifos/5 mg L−1 | UV | High photocatalytic activity | Stable, recyclable, excellent catalytic activity | No TOC/mineralization data, real-water matrix not tested | [144] |
| TNP-Pd-Fe3O4/GO/30–80 mg | Aqueous pesticide solution (laboratory-prepared) | Parathion/10 mg L−1 | Visible | 98.7% degradation | No TOC/mineralization data, real-water matrix not tested | [137] | |
| AFG@MIL-101(Fe) (amine-functionalized Fe3O4@GO core–shell wrapped with MIL-101(Fe)) | Aqueous pesticide solution (laboratory-prepared) | Diazinon, atrazine/30 ppm | Visible | ~100% degradation of diazinon and 81% of atrazine in 105 min | Synergistic photo-Fenton and photocatalysis via GO-enhanced electron transfer | Real-water matrix not tested | [138] |
| Graphene/ZnO nanocomposite doped with Mn/50–200 mg L−1 | Aqueous pesticide solution (laboratory-prepared) | Diazinon/10 mg L−1 | UV | ~100% removal after 60 min | Enhanced photocatalytic activity via Mn doping | Efficiency drops at >100 mg L−1 due to turbidity, no TOC or mineralization analysis, real-water matrix not tested | [145] |
| TiO2-rGO composites | Gas-phase nerve agent simulant system | Sarin | UV | 99.5% removal | Performance depends on rGO ratio | / | [129] |
| Electrode System | Type of Sample | Target Pollutant(s)/Concentration | Process Type | Efficiency/Kinetics | Notable Features | Limitations | Reference |
|---|---|---|---|---|---|---|---|
| N-TiO2/Graphene/Au (N-TiO2/G/Au) | Aqueous pesticide solution (laboratory-prepared) | Diazinon/10 mg L−1 | Photo-electrocatalysis/photo-electrocatalytic ozonation | 76.7% degradation in 60 min; ~100% with PEC ozonation | Enhanced degradation via PEC ozonation, stable for 7 cycles | Lower PEC efficiency without ozone, requires applied voltage (900 mV) | [156] |
| N-TiO2/Graphene/Ag (N-TiO2/G/Ag) | 81.1% degradation in 60 min; ~100% with PEC ozonation | ||||||
| rGO-AmPyraz@3DNiF | Agricultural wastewater | Dichlorvos/50 mg L−1 | EF oxidation | 100% degradation in 60 min | High H2O2 generation, stable and reusable, complete dichlorvos mineralization | Requires acidic pH | [154] |
| Bph-rGO | Aqueous pesticide solution (laboratory-prepared), wastewater matrix | Triclopyr/1 µM | Electrochemical oxidation | ~60% removal | Enhanced charge storage, efficient oxidant generation, lower energy consumption | Phosphate buffer causes higher ohmic losses, performance drops in wastewater | [159] |
| hBN-rGO | |||||||
| Fe3O4@N-GO | Simulated laboratory wastewater | Dimethoate/20 mg L−1 | Hetero EF | 100% degradation in 40 min | N-doping enhanced conductivity and H2O2 generation, DFT confirmed P=S and P–O bond attack, reduced toxicity of by-products, excellent reusability | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anićijević, V.; Mitrović, T.; Terzić, T.; Lazarević-Pašti, T. Graphene Oxide-Based Materials for the Remediation of Neurotoxic Organophosphates. Processes 2025, 13, 4028. https://doi.org/10.3390/pr13124028
Anićijević V, Mitrović T, Terzić T, Lazarević-Pašti T. Graphene Oxide-Based Materials for the Remediation of Neurotoxic Organophosphates. Processes. 2025; 13(12):4028. https://doi.org/10.3390/pr13124028
Chicago/Turabian StyleAnićijević, Vladan, Tatjana Mitrović, Tamara Terzić, and Tamara Lazarević-Pašti. 2025. "Graphene Oxide-Based Materials for the Remediation of Neurotoxic Organophosphates" Processes 13, no. 12: 4028. https://doi.org/10.3390/pr13124028
APA StyleAnićijević, V., Mitrović, T., Terzić, T., & Lazarević-Pašti, T. (2025). Graphene Oxide-Based Materials for the Remediation of Neurotoxic Organophosphates. Processes, 13(12), 4028. https://doi.org/10.3390/pr13124028

