Mechanism and Parameter Optimization of Surfactant-Assisted CO2 Huff-n-Puff for Enhanced Oil Recovery in Tight Conglomerate Reservoirs
Abstract
1. Introduction
2. Mathematical Model
3. Nanoconfined Phase State Model
4. Numerical Model Development and Parameter Configuration
5. Analysis of Influencing Factors on Surfactant-Assisted CO2 Huff-n-Puff Performance in Tight Conglomerate Oil Reservoirs
5.1. Performance Analysis of Surfactant-Assisted CO2 Huff-n-Puff
5.2. Soaking Time Analysis
5.3. Injection Time Analysis
5.4. Surfactant Concentration Effect Analysis
5.5. Injection Pressure Analysis
5.6. Surface Water Injection Rate
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SA-CO2-HnP | Surfactant-assisted CO2 huff-n-puff |
| IFT | Interfacial tension |
| MMP | Minimum miscibility pressure |
| EOR | Enhanced oil recovery |
| CGI | Continuous gas injection |
| VIT | Vanishing interfacial tension |
| EOS | Equation of state |
| GOR | Gas–oil ratio |
References
- Wu, W.; Tang, Y.; Zhao, J.; Wu, T.; Wu, H. Model of Tight Conglomerate Oil Accumulation in the Mahu Sag, Junggar Basin, Northwest China. J. Earth Sci. 2025, 36, 1149–1167. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, D.; Wang, Q.; Wang, F.; Wang, X.; Ma, K.; Wang, Y.; Lei, W.; Wang, Y.; Yang, Z.; et al. Occurrence Mechanism of Crude Oil Components in Tight Reservoirs: A Case Study of the Chang 7 Tight Oil in the Jiyuan Area, Ordos Basin, China. Energies 2025, 18, 1440. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Z.; Jiang, Q.; Wang, J.; Feng, Y.; Zheng, J.; Baffour, B.A. Evaluation of low permeability conglomerate reservoirs based on petrophysical facies: A case study from the Triassic Baikouquan Formation, northern Mahu Sag, Junggar Basin, China. J. Pet. Sci. Eng. 2022, 219, 111082. [Google Scholar] [CrossRef]
- Zeng, L.; Gong, L.; Guan, C.; Zhang, B.; Wang, Q.; Zeng, Q.; Lyu, W. Natural fractures and their contribution to tight gas conglomerate reservoirs: A case study in the northwestern Sichuan Basin, China. J. Pet. Sci. Eng. 2022, 210, 110028. [Google Scholar] [CrossRef]
- Xiao, M.; Wu, S.; Yuan, X.; Cao, Z.; Xie, Z. Diagenesis effects on the conglomerate reservoir quality of the Baikouquan Formation, Junggar Basin, China. J. Pet. Sci. Eng. 2020, 195, 107599. [Google Scholar] [CrossRef]
- Xiao, M.; Wu, S.; Yuan, X.; Xie, Z. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. J. Earth Sci. 2021, 32, 998–1010. [Google Scholar] [CrossRef]
- Tan, C.; Yu, X.; Liu, B.; Qu, J.; Zhang, L.; Huang, D. Conglomerate categories in coarse-grained deltas and their controls on hydrocarbon reservoir distribution: A case study of the Triassic Baikouquan Formation, Mahu Depression, NW China. Pet. Geosci. 2017, 23, 403–414. [Google Scholar] [CrossRef]
- Chen, X.; Yu, H.; Cao, A.; Yang, Z.; Li, W.; Niu, Z.; Chang, Y.; Du, M. Study on Enhanced Oil Recovery Mechanism of CO2 Miscible Flooding in Heterogeneous Reservoirs under Different Injection Methods. ACS Omega 2023, 8, 24663–24672. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Augusto Sampaio, M.; Ojha, K.; Hoteit, H.; Mandal, A. Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: A review. Fuel 2022, 330, 125633. [Google Scholar] [CrossRef]
- Lu, M.; Qian, Q.; Zhong, A.; Zhang, Z.; Zhang, L. Investigation on the flow behavior and mechanisms of water flooding and CO2 immiscible / miscible flooding in shale oil reservoirs. J. CO2 Util. 2024, 80, 102660. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, L.; Zhou, Y.; Li, R.; Li, H. A robust and efficient algorithm for vapor-liquid-equilibrium/liquid-liquid-equilibrium (VLE/LLE) phase boundary tracking. Chem. Eng. Sci. 2023, 266, 118286. [Google Scholar]
- Shokrollahi, A.; Arabloo, M.; Gharagheizi, F.; Mohammadi, A.H. Intelligent model for prediction of CO2—Reservoir oil minimum miscibility pressure. Fuel 2013, 112, 375–384. [Google Scholar] [CrossRef]
- Chen, G.; Gao, H.; Fu, K.; Zhang, H.; Liang, Z.; Tontiwachwuthikul, P. An improved correlation to determine minimum miscibility pressure of CO2–oil system. Green Energy Environ. 2020, 5, 97–104. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Ayatollahi, S.; Ghazanfari, M.-H.; Masihi, M. Experimental Determination of Interfacial Tension and Miscibility of the CO2–Crude Oil System; Temperature, Pressure, and Composition Effects. J. Chem. Eng. Data 2014, 59, 61–69. [Google Scholar] [CrossRef]
- Almobarak, M.; Wu, Z.; Zhou, D.; Fan, K.; Liu, Y.; Xie, Q. A review of chemical-assisted minimum miscibility pressure reduction in CO2 injection for enhanced oil recovery. Petroleum 2021, 7, 245–253. [Google Scholar] [CrossRef]
- Zhang, C.; Xi, L.; Wu, P.; Li, Z. A novel system for reducing CO2-crude oil minimum miscibility pressure with CO2-soluble surfactants. Fuel 2020, 281, 118690. [Google Scholar] [CrossRef]
- Liu, S.Y.; Li, M.F.; Chen, J.Y.; Teng, Y.; Wang, P.F.; Liu, J.R. Experimental investigation of surfactants and their ethanol blends for CO2–oil miscibility enhancement in CO2-EOR. Pet. Sci. 2025, 22, 4271–4281. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Wang, R.; Zhang, X.; Ma, S.; Su, Y.; Wang, C.; Luo, W.; Sun, H. Microscopic experiment study on mechanisms of oil-gas interaction and CO2-surfactant flooding with different temperatures and pressures. J. CO2 Util. 2023, 69, 102389. [Google Scholar] [CrossRef]
- Liu, B.; Lei, X.; Feng, D.; Ahmadi, M.; Wei, Z.; Chen, Z.; Jiang, L. Nanoconfinement effect on the miscible behaviors of CO2/shale oil/surfactant systems in nanopores: Implications for CO2 sequestration and enhanced oil recovery. Sep. Purif. Technol. 2025, 356, 129826. [Google Scholar] [CrossRef]
- Lei, X.; Liu, B.; Hou, Q.; Wang, Y.; Ahmadi, M.; Liu, Z.; Chen, Z. Switchability and synergistic effect of a CO2-responsive surfactant with co-surfactants at an O/W interface: A molecular insight. J. Mol. Liq. 2024, 405, 125051. [Google Scholar] [CrossRef]
- Ahmadi, M.; Hou, Q.; Wang, Y.; Lei, X.; Liu, B.; Chen, Z. Spotlight on reversible emulsification and demulsification of tetradecane-water mixtures using CO2/N2 switchable surfactants: Molecular dynamics (MD) simulation. Energy 2023, 279, 128100. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.S.; Barati, R. Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. J. Pet. Sci. Eng. 2018, 164, 31–42. [Google Scholar] [CrossRef]
- Peng, Z.; Sheng, J. Diffusion Effect on Shale Oil Recovery by CO2 Huff-n-Puff. Energy Fuels 2023, 37, 2774–2790. [Google Scholar] [CrossRef]
- Yang, Y.L.; Hu, Y.; Zhu, Y.T.; Zhang, J.G.; Song, P.; Qin, M.; Wu, H.R.; Song, Z.J.; Hou, J.R. Similarity-based laboratory study of CO2 huff-n-puff in tight conglomerate cores. Pet. Sci. 2023, 20, 362–369. [Google Scholar] [CrossRef]
- Haskin, H.K.; Alston, R.B. An Evaluation of CO2 Huff ‘n’ Puff Tests in Texas. J. Pet. Technol. 1989, 41, 177–184. [Google Scholar] [CrossRef]
- Zuloaga, P.; Yu, W.; Miao, J.; Sepehrnoori, K. Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs. Energy 2017, 134, 181–192. [Google Scholar] [CrossRef]
- Sheng, J.J. Optimization of huff-n-puff gas injection in shale oil reservoirs. Petroleum 2017, 3, 431–437. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, X.; Zhou, J.; Li, J.; Wang, A. CO2 Huff-n-Puff after Surfactant-Assisted Imbibition to Enhance Oil Recovery for Tight Oil Reservoirs. Energy Fuels 2020, 34, 7058–7066. [Google Scholar] [CrossRef]
- Haeri, F.; Burrows, L.; Lemaire, P.; Alenzi, A.; Shah, P.; Tapriyal, D.; Enick, R.; Crandall, D.; Goodman, A. Laboratory-Scale CO2 Huff ‘n Puff EOR using Single Phase Solutions of CO2 and CO2 Soluble, Nonionic, Wettability Altering Additives. In Proceedings of the SPE Annual Technical Conference and Exhibition, Virtual, 27–29 October 2020. [Google Scholar]
- Aboahmed, A.; Mohanty, K. Chemical Huff and Puff for Shale Oil Recovery Using Surfactants, Nanoparticles and Ketones. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, TX, USA, 9–11 June 2025. [Google Scholar]
- Daniel, E.K.; Cary, T.C.; Robin, S.H. Effect of some petroleum sulfonate surfactants on the apparent water solubility of organic compounds. Environ. Sci. Technol. 1990, 24, 205–208. [Google Scholar] [CrossRef]
- Larry, L.; Russell, T.J.; William, R.R.; Gary, A.P. Fundamentals of Enhanced Oil Recovery; Society of Petroleum Engineers: Richardson, TX, USA, 2014. [Google Scholar]
- Chen, X.; Tang, L.; Jia, C.; Yue, P.; Zhang, Z.; Liu, W. Phase behavior of hydrocarbon fluids in shale reservoirs, considering pore geometries, adsorption, and water film. ACS Omega 2024, 9, 2104–2112. [Google Scholar] [CrossRef]
- LIUBo, G. Comprehensive outlook into critical roles of pressure, volume, and temperature (PVT) and phase behavior on the exploration and development of shale oil. Energy Fuels 2022, 36, 14534. [Google Scholar] [CrossRef]
- Luo, Q.; Li, M.; Liang, B.; Liu, J.; Shi, G.; Wang, M.; Li, L. Experimental Investigation on the Mechanism of CO2-Enhanced Oil Recovery in Tight Conglomerate Reservoirs with Surfactant Assistance. ACS Omega 2025, 10, 50077–50087. [Google Scholar]
- Zarragoicoechea, G.; Kuz, V. Critical shift of a confined fluid in a nanopore. Fluid Phase Equilibria 2004, 220, 7–9. [Google Scholar] [CrossRef]
- Quan, F.; Lu, W.; Song, Y.; Sheng, W.; Qin, Z.; Luo, H. Multifractal Characterization of Heterogeneous Pore Water Redistribution and Its Influence on Permeability During Depletion: Insights from Centrifugal NMR Analysis. Fractal Fract. 2025, 9, 536. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, J.; Zhang, Y.; Tao, G.; Pan, J.; Niu, Q. Investigation of Permeability Stress Induced Damage Evolution of Shallow and Deep Coal Reservoirs in the Junggar Basin, China. Rock Mech. Rock Eng. 2025, 1–28. [Google Scholar] [CrossRef]














| Parameter | Value | Parameter | Value |
|---|---|---|---|
| Matrix permeability/mD | 0.005 | Reservoir top depth/ft | 8800 |
| Fracture permeability/D | 10 | Fracture half-length/ft | 350 |
| Porosity/% | 8 | Fracture width/ft | 0.001 |
| Formation temperature/°C | 115 | Formation pressure/psi | 8000 |
| Component | Field Values |
|---|---|
| N2 to CH4 | 0.2704 |
| C2 to NC4 | 0.2563 |
| IC5 to C7 | 0.127 |
| C8 to C12 | 0.2215 |
| C13 to C19 | 0.074 |
| C20 to C30 | 0.0508 |
| Total | 1.0 |
| N2 to CH4 | 0.2704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhang, J.; Ning, M.; Zhao, Y.; Zhang, G.; Liu, J.; Wang, M.; Li, L. Mechanism and Parameter Optimization of Surfactant-Assisted CO2 Huff-n-Puff for Enhanced Oil Recovery in Tight Conglomerate Reservoirs. Processes 2025, 13, 3888. https://doi.org/10.3390/pr13123888
Li M, Zhang J, Ning M, Zhao Y, Zhang G, Liu J, Wang M, Li L. Mechanism and Parameter Optimization of Surfactant-Assisted CO2 Huff-n-Puff for Enhanced Oil Recovery in Tight Conglomerate Reservoirs. Processes. 2025; 13(12):3888. https://doi.org/10.3390/pr13123888
Chicago/Turabian StyleLi, Ming, Jigang Zhang, Meng Ning, Yong Zhao, Guoshan Zhang, Jiaxing Liu, Mingjian Wang, and Lei Li. 2025. "Mechanism and Parameter Optimization of Surfactant-Assisted CO2 Huff-n-Puff for Enhanced Oil Recovery in Tight Conglomerate Reservoirs" Processes 13, no. 12: 3888. https://doi.org/10.3390/pr13123888
APA StyleLi, M., Zhang, J., Ning, M., Zhao, Y., Zhang, G., Liu, J., Wang, M., & Li, L. (2025). Mechanism and Parameter Optimization of Surfactant-Assisted CO2 Huff-n-Puff for Enhanced Oil Recovery in Tight Conglomerate Reservoirs. Processes, 13(12), 3888. https://doi.org/10.3390/pr13123888

