\...{: processes

Article

Coordinated Control Strategy for Active-Reactive Power in
High-Proportion Renewable Energy Distribution Networks with
the Participation of Grid-Forming Energy Storage

Yiqun Kang !, Zhe Li !, Li You !, Xuan Cai 2, Bingyang Feng {9, Yuxuan Hu 3 and Hongbo Zou **

check for

updates
Academic Editor: Yuzhou Zhou,
Yizhou Zhou, Daogui Tang
and Hang Shuai

Received: 25 September 2025
Revised: 8 October 2025
Accepted: 10 October 2025
Published: 14 October 2025

Citation: Kang, Y,;Li, Z,; You, L.;
Cai, X,; Feng, B.; Hu, Y.; Zou, H.
Coordinated Control Strategy for
Active-Reactive Power in
High-Proportion Renewable Energy
Distribution Networks with the
Participation of Grid-Forming Energy
Storage. Processes 2025, 13, 3271.
https:/ /doi.org/10.3390/pr13103271

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

1 Electric Power Research Institute of State Grid Hubei Corporation, Wuhan 430000, China;
kangyiqun343@126.com (Y.K.); lizhe3733@126.com (Z.L.); youlil987@126.com (L.Y.)

Hubei Key Laboratory of Regional New Power Systems and Rural Energy System Configuration,

Wuhan 430000, China; caixuan5250@126.com

Hubei Engineering Research Center of the Construction and Operation Control Technology of New Power
Systems, Wuhan 430000, China; fby6923@foxmail.com (B.E.); karryhyx@163.com (Y.H.)

School of Electricity and New Energy, Three Gorges University, Yichang 443002, China

*  Correspondence: zhbhorace@ctgu.edu.cn

Abstract

The high proportion of renewable energy connected to the grid has resulted in insuffi-
cient consumption capacity in distribution networks, while the construction of new-type
power distribution systems has imposed higher reliability requirements. With its flexible
power synchronization control capabilities, grid-forming energy storage systems possess
the ability to both promote the consumption of distributed energy resources in new-type
distribution networks and enhance their reliability. However, current control methods
are still hindered by drawbacks such as high computational complexity and a singular
optimization objective. To address this, this paper proposes an optimized strategy for
unified active-reactive power coordinated control in high-proportion renewable energy dis-
tribution networks with the participation of multiple grid-forming energy storage systems.
Firstly, to optimize the parameters of grid-forming energy storage systems more accurately,
this paper employs an improved iterative self-organizing data analysis technique algorithm
to generate typical scenarios consistent with the scheduling time scale. Quantile regression
(QR) and Gaussian mixture model (GMM) clustering are utilized to generate typical scenar-
ios for renewable energy output. Subsequently, considering operational constraints and
equipment state constraints, a unified active-reactive power coordinated control model
for the distribution network is established. Meanwhile, to ensure the optimality of the
results, this paper adopts an improved northern goshawk optimization (NGO) algorithm
to solve the model. Finally, the effectiveness and feasibility of the proposed method are
validated and illustrated through an improved IEEE-33 bus test system tested on MATLAB
2024B. Through analysis, the proposed method can reduce the average voltage fluctuation
by 6.72% and increase the renewable energy accommodation rate by up to 8.64%.

Keywords: distribution networks; Gaussian mixture model (GMM); grid-forming energy
storage; improved northern goshawk optimization (NGO) algorithm; quantile regression;
renewable energy

1. Introduction

The large-scale integration of new energy sources, represented by wind power and
photovoltaics, into the power grid [1] is driving the transformation of traditional power
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systems into new-type power systems [1]. However, the intermittency and uncertainty
of wind and solar power output also pose risks to the safe operation of these new-type
power systems [2]. With the rapid growth in the installed capacity of renewable energy and
the proportion of new-type loads, the randomness and volatility of both power sources
and loads have intensified. On the other hand, the rotational inertia and support capacity
of the power system have decreased, resulting in weaker anti-disturbance capabilities,
more complex fault characteristics, and interconnected fault patterns, posing challenges
to the safe and stable operation of the system [3]. Therefore, there is an urgent need to
advance grid-forming technologies capable of actively supporting grid voltage, frequency,
and power angle stability to enhance the level of safe and stable system operation [4].
Grid-forming energy storage systems, owing to their advantages in power regulation and
power quality assurance, have emerged as an effective means to address voltage stability
issues in distribution networks and the challenge of renewable energy consumption [5].

Numerous scholars have conducted research on the reactive power and voltage control
issues in distribution systems with a high proportion of renewable energy. For distribution
networks with a high penetration of renewable energy, employing multiple devices such as
inverters, on-load tap changers (OLTC), and shunt capacitor banks (SCB) for regulation has
become a feasible approach to address voltage violations and fluctuations. Reference [6]
combines distributed generation resources with traditional voltage regulation methods
and employs a two-stage planning approach to optimize distribution network voltage.
Reference [7] proposes a multi-layer optimization strategy to coordinate and optimize the
output and operation of photovoltaic (PV) inverters and voltage regulation equipment.
Reference [8] first optimizes equipment such as OLTC based on forecasted values and then
adjusts the output of distributed PV inverters to achieve voltage stability. Reference [9]
considers PV curtailment and utilizes a model predictive control algorithm to optimize
the operation timing, tap positions of OLTC and SCB, as well as the output power of
inverters. Reference [10] proposes a voltage optimization method for distribution networks
that accounts for load characteristics, eliminating voltage fluctuations caused by forecast
errors by optimizing the output of PV inverters. The aforementioned studies consider
the regulatory capabilities of inverter equipment and coordinate various types of voltage
regulation devices to improve grid operation. Considering the significant wear and tear on
traditional voltage regulation equipment such as OLTC and SCB, which makes frequent
adjustments impractical, Reference [11] proposes a reactive power optimization dispatch
method based on regulation costs. This method utilizes regulation costs to decouple
and solve the regulation issues of reactive power compensation equipment, achieving
favorable optimization results. However, in systems that incorporate multiple types of
active and reactive power devices, achieving satisfactory optimization results becomes
challenging when considering overall system economics. Since inverter equipment can
be frequently regulated through power electronics technology, how to fully exploit and
utilize the regulatory characteristics of inverter equipment becomes a pressing issue to
address [12].

A grid-forming energy storage system consists of a grid-forming converter, a step-up
transformer, and power lines. Variations in system capacity directly affect the equivalent
impedance of the grid-forming converter, step-up transformer, and power lines [13]. There-
fore, grid-forming energy storage cannot be simply regarded as an ideal voltage source [14].
Further research is needed to investigate how changes in the equivalent impedance and
capacity of the energy storage system impact system stability, as well as how to effectively
coordinate and optimize the ratio between grid-forming energy storage and renewable
energy sources for efficient management and control of grid-forming energy storage [15].
Reference [16] optimizes the capacity allocation of a combined photovoltaic and fuel
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cell system through detailed mathematical modeling and hourly numerical simulations.
Reference [17] proposes a microgrid operation strategy based on a model predictive control
framework that includes hydrogen energy storage and battery energy storage units, with
the proposed control strategy enhancing battery lifespan and reducing maintenance costs.
Reference [18] presents an analytical method for designing the power and capacity of
grid-forming energy storage based on the small-signal model of a virtual synchronous
generator (VSG), considering different inertia and damping parameters. However, this
model does not account for the primary frequency regulation capability of energy storage.
Reference [19] comprehensively considers the inertia and frequency regulation character-
istics in energy storage configuration and provides a detailed analysis of the relationship
between energy storage power, capacity, and VSG parameters. Nevertheless, the model
only focuses on single-machine operation conditions and does not extend to multi-machine
scenarios, while also noting differences in dynamic response and functional positioning
between inertia support and primary frequency regulation. Reference [20] explores these
differences but offers limited discussion on specific energy storage configuration schemes,
such as maximum power, capacity requirements, and response times.

Grid-forming energy storage can effectively address the impacts of high-proportion
renewable energy integration on system power flow and voltage regulation. Reference [21]
indicates that energy storage systems can improve grid frequency and voltage fluctuations
caused by uncertainties in renewable energy grid integration by adjusting power output.
Reference [22] resolves reverse power flow and voltage boost issues in solar grid integra-
tion, as well as suppresses PV output fluctuations, by configuring corresponding energy
storage devices for photovoltaic systems. Currently, due to the high cost of energy storage
configuration, the siting and sizing of grid-forming energy storage are key research focuses
when integrating into the system. Reference [23] aims to minimize network losses, intro-
ducing a network loss factor to determine the installation location and capacity of energy
storage, but fails to consider the economic efficiency of system operation. Reference [24]
analyzes the power output characteristics of renewable energy stations but only provides
an analytical foundation for energy storage planning, lacking an analysis of technical
characteristics. Reference [25] studies the optimal siting of battery energy storage systems
(BESS) considering the impact of voltage sensitivity, but employs a single time scale in the
research. Reference [26] aims to minimize both the operation and pollution emissions of
the distribution network system, considering the siting and sizing optimization of energy
storage and distributed generation sources. Reference [27] establishes an optimization
model for energy storage siting and sizing based on node voltage, load, and energy storage
capacity. However, none of these studies consider the charging and discharging processes
of energy storage, leading to inaccurate optimization results. Reference [28] optimizes the
location, capacity, and output of energy storage separately through a bi-level optimiza-
tion model, but the inner and outer levels lack interaction and are mutually independent.
Reference [29] considers network losses and voltage deviations to establish an optimization
model for energy storage in distribution networks, but fails to optimize the obtained energy
storage capacity. Most of the aforementioned studies fail to jointly optimize economic and
technical indicators and do not account for the uncertainties of renewable energy, making
them unsuitable for the application of grid-forming energy storage.

Although numerous scholars have currently conducted research on the scheduling
involving grid-forming energy storage systems, several research challenges still persist, as
shown in Table 1.
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Table 1. Gap analysis of current research reference.

Reference

Research Deficiencies Specific Description

[3,4]

None of them have fully optimized both economic

Incomplete consideration of factors ~ and technical indicators, nor have they adequately

considered the uncertainties of renewable energy.

[5,6,9]

Single optimization objective

Optimization objectives are relatively singular, failing
to comprehensively consider multiple aspects, and
lacking a detailed analysis of the configuration
schemes for grid-forming energy storage.

[7,8,12,15]

Inaccurate optimization results

Charging and discharging processes of energy storage
are not taken into account, leading to inaccurate
optimization results; the model does not consider
economic efficiency, resulting in incomplete analysis.

[13,14]

Lack of interactivity in the model

It only considers a single time scale, lacking analysis
across multiple time scales; the upper and lower
models lack interaction, limiting the

optimization results.

[17,19]

Economic and technical indicators are not

Failure to comprehensively consider — comprehensively considered, nor is the impact of
multiple factors uncertainties in renewable energy on the system taken

into account.

To address these issues, this paper proposes an optimized strategy for unified active-
reactive power coordinated control in high-proportion renewable energy distribution
networks with the participation of multiple grid-forming energy storage systems. The main
innovative points of this paper are summarized as follows:

(1) This paper employs an improved ISO-DATA, combined with QR and GMM clus-
tering, to generate typical scenarios consistent with the scheduling time scale. This ap-
proach enables more accurate optimization of the parameters of grid-forming energy
storage systems.

(2) This paper proposes a unified active-reactive power coordinated control op-
timization strategy for distribution networks with high proportions of renewable en-
ergy, considering the participation of multiple grid-forming energy storage systems. An
improved NGO algorithm is adopted to solve the model, ensuring the optimality of
the results.

The research framework of this paper is organized as follows: Section 2 introduces
the method for generating typical scenarios for renewable energy and loads. Based on this,
Section 3 presents the coordinated active-reactive power control strategy for grid-forming
energy storage. Considering the non-convex and nonlinear characteristics of the model, an
improved NGO algorithm is introduced in Section 4. Subsequently, Section 5 employs an
improved IEEE-33 bus test system for case study validation. Finally, Section 6 summarizes
the entire paper.

2. Scenario Generation Method for Source-Load Uncertainty

To formulate control strategies more accurately, this paper employs an improved Itera-
tive Self-Organizing Data Analysis Technique Algorithm (ISO-DATA) to generate typical
scenarios for net load, and utilizes Quantile Regression (QR) combined with Gaussian
Mixture Model (GMM) clustering to generate typical scenarios for renewable energy output.
The output of new energy sources and load power are influenced by weather conditions.
The output power of wind turbines directly depends on meteorological factors such as
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wind speed, wind direction, and air density. For instance, excessively low wind speeds can
cause turbines to shut down, while gusts or turbulence may induce power fluctuations. The
efficiency of PV power generation is significantly affected by sunlight intensity, cloud cover,
temperature, and duration of sunshine, with output dropping sharply or even reaching
zero during overcast or rainy weather, as well as during day-night transitions. Meanwhile,
the demand pattern for load power is closely tied to weather conditions—extreme tem-
peratures drive up electricity consumption from air conditioning and heating systems,
while rainfall, strong winds, and other weather phenomena may alter industrial production
schedules or residential electricity usage behaviors, further exacerbating load volatility.
Therefore, prior to generating typical scenarios, different scenario classifications can be
constructed using historical data, as illustrated in Figure 1 below.

High wind speedl ILow wind speedl Im‘I\ICIfOUdYI | Load tWough |
Wind power PV }:t)wer Load power

Total Scenario Set

Figure 1. Visualized classification and presentation of different scenarios.

2.1. Load Scenario Generation

Among unsupervised clustering algorithms, compared to K-means clustering, the
ISODATA allows for dynamic changes in the number of clusters through merging and
splitting operations. However, load curves contain high-dimensional features, such as
temporal variation characteristics, which cannot be extracted using the conventional ISO-
DATA algorithm that employs Euclidean distance as a distance metric. To address this,
the original load data is mapped into an appropriate high-dimensional space where the
load curves become easier to separate and structure. Kernel functions enable the direct
computation of inner products in high-dimensional spaces without explicitly calculating
the mapping function, as shown in Equation (1).

K(x1,x2) = ¢(x1)¢(x2) 1

Here, K(-) represents the kernel function; ¢(-) represents the high-dimensional map-
ping function; and x; and x; are net load samples.

Therefore, the distance d(x1, xo) between two samples in high-dimensional space can
be simplified for calculation using the kernel function, as shown in Equation (2).

d(x1,x2) = [|P(x1) — P(x2) > = p(x1)* — 2 (x1)p(x2) + p(x2)*

2
= K(xl,x1) — 2K(X1, Xz) + K(JCZ, X2) @

By utilizing the distances between samples in high-dimensional space, load curves are
classified to enhance the similarity of net load curves within clusters and the dissimilarity
between clusters. Since each cluster center is representative of its respective cluster, the
samples closest to each cluster center are selected as typical load scenarios. To identify the
optimal kernel function and validate the superiority of the proposed improved ISODATA,
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this paper employs the Davies-Bouldin Index (DBI) and Dunn Index (DI) as metrics for
evaluating clustering performance. These two indices reflect clustering effectiveness from
the perspectives of cluster centers and boundaries, respectively, as shown in Equation (3).
Specifically, a smaller DBI indicates greater inter-cluster dissimilarity and intra-cluster
similarity, implying better clustering performance; conversely, a larger DI also signifies
better clustering performance.

ke avg(C;) + avg(C;
DBI= L% max (T8(C)Ta2s(C),
ke i21 =12 kesit d(uj, uj) @3)
. . dmin(cir C])
DI = min min _
1<i<ke | j=12,... k,i#j maxdiam(C;)

Here, k. represents the total number of clusters; avg(C;) denotes the average distance
from samples in cluster C; to its cluster center u;; dpmin(C;, C]-) is the minimum distance
between samples in clusters C; and C;; and diam(C;) is the maximum distance between
samples within cluster C;.

2.2. Generation of New Energy Output Scenarios

The uncertainty in power systems with a high penetration rate of renewable energy
mainly stems from renewable energy sources. To characterize the uncertainty of renewable
energy, this section proposes a method for generating new energy output scenario sets
based on QR and GMM. Firstly, it is assumed that there exists the following linear fitting
relationship between the actual power and the forecasted power:

pf[en,r — urpren,f + bT (4)

Here, p""/ represents the forecasted new energy output; p*"™" denotes the fitted actual
new energy power at the T-quantile; and a; and b are the parameters of the linear fitting
equation at the T-quantile.

The forecasted new energy output and the actual new energy output are represented
using a quantile matrix T. The generated quantile-based daily variation curves are clustered
into scenarios using GMM. GMM is characterized by its strong robustness, dividing the
sample data into D categories, which correspond to the D multidimensional Gaussian
distribution components of the Gaussian mixture model. The idea behind the GMM
algorithm is to estimate the sample data as a linear superposition of probabilities belonging
to D multidimensional Gaussian distributions, with each category of samples following a
multidimensional Gaussian distribution. The definition of the GMM probability density
function g(x) is shown in Equation (5).

D
g(x) = ZwsN(x|ys,(55) 5)
s=1

Here, w; represents the weight coefficient of the s-th Gaussian distribution component;
N(x|ps,ds) is the probability density function of a Gaussian distribution with mean y; and
covariance d;; and x is the sample corresponding to the new energy. The parameters ws, s,
and J; of the GMM are generally estimated using the Expectation-Maximization algorithm.

3. Optimized Strategy for Unified Active-Reactive Power Coordinated
Control in Distribution Networks

3.1. Objective Function

This paper considers the control strategy from the perspective of active power dispatch,
focusing on system network losses, and from the perspective of reactive power control,
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focusing on system voltage fluctuations. The two objective functions are respectively
expressed as shown in Equations (6) and (7) below.

T
obji =Y Y CiosslfRij (6)
t=1jjeqt
T
Oij = Z Z Cvol|ui,t - Ui,Nl 7)
t=1jeqN

Here, T represents the total scheduling time horizon, which is set to 24 in this paper;
OF and QV denote the sets of lines and nodes, respectively; Cyss and Cy,; represent the

penalty coefficients for network losses and voltage fluctuations, respectively; I%, denotes

ij,t
the square of the current in line 7j at time #; R;; represents the resistance value]f of line ij;
and U;; and U; 5 denote the voltage magnitude and per-unit value at node I at time ¢,
respectively.

By introducing penalty coefficients, Objective Functions (1) and (2) are transformed
into a minimization problem of economic costs with the same dimension. At this point, the

overall operational objective of the distribution network can be expressed as:

T
objp =Y Y Cot|Uiy — Ui n| (8)
t=lieqN
3.2. Constraints

(1) Power flow constraints
For radial distribution networks, this paper employs the DistFlow branch power flow
model to represent the power flow constraints, as shown in Equation (9).

Y (P —I3mij) = L P+ Py
kev(j)

i€u(j)
Y Qii—Ixij)= ¥ Qi+ Qjs
ieng) Ty ! )
U7, — Uz, = 2(riiPye + x3jQuje) — (5 + x5 17,

12 U?,t = P2

2
it i T Q

ijt

Here, P;; and Q; + are the active and reactive power injections at node j during time
period ¢, respectively; U; ; is the voltage magnitude at node j during time period ¢#; r;; and
x;; are the resistance and reactance between nodes i and j, respectively; u(j) represents the
set of starting nodes of branches that have node j as the ending node; v(j) represents the set
of ending nodes of branches that have node j as the starting node; and P;; ; and Q;; + are the
active and reactive power injections from node i to node j during time period ¢, respectively.

(2) Constraints on traditional energy storage equipment

0 < PESS < O-ESS PESS

cha,t — Y cha,t” cha,max
ess €SS Pess
0 < Piict = s tiismax

0 S O-ESS + 0—555 < 1 (10)

cha,t is,t —

Socmin < Soct < SOCmax
P&?S
SOC; = SOC;—1 + e Py — it

Nais

Here, P%°  and P%°  represent the maximum allowable charging and discharging

cha,max dis,max
/ 3 . €SS SS
power of the energy storage at node i, respectively; o7 , and o,

(0-1 variables) indicating the charging and discharging states of the energy storage at node

SS
cha,t

are binary variables

i during time period t. Specifically, equals 1 when the energy storage is charging and
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0 otherwise, while 0%, equals 1 when the energy storage is discharging and 0 otherwise;

SOC; and SOC;_1 represent the state of charge (SOC) of the energy storage at node i during

time periods t and t — 1, respectively; SOCnax and SOCpyin, are the upper and lower limits

ess
cha

and discharging efficiencies of the energy storage, respectively.

and 75 are the charging

of the SOC of the energy storage at node i, respectively; and %
(3) Constraints on renewable energy output
The types of renewable energy considered in this paper are wind power and photo-
voltaic power, which need to satisfy constraint (11). Grid integration of renewable energy
must satisfy constraints for safe grid operation, including active /reactive power balance
constraints, voltage fluctuation limits, and frequency stability requirements. Additionally,
equipment status constraints—such as maximum output limits for wind turbines/PV in-
verters, charging/discharging power and capacity constraints for energy storage systems,
and scheduling time-scale constraints—must also be considered to ensure dynamic adapt-
ability between renewable energy generation and the power grid. For detailed constraint
models, refer to [30].
< PP? < pEY,
{00< Pl;md <1;;nu?z);td (11)

max

(4) Tie-line Power Constraints

When there is a power imbalance in the system, the distribution network can purchase
electricity from or sell electricity to the upper-level grid through tie-lines, which must
satisfy constraint (12).

buy tie
{0 < i < 12
O < P < Pmax
(5) Node Voltage/Line Current Constraints
umin < uzt < umax (13)
I T < I < I max

(6) Constraints on Grid-Forming Energy Storage

Grid-forming energy storage systems can flexibly control the output of active and
reactive power. During the operation of the distribution network, they provide reactive
and active power support for loads and voltage stabilization, as shown in Equation (14):

ges EU;; . )
szst X sind; s

Qges o E2 EU;;

(14)
dis, t Xs cos 51',1‘

The charging and discharging model of grid-forming energy storage is of the same
type as the traditional energy storage model, which can be referred to in Expression (10).
Here, E represents the root mean square value of the output voltage; J;  is the power angle;
and Xy denotes the filtering reactance.

Capacitor banks and OLTC serve as discrete decision variables, with strict limitations
on the number of operations within a scheduling period. Therefore, this paper incorporates
constraints on the number of actions of reactive power compensation equipment for optimal
segmentation. The specific constraints are as follows:

(7) Constraints on Capacitor Bank Adjustment

0 < NCB < NCEB

max

NCB%

. (15)
tgl | NtCB ’ ’)’max
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Here, 7B, represents the upper limit on the number of operations for the capacitor
banks over the entire optimization period; N$E, denotes the maximum number of switching
groups for the reactive power compensation capacitor; NC? is the number of switching
groups of the reactive power compensation capacitor during time period ; Q¢? represents
the switching capacity of the reactive power compensation capacitor group during time
period t; and g2 is the switching capacity of a single group.

(8) Constraints on OLTC Adjustment

OLTC OLTC OLTC
Nmin < N, t < Nmax

U = Ujp—1(1 + AUPLTENOLTC)

T (16)
Y| NOLTC _ NtOLlTC‘ < 4OLTC
t=1 B -

max

OLTC

Here, Ymax

represents the maximum number of adjustments for the OLTC tap changer
over the entire optimization period; NOETC and NQLIC are the lower and upper limits,
respectively, of the maximum allowable adjustment range for the OLTC tap changer; NPLT¢
indicates the position of the OLTC tap changer during time period f, which always takes an

integer value; and AUPLTC is the voltage regulation step size of the OLTC.

4. Solution Method Based on an Improved Northern Goshawk
Optimization Algorithm

Although the Disflow model reduces the solution complexity to a certain extent, the
scheduling decision problem remains inherently a mixed-integer nonlinear programming
problem. Therefore, this paper employs the Northern Goshawk Optimizer (NGO), which
can effectively explore different regions of the solution space and is applicable to a variety
of optimization problems, including both continuous and discrete optimization.

4.1. Basic Principle of NGO

In the NGO algorithm, the hunting process of the northern goshawk is divided into
two phases: the exploration phase of prey identification and attack, and the exploitation
phase of goshawk pursuit and prey escape.

(1) Phase 1: Exploration Phase.

In the first phase, the northern goshawk randomly selects a prey and launches a rapid
attack. It conducts a global search within the search space, determining the optimization
scope through random selection of targets, thereby enhancing the algorithm’s detection
capability. The behaviors exhibited by the northern goshawk in this phase can be described

as follows:
Y, = Xp,n= 1,2,...,Nngo;k =1,2,...,n— 1,n+1,...,Nngo (17)
yPLnew _ Xpj + 7(]/nj - 5xnj),FP1 < Fy (18)
g Xpj + 7(xnj - ]/nj)/ FP1 > F
XPl,newl PP],new E.
Xi=4q "' Plnew = h (19)
X;, FF 0 > F

Here, Y, represents the position of the prey of the n-th northern goshawk; X represents

the position of the k-th northern goshawk; F! represents the objective function value of

the prey’s position of the n-th northern goshawk; k is a random integer within the range

of [1, N]; Njgo represents the number of northern goshawks; le Lnew represents the new

position of the n-th northern goshawk; x,,; represents the position of the n-th northern

P1,new

goshawk in the j-th dimension; x,, j represents the new position in the j-th dimension of
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the prey of the n-th northern goshawk; F""*"

represents the objective function value of
the n-th northern goshawk after the update in the first phase; r is a random number within
the range of [0, 1]; and ¢ is a random integer that is either 1 or 2.

(2) Phase 2: Exploitation Phase

After the northern goshawk launches an attack on its prey, the prey attempts to flee.
Consequently, throughout a series of pursuit and evasion actions, the goshawk persistently
chases after its prey. Due to the high-speed maneuverability of northern goshawks, they
can nearly always capture their prey under any circumstances. By simulating this behavior,
the local search capability of the algorithm is improved. Assuming that this hunting activity
is centered around an attack position within a radius of R, it satisfies Equations (20)—(22):

x?ﬁwhzxm~%RQr—1ywj (20)
w

R=002(1— — 21

( M) (21)

P2,new P2new
&:{m JEP2" < F, 2)

Xu, F 2" > Fy
P2,new
nj
represents the position of northern goshawk # in the j-th dimension after the update
P2,new
E.~

Here, x
Xrll)Z,new

represents the new position of northern goshawk 7 in the j-th dimension;

in the second phase; represents the objective function value of northern goshawk
n; w represents the current iteration number; and Wi represents the maximum number

of iterations.

4.2. Multi-Strategy Improvement Approach

Improvement 1: Refracted Opposition-Based Learning Strategy

The NGO algorithm employs random initialization, which fails to ensure population
diversity and thus affects the quality of the global optimal solution. In this paper, we
initialize the population using the Refracted Opposition-Based Learning strategy, which
expands the range of the initialized population by solving for the opposite of the current
solutions. Refracted opposition-based learning is expressed as follows:

A :M]'-FN]'_'_M]'-FN]'_@

nj 2 2%k k

(23)
Here, xﬁj is the refracted opposite solution of x;;; and M; and N; are the maximum
and minimum values of the j-th dimension in the search space respectively.
Improvement 2: Sine-Cosine Strategy
To prevent the algorithm from getting trapped in local optima, the Sine-Cosine Algo-
rithm (SCA) is employed to replace the position update formula during the prey identifica-
tion phase, as follows:

o= )i resin(a) |raxpest — Xigl, 13 < 05 (24)
(a Xjt + 11€08(a)|r2Xpest — Xi|, 73 > 0.5
w
1"1 = ]_ — 25
Wi (25)

Here, x;; represents the position of individual i at the t-th iteration; x;, is the current
best individual in the population at the t-th iteration; and a € [0,27], 7, € [0,2],73 € [0,1]
is a random parameter.
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The original step-size search factor in SCA shows a linearly decreasing trend, which
is not conducive to balancing global and local search capabilities. Therefore, the step-size
search factor of the sine-cosine strategy is improved as follows:

1/
) (26)

=1

Here, r2 represents the improved rq; 77 is an adjustment coefficient, with a value greater
than or equal to 1.

5. Case Study Analysis

This paper employs a modified IEEE-33 node system for case verification, with the
relevant topology shown in Figure 2 below. Specifically, two grid-forming energy storage
devices are installed at nodes 10 and 24; a conventional energy storage device is installed at
node 29. Distributed renewable energy sources, including wind power and photovoltaics,
are installed at nodes 3 and 15 respectively, and a capacitor bank is installed at node 2.

23 24 25 2627282930 313233

19 20 21 22

Figure 2. Topology of the modified IEEE-33 node system.

5.1. Effectiveness Analysis of Scenario Generation

The load, wind power, and photovoltaic output scenarios generated using the pro-
posed method are illustrated in Figures 3-5 below.
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Figure 3. The load power scenarios.
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Figure 4. Wind power output scenarios.
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Figure 5. Photovoltaic output scenarios.

By observing the above figures, it can be found that the load and wind-solar power
output scenarios generated by the method in this paper exhibit small errors. This is because
when using the improved iterative self-organizing data analysis technique algorithm to
generate typical load output scenarios, the algorithm can perform targeted processing based
on the dispatching time scale, better capturing the characteristics and variation patterns
of the load at the corresponding time scale, resulting in generated scenarios that more
closely align with reality. Meanwhile, when generating typical scenarios for renewable
energy output using quantile regression and Gaussian mixture model clustering, quantile
regression can account for information at different quantiles, and Gaussian mixture model
clustering can effectively uncover the underlying data structure. The combination of these
two methods enables a more precise depiction of the complex characteristics of renewable
energy output, thereby reducing errors in the generated scenarios.

To more intuitively demonstrate the effectiveness of the method proposed in this
paper, comparisons were made with other methods, including k-means and generative
adversarial network (GAN) approaches, with relevant data results presented in Table 2
below. This paper selects k-means algorithm and GAN for comparison primarily because
they are representative benchmark methods suitable for typical scenario generation tasks.
As a classic unsupervised clustering method, k-means, while computationally efficient,
relies on Euclidean distance and a fixed number of clusters, making it difficult to capture
the temporal characteristics and dynamic variation patterns of high-dimensional load
curves. GAN, through adversarial training between the generator and discriminator,
can fit complex distributions; however, its training process is unstable and sensitive to
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data noise, often leading to significant deviations between generated scenarios and actual
conditions. By comparing these two methods, the advantages of the proposed scenario
generation method, which combines improved ISO-DATA with QR-GMM, in dynamic
feature extraction, high-dimensional data adaptability, and generation accuracy can be
highlighted. This validates its more precise modeling capability for renewable energy and
load uncertainties.

Table 2. Comparison of indicators for different scenario generation methods.

Method DBI Value DI Value Average Error
The proposed method 0.35 0.82 0.08
k-means method 0.62 0.55 0.15
GAN method 0.58 0.60 0.13

The DBI evaluates clustering performance by calculating the ratio of intra-cluster
compactness to inter-cluster separation, where a lower value indicates higher clustering
quality. The DBI value of typical scenarios generated by the proposed method is 0.35, signif-
icantly lower than those of k-means (0.62) and GAN (0.58), demonstrating that the load and
renewable energy scenarios produced by this method exhibit tighter intra-cluster cohesion
and more distinct inter-cluster differences, effectively avoiding data misclassification. This
is attributed to the improved ISO-DATA algorithm, which maps high-dimensional features
via kernel functions and integrates QR-GMM to quantify output characteristics across
different quantiles, enabling the generated typical scenarios to more closely align with
actual operational patterns. This validates the method’s superiority in scenario generation
accuracy. The DI is also an important metric for evaluating clustering effectiveness, with
a higher value indicating better clustering quality. The DI value of our method reaches
0.82, significantly higher than those of the other three methods. The DI value for the
k-means method is 0.55, for the GAN method it is 0.60. This indicates that our method,
during the clustering process, can better group similar data together while maintaining
a larger distance between different clusters, enhancing the clarity and interpretability of
the clusters and making the generated typical scenarios more consistent with the distri-
bution characteristics of actual data. Error metrics directly reflect the degree of deviation
between the generated scenarios and actual data. The error of our method is 0.08, the
smallest among the four methods. The error for the k-means method is 0.15, for the GAN
method it is 0.13. This fully proves that the typical scenarios of load and wind-solar power
output generated by our method are closer to actual data, enabling more accurate simu-
lation of real-world operating conditions and providing a reliable basis for subsequent
scheduling decisions.

5.2. Analysis of System Operation Performance

During periods of significant fluctuations in renewable energy output or heavy load
conditions, the OLTC and capacitor banks coordinate with each other to maintain node
voltages within a safe range. Their operational status is illustrated in Figure 6 below.

During periods of significant fluctuations in renewable energy output, such as when
photovoltaic power generation experiences a sudden decrease or increase due to cloud
cover or when wind power generation undergoes abrupt changes due to wind speed
variations, the original power balance of the power grid is disrupted, causing node voltages
to deviate from their normal range. Similarly, during periods of heavy load, when a large
number of electrical devices operate concurrently, the line current increases, leading to
a rise in line voltage drop and a subsequent decrease in node voltage. At such times,
the OLTC adjusts the transformer’s turns ratio by changing the tap positions, thereby



Processes 2025, 13, 3271

14 of 18

altering the secondary-side voltage to raise or lower the node voltage. Meanwhile, the
capacitor banks modify the reactive power distribution in the power grid by switching
capacitors in or out, compensating for reactive power losses in the lines and improving
voltage levels. Through their coordinated operation, the OLTC addresses the fundamental
aspect of adjusting voltage magnitude, while the capacitor banks focus on compensating
reactive power and improving the power factor. Together, they maintain node voltages
within a safe range, ensuring the stable operation of the power grid.

I Tap positions of OLTC m

B— Number of capacitor banks

Tap positions of OLTC
IS

Number of capacitor banks

|
—

0 2 4 6 8 10 12 14 16 18 20 22 24
Time/h

Figure 6. Operational status of OLTC and capacitor banks.

Figure 7 further illustrates the charging and discharging status of the energy
storage devices.
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Figure 7. Charging and discharging status of the energy storage devices.

Observing Figure 7 above, it can be seen that when renewable energy output is high, a
large amount of clean energy surges into the distribution network. If not promptly absorbed,
this can easily lead to voltage increases or even exceedances. At this time, the energy storage
device charges to absorb the surplus electrical energy, preventing excessive voltage rises
caused by power surplus in the grid and stabilizing the voltage level. During peak load
periods, when electricity demand surges, the line voltage drop becomes significant, causing
the voltage to decrease accordingly. The energy storage device discharges to supplement
electrical energy to the grid, providing reactive or active power support to enhance voltage
quality and prevent excessively low voltages. Through this flexible adjustment of charging
during periods of high renewable energy output and discharging during peak load periods,
the energy storage device effectively balances the power in the grid and maintains the
voltage of the distribution network within a reasonable and stable range.
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To further demonstrate the effectiveness of voltage control, the voltage curves of some
key nodes are shown in Figure 8 below. In this paper, wind power and PV access nodes are
selected as key nodes. In the voltage regulation of distribution networks, wind power/PV
access nodes are regarded as crucial primarily because the output of these renewable energy
sources exhibits intermittency and uncertainty. Their power fluctuations directly impact
the voltage levels at the access nodes, leading to voltage fluctuations or violations of limits.
Meanwhile, the integration of wind power/PV alters the power distribution and flow
direction within the distribution network, thereby limiting the effectiveness of traditional
voltage regulation devices, including OLTC and capacitor banks. Therefore, it is essential
to focus on the voltage stability of these nodes and achieve effective voltage regulation
through coordinated control of energy storage systems, reactive power compensation
devices, and other means.
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Figure 8. Voltage magnitude of some key nodes. (a) node 3, (b) node 15.

Observing Figure 8 above, it is evident that the involvement of grid-forming energy
storage in dispatch significantly reduces voltage fluctuations. It can actively establish volt-
age and frequency, simulate the characteristics of synchronous generators, flexibly adjust
its own output power according to system demands, rapidly respond to fluctuations in
renewable energy output and load changes, and precisely compensate for reactive power to
stabilize voltage amplitude. Compared with traditional energy storage systems, the advan-
tages of grid-forming energy storage are markedly prominent. Traditional energy storage
systems are mostly grid-following types, relying on grid voltage and frequency support,
with passive responses and limited regulation capabilities. In contrast, grid-forming energy
storage possesses autonomous support capabilities, enabling stable operation even in weak
grid or off-grid scenarios. It can also provide inertia support to the system, enhancing the
grid’s anti-interference ability and improving voltage stability and power quality.

6. Conclusions

Distribution networks face challenges of insufficient consumption capacity and in-
creasingly stringent reliability requirements. Grid-forming energy storage systems, with
their flexible power synchronization control capabilities, offer great potential to tackle these
issues by promoting distributed energy resource consumption and enhancing network
reliability. Nevertheless, existing control methods are limited by high computational com-
plexity and a single optimization objective. To overcome these limitations, this paper has
presented an optimized strategy for unified active-reactive power coordinated control
in high-proportion renewable energy distribution networks with multiple grid-forming
energy storage systems. By utilizing an improved iterative self-organizing data analysis
technique algorithm, combined with quantile regression and Gaussian mixture model
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clustering, we are able to generate typical scenarios for renewable energy output that align
with the scheduling time scale, enabling the more accurate parameter optimization of
grid-forming energy storage systems.

The establishment of a unified active-reactive power coordinated control model,
taking into account operational and equipment state constraints, provides a comprehensive
framework for power control in distribution networks. The adoption of an improved
northern goshawk optimization algorithm ensures the optimality of the solution results.
Through tests on an improved IEEE-33 bus test system, the proposed method demonstrated
its effectiveness and feasibility. Based on the conducted analysis, the method introduced
in this study is capable of decreasing the mean voltage variation by 6.72% and enhancing
the renewable energy integration capacity by as much as 8.64%. It not only improves
the consumption of renewable energy but also enhances the reliability of the distribution
network. This research provides valuable insights and practical solutions for the efficient
and reliable operation of high-proportion renewable energy distribution networks, and it
can serve as a reference for future related studies and engineering applications.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviation Meaning

GMM Gaussian mixture model

QR Quantile regression

NGO Northern goshawk optimization

OLTC On-load tap changers

SCB Shunt capacitor banks

VSG Virtual synchronous generator

ISO-DATA Iterative Self-Organizing Data Analysis Technique Algorithm

DBI Davies-Bouldin Index

DI Dunn Index

SOC State of charge

GAN Generative adversarial network

Variables and Parameters Meaning and units

K(-) The kernel function

() The high-dimensional mapping function

x1 and xp Net load samples

ke The total number of clusters

avg(C;) The average distance from samples in cluster C; to its
cluster center u;

Amin (G, C]-) The minimum distance between samples in clusters C; and C;

diam(C) The maximum distance between samples within cluster C;
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prenf The forecasted new energy output

pE The fitted actual new energy power at the T-quantile

ar and b The parameters of the linear fitting equation at the T-quantile

Ws The weight coefficient of the s-th Gaussian distribution component

N(x|ps, s) The probability density function of a Gaussian distribution
with mean y; and covariance J;

T The total scheduling time horizon/h

Ol and QN The sets of lines and nodes

Cpss and Cyy; The penalty coefficients for network losses and voltage
fluctuations/$

112] ¢ The square of the current in line ij at time ¢/ A?

Ui and U; 5 The voltage magnitude and per-unit value at node I at time ¢/p.u.

Rjj The resistance value of line ij/Q)

P+ and Q; + are, respectively;

The active and reactive power injections at node j during time
period t/kW and kVar

Ujt The voltage magnitude at node j during time period t/p.u.

rjj and x;; The resistance and reactance between nodes i and j

u(f) and v(j) The set of starting/ending nodes of branches that have node j
as the ending/starting node

Py and Qjj ¢ The active and reactive power injections from node i to node j

PESS and PESS

cha,max dis,max

eSS £SS
O, and 02,

SOC; and SOC;_,

SOCmax and SOCpyin

ess ess
Neha and Nais

during time period t/kW and kVar

The maximum allowable charging and discharging power of the
energy storage at node i

The binary variables indicating the charging and discharging states
of the energy storage at node i during time period ¢

The SOC of the energy storage at node i during time periods ¢

and t—1

The upper and lower limits of the SOC of the energy storage
atnode i

The charging and discharging efficiencies of the energy storage

E The root mean square value of the output voltage
Sit The power angle
Xy The filtering reactance
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