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Abstract: This study aims to develop a fault detection system designed specifically for wind turbine
gearboxes. It proposes a hybrid fault diagnosis algorithm that combines scatter plot analysis with the
visual geometric group (VGG) technique to identify various fault types, including gear rust, chipping,
wear, and aging. To capture vibration signals, a three-axis vibration sensor was integrated with a NI-
9234 DAQ card. Digital signal processing techniques were employed to actively filter out noise from
the captured signals. Gaussian white noise was incorporated into the training data to enhance the
noise resistance of the network model, which was then utilized for scatter plot generation. The VGG
technique was subsequently applied to identify faults. The testing data were collected at two different
speeds, with 1500 samples taken at each speed, totaling 3000 samples. For both training and testing,
400 samples of each fault type were employed for training, while 200 samples were allocated for
testing. The test results demonstrated an overall identification accuracy of 97.7% for both the no-fault
gearbox and the four-fault states, underscoring the effectiveness of the proposed methodology.

Keywords: gearbox; fault diagnosis; scatter plot; visual geometric group; vibration signal

1. Introduction

Reviewing research on fault detection in wind turbines, the primary components
implicated in wind turbine faults encompass the blades [1], gearbox [2,3], bearings [4], and
generator [5]. The gearbox, in particular, is a key component responsible for transmitting
kinetic energy and increasing the speed of the blade rotor to match the generator’s oper-
ating speed. Dao et al. [6] reported that gearbox failures account for 7.5% of terrestrial
wind turbine failures and 8.3% of offshore wind turbine failures. However, the downtime
associated with gearbox failures constitutes 24.2% for terrestrial wind turbines and 33.3%
for offshore wind turbines. Xiong et al. [7] observed that frequent occurrences of strong
wind speeds severely impact gearboxes, complicating their dynamic response and leading
to fatigue damage and bending fatigue failure. Bechhoefer et al. [8] discussed the measure-
ment of vibration and rotational speed data from wind turbines and the development of
an enhanced time synchronous average (TSA) to predict changes in the main rotor speed,
thereby addressing issues such as icing or blade pitch errors. Qu et al. [9] compared the
effectiveness of acoustic emission (AE) sensors and vibration sensors in diagnosing gear
tooth cutting faults in gearboxes. Their findings suggest that AE performance is superior to,
or at least equivalent to, vibration analysis. He et al. [10] utilized a large memory storage
retrieval neural network (LAMSTAR) to diagnose bearing faults, including inner and outer
races, rolling elements, and cage faults. The results indicated that LAMSTAR outperformed
convolutional neural networks (CNN) in terms of fault recognition. Bechhoefer et al. [11]
compared various condition indicators (CIs) for gear fault detection using a large dataset
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from three operational gearboxes and one faulty gearbox. The results demonstrated that se-
lecting CIs with high statistical separability enhanced the sensitivity of the health indicator
(HI). Peng et al. [12] introduced a health indicator, based on the noise-to-signal ratio (NSR)
of current signals, to depict the gearbox’s health status. This method involved measuring
the phase current of the generator linked to the gearbox and the root-mean-square value
of vibration signals. A recurrent neural network (RNN) was trained using the real-time
recurrent learning (RTRL) algorithm to forecast the health index. Subsequently, the pre-
dicted health index was compared with a predetermined threshold to assess the gearbox’s
degradation. Huang et al. [13] employed three algorithms—support vector machine (SVM),
particle swarm optimization (PSO), and decreasing step fruit fly optimization algorithm
(DSFOA)—for diagnosing faults in wind turbine gearboxes. Initially, SVM was utilized
to extract pivotal parameters from wind turbine fault vibration signals. Following this,
DSFOA was employed to optimize SVM, and the combined approach was adopted for
gearbox fault identification. The findings revealed that the accuracies of DSFOA-SVM and
PSO-SVM were 93.33% and 90%, respectively. Liu et al. [14] introduced a sensitive compo-
nent selection algorithm (SCSA), which integrates envelope spectral entropy and correlation
coefficient to emphasize the fault characteristics of wind turbine gearboxes. Information
entropy (IE) and dual-tree complex wavelet transform (DT-CWT) were employed to detect
gearbox faults. The outcomes demonstrated the elimination of non-periodic components
from signals at high frequencies and the extraction of sensitive components from early
faults with subtle characteristics. Zhong et al. [15] proposed the pairwise-coupled sparse
Bayesian extreme learning machine (PC-SBELM) for real-time fault diagnosis systems
in wind turbine gearboxes. Fault features were derived using modified Hilbert–Huang
transforms (HHT) and fed into the PC-SBELM for fault identification. Results illustrated
an identification accuracy of 93.92%, with a processing time of 0.14 s. Among the deep
learning methods, Amin et al. [16] proposed two approaches: cyclostationary-based CNN
and kurtogram-based CNN. These methods proficiently detected low-speed shaft faults
and assessed fault severity through simulation-based analyses, achieving 87% and 81.5%
accuracy, respectively. Yu et al. [17] introduced the fast deep graph convolutional networks
(FDGCNs) technique for adaptively learning fault features from initial graph inputs to
diagnose vibration signal faults in wind turbine gearboxes, achieving a test accuracy of
93.09%. Pu et al. [18] proposed a deep enhanced fusion network (DEFN) utilizing vibration
data from wind turbine gearboxes. Features were extracted using a sparse autoencoder
(SAE) and enhanced via feature enhancement mapping (FEM). These features were then
fused into the ensemble of shallow networks (ESN) for fault classification, with an identifi-
cation accuracy of 79.05%. Qiu et al. [19] proposed a smart diagnosis method, based on
deep convolutional neural networks (DCNNs), by conducting gearbox vibration experi-
ments under various operating conditions and determining the gearbox vibration signal
with optimal aging. Experimental results revealed an identification accuracy of 94.4% at a
rotational speed of 1050 rpm.

VGG was selected for this study due to its capability to utilize smaller convolutional
kernels to replace larger ones. This feature enables an increase in network depth and
feature extraction capabilities. Additionally, it enhances the network’s nonlinear expression
ability, without compromising the output results, even when maintaining the same number
of parameters. This study measured vibration signals using an accelerometer to extract
gearbox fault features. The proposed approach entails a hybrid algorithm combining a
scatter plot and visual geometric group for identifying gearbox fault types, which included
no-fault (Type A), rust (Type B), chipped (Type C), gearbox gear worn (Type D), and
gearbox aged (Type E). Initially, the accelerometer was installed on the gearbox for signal
capture, followed by signal processing to generate a scatter plot [20]. Subsequently, the
scatter plot was utilized as a feature map input into VGG 19 for training and fault type
identification [21].
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2. Research System Architecture and Fault Design

This study focuses on detecting abnormal vibrations resulting from defects in wind
turbine gearboxes. To achieve this, an experimental platform specifically for wind tur-
bine gearbox testing was established. Figure 1 depicts the flow chart of the wind turbine
gearbox testing experiment designed within this study. The wind turbine gearbox un-
der examination was mounted on the experimental platform and operated at a constant
speed. Vibration signals from the gearbox were captured using the KS943B.100 three-axis
accelerometer, manufactured by Metra Mess- und Frequenztechnik (MMF) in Germany.
Subsequently, a high-speed acquisition card captured the signals transmitted from the
accelerometer. The unprocessed vibration signals underwent fast Fourier transform (FFT)
and band-pass filtering. Following this, the two axes of the filtered three-axis vibration
signals were transformed into the Cartesian coordinate system to generate a scatter plot.
This scatter plot served as input for training the neural network. The trained model was
then utilized to identify the type of fault present in the gearbox. Detailed specifications of
the wind turbine measurement platform equipment are outlined in Table 1.
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Figure 1. Gearbox testing platform and experiment flow chart.

Table 1. Wind turbine measurement platform equipment specifications.

Wind Turbine Measurement Platform Specifications

Induction motor 1.5 hp
Gearbox 1:12.25 gear ratio

Three-axis accelerometer (voltage
sensitivity) 100 ± 5% (mV/g) sensitivity

NI-9234 DAQ
(Manufactured by National

Instruments in the U. S.)
51.2 kHz, 32-bit resolution, four synchronous channels

2.1. Fault Testing Platform and Gearbox Fault Design

This study developed a testing platform for gearbox faults, depicted in Figure 1. A
single-phase motor propelled the platform, simulating the wind energy that propels wind
turbine blades. The kinetic energy was then transmitted to the generator via the gearbox,
resulting in the generation of electrical energy that is outputted from the generator to the
load, facilitating effective energy utilization. A vibration sensor was mounted to the gearbox
to capture real-time vibration signals, enabling analysis of the gearbox’s operational state
and the detection of potential faults. As the single-phase motor propelled the gearbox
to replicate wind energy, the vibration sensor continuously captured vibration signals,



Processes 2024, 12, 985 4 of 16

including the vibration features generated during gear operation, aiding the understanding
of the gearbox’s operating condition. To facilitate precise fault diagnosis and condition
monitoring, this study established five models: a no-fault gearbox (Type A) and four-
faulty gearboxes (Types B to E), examining gearbox vibrations induced by faults. The
specifications of the gearbox fault testing are outlined in Table 2.

Table 2. Gearbox fault testing specifications.

Gearbox Fault Testing Specifications

Gearbox Gear ratio 1:12.25

Gearbox fault types in wind turbines

Type A No-fault
Type B Rust
Type C Chipped
Type D Gear worn
Type E Gear aged

2.1.1. No-Fault (Type A)

As the transmission equipment of the wind turbine, the gearbox plays a crucial role
in power transmission. Wind energy is harnessed by the blades, causing them to rotate.
However, wind-generated revolutions are insufficient for power generation. Hence, a gear
speed increasing box is necessary to increase the speed until it reaches the rated speed
of the generator. This study applied the proposed method to a scaled-down commercial
gearbox, featuring a gear ratio of 12.25 and utilizing HD 220 lubricating oil, manufactured
by Chinese Petroleum Corp. (CPC) in Taiwan. The physical entity and internal structure of
the gearbox are illustrated in Figure 2.
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In Figure 2a, Z1, Z2, Z3, Z4 represent the number of teeth of the four gears, while
fA, fB, fC denote the rotation frequency. The relationship between rotation speeds of the
input and output shaft is expressed as Equation (1).

fA
Z1

Z2

Z3

Z4
=

Z3

Z4
fB = fC (1)

2.1.2. Rusty (Type B)

Lubricating oil is crucial in gearbox functionality, serving purposes such as lubrication,
protection, cooling, and energy loss reduction. However, prolonged operation of wind
turbines in harsh environments may lead to the infiltration of foreign substances like
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particles and water into the lubricating oil, causing deterioration and gear rusting [22].
Hence, this study developed a fault model specifically for gear rust to simulate the effects
of water intrusion into the gearbox’s lubricating oil, as depicted in Figure 3.
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Figure 3. Schematic diagram of the rusty gear model.

2.1.3. Chipped (Type C)

Wind turbines are engineered to maximize efficiency and adeptly handle fluctuating
wind directions. However, higher wind speeds can significantly impact the gearbox,
especially with prolonged exposure to excessive and frequent wind speeds. Sudden
extreme wind speeds can trigger complex dynamic responses within the wind turbine,
subjecting the gearbox to considerable stress. The gear may chip or break when the forces
exerted on the gear surpass the designed bearable load range. Additionally, prolonged
usage or exposure to complex cyclic loads can lead to fatigue failure, resulting in gear
chipping. Hence, Gear 1 and Gear 4 were intentionally damaged in this study to simulate
gearbox chipping caused by extreme wind speeds, as shown in Figure 4.
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2.1.4. Gear Worn (Type D)

When two gears mesh, the curved surfaces of their teeth contact each other and bear
the load transmitted through the gear system. Excessive contact stress can result in local
deformation and surface damage to the gear tooth surfaces. This manifests as contact spots
characterized by high stress and pressure, leading to metal peeling, gear wear, and failure.
Under heavy loads, the gears cannot mesh completely, causing the metal to peel off and
resulting in gear wear. In this study, Gear 1, Gear 2, Gear 3, and Gear 4 were polished to
replicate gear wear commonly observed within the gearbox, as depicted in Figure 5.
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2.1.5. Gear Aged (Type E)

The performance and reliability of the gearbox degrades over time. Common damages
include wear, material fatigue, and lubrication failure. Due to the challenges associated
with repairing wind turbine gearboxes and the high maintenance costs involved, CNS
15176-1 specifies that the design life of a wind turbine gearbox should be a minimum of
20 years [23]. To simulate aging in this study, the gearbox model in Figure 2b was replaced
by a gearbox that has been used for more than 20 years, provided by a company as an aging
model, as shown in Figure 6.
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3. Methodology
3.1. Signal Processing

During vibration signal measurement, the ambient environment and electrical equip-
ment introduce disturbances to the wind turbine. To enhance fault detection accuracy,
the original signals underwent FFT in this study, converting the time domain signals into
frequency domain signals. A band-pass filter was employed to filter the signals, effectively
eliminating the power frequency interference below 60 Hz and the slight noise above
15 kHz, as shown in Figure 7. The green frame line in this figure denotes the removal
of power-related interference and some unnecessary background noises, retaining only
relatively obvious frequency signals between 60 Hz and 15 kHz.
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3.2. Gaussian White Noise

Gaussian white noise is a common random signal, characterized by specific attributes
in both the time and frequency domains and evenly distributed across the spectrum. Its
generation follows the Gaussian distribution, resulting in values that exhibit randomness
and continuity. Gaussian white noise maintains equal power density throughout the spec-
tral range, showing no significant preference for specific frequencies. The noise intensity of
Gaussian white noise is quantified by the signal-to-noise ratio (SNR), defined as the ratio of
signal power to noise power, as expressed in Equation (2):

SNR =
Psignal

Pnoise
=

A2
signal

A2
noise

(2)

The signal-to-noise ratio is represented by SNR, where Psignal represents the power of
the signal, Pnoise represents the power of the noise, Asignal represents the amplitude of the
signal, and Anoise represents the amplitude of the noise. SNR is measured in decibels (dB),
with the ratio of signal power to noise power represented by a tenfold logarithm, expressed
as Equation (3):

SNR(dB) = 10log10 (
Psignal

Pnoise
) = 20log10 (

Asignal

Anoise
) (3)

In this study, the training data were subjected to 5 dB noise, equivalent to approxi-
mately 30% of the SNR, while noise-free data were utilized for identification tests.

3.3. Scatter Plot

Scatter plots serve as visualizations of two-dimensional data distribution [24,25]. In a
scatter plot, each data point corresponds to a set of observations of two variables, with one
variable plotted on the horizontal axis and the other on the vertical axis. The relationship
between variables is represented by their positions in a coordinate system. The scatter plot
can present the distribution pattern, aggregation degree, and possible trends or correlations
of data points. Figure 8 shows the scatter plot depicting the rusty state of the gearbox.
This study incorporated this feature map into the convolutional neural network and VGG
for training and type identification. Additionally, this study transformed the feature map
into the snowflake diagram of the SDP proposed in [26] and imported it into the neural
network for identification and comparison with the results of the scatter plot’s performance
employed in this study.
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3.4. Visual Geometric Group

VGG, a deep CNN architecture, treats image pixels as a group and employs the group
theory transition matrix to describe geometric transformations. A transition matrix can be
found for any geometric transformation, so that the transformed image is mapped onto the
original group.

The VGG network architecture proposes the use of smaller 3 × 3 convolutional kernels
to replace larger ones. This strategy can increase network depth and feature extraction
capabilities, while enhancing the network’s nonlinear representation capacity under the
same parameter count, thereby enhancing classification performance without affecting
output results. Moreover, smaller convolutional kernels reduce the number of parameters
in the network model, decreasing the computational load and accelerating the network
training speed.

The VGG neural network introduces several convolutional layers, paired with a
pooling layer in deep CNNs. This structure forms a convolution block that effectively
extends the network’s depth and width, enhances the feature extraction capability, and
improves the network’s classification performance. A VGG neural network’s convolution
block typically contains 1–5 convolutional layers and one pooling layer, all using the same
kernel size and stride to simplify the network model structure. The fully connected block
usually comprises 1–3 fully connected layers, with the last layer being a softmax layer
for classification.

3.4.1. VGG 19

The network architecture of VGG 16 is relatively simple and intuitive, comprising
13 convolutional layers, three fully connected layers, and five max-pooling layers. The
“16” signifies the combination of 13 convolutional layers and three fully connected layers.
Similarly, VGG 19 consists of 16 convolutional layers, three fully connected layers, and
five max-pooling layers. The network structure of VGG 19 is similar to that of VGG 16,
comprising multiple convolutional and pooling layers stacked alternately. The image
classification task is executed through several fully connected layers. Unlike VGG 16, VGG
19 comprises two sets of two convolutional layers and one max pooling layer, with three
sets of four convolutional layers and one max pooling layer. The network depth of these
convolution layers increases layer by layer. Small-sized convolutional kernels are used to
enhance the nonlinear capability of the network model and increase its depth. Figure 9
illustrates the network architecture diagram of VGG 19. The network depth of the first and
second convolutions is 64, while that of the third and fourth convolutions is 128. From
the second to eighth convolutions, the network depth is 256, while that of the ninth to
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sixteenth convolutions is 256. Compared to VGG 16 (13 convolutional layers and three
fully connected layers), VGG includes three more convolution layers, with a depth of 512,
allowing for the extraction of numerous features from the input image.
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3.4.2. Convolutional Kernel and Convolution Layer

In the VGG network model, the convolutional kernel is crucial to each convolution
layer. The VGG network architecture comprises multiple convolution layers, with each
employing a 3 × 3 convolutional kernel and utilizing the ReLU activation function, to
enhance the network’s nonlinear properties. Increasing the network depth extracts more
image features. The convolution layers in the VGG network model utilize the same padding
convolution mode. This ensures that when the center of the convolutional kernel aligns
with the corner of the input feature map, the convolution operation initiates, resulting in
an output feature map size identical to the input feature map size. For instance, when
conducting a convolution operation with a 3 × 3 kernel on a 4 × 4 image with a step size of
1, the depth corresponds to the network’s depth. The operation is then performed in groups,
with corresponding grids multiplied in each operation. After scanning and calculating all
target image pixels, the feature map is generated.

FMout =
FMin − f + 2P

Stride
+ 1 (4)

The calculation of the feature map size after the convolution operation is expressed
as Equation (4), where FMout represents the output feature map size, FMin represents the
input feature map size, f represents the convolutional kernel size, Stride represents the
convolutional kernel movement step of each convolution, and P represents the padding
value of zero fill.

3.4.3. Pooling Layer

Pooling layers in the VGG network model reduce the size of the feature map, while
retaining important feature information without changing the network depth. Max pooling
is employed as the pooling method, effectively reducing the spatial size of the feature map
while retaining significant feature information. By stacking convolution layers and pooling
layers, the VGG network model extracts higher-level abstract feature representations, with
convolution layers capturing local features and pooling layers reducing the size of the
feature map, while retaining essential features.
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3.4.4. Fully Connected Layer

The fully connected layer in the VGG network model architecture is located between
the convolution block and the softmax function. It is responsible for the final classification
or prediction of the features extracted from the convolution layer. VGG uses two fully
connected layers, with 4096 neurons each, followed by one fully connected layer with
1000 neurons. The structure of the fully connected layer is shown in Figure 10. The softmax
function calculates the probability distribution in the output layer.
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Softmax is a mathematical function that can convert a K-dimensional vector into a
K-dimensional probability distribution, ensuring each component falls between 0 and 1
and the sum equals 1. Commonly employed in multi-class classification problems, softmax
converts the model’s output into a probability distribution. Its mathematical formula is
presented in Equation (5), where z denotes the vector,zi represents the ith term of vector
z, and n denotes the number in the vector z. So f tmax(zi) denotes the output probability
distribution of the softmax function.

So f tmax (zi) =
exp (zi)

∑n
i=0 exp (zi)

where i = 0, . . . , n (5)

4. Experimental Results

This study measured a one normal gearbox and four gearboxes with different faults.
The gearbox operated at an input of 200 rpm, and vibration signals were captured along the
X-axis and Y-axis, resulting in 300 vibration data points for each axis, totaling 600 vibration
data points for both axes. With five gearbox types, a total of 3000 vibration signals were
generated. Additionally, the gearbox operated at an input of 300 rpm, with the same
data source as the 200-rpm condition. Therefore, in the mixed-speed gearbox, a total of
6000 vibration signals were generated. Subsequently, the two sets of vibration signals from
the mixed-speed gearbox’s X-axis and Y-axis were used to create scatter plots, resulting
in a total of 3000 scatter plots. Each gearbox type had 600 scatter plots. The total number
of training samples was 400 scatter plots (200 for 200 rpm and 200 for 300 rpm), while the
total number of testing samples was 200 scatter plots (100 for 200 rpm and 100 for 300 rpm).

4.1. Scatter Plot

This study captured time–domain vibration signals from five wind turbine gearbox
models in operational states, using a high-speed data acquisition card. Subsequently, the
noise was filtered out through back-end signal processing. The signal data from the X-axis
and Y-axis were then mapped into a coordinate system, with the former serving as the
independent and the latter as the dependent variables. These data were then used to create
XY-axis scatter plots. Figure 11 illustrates the scatter plot of gearbox speeds at 200 rpm
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and 300 rpm. Notably, the scatter plot exhibits distinct changes when converting the signal
from a rusty gearbox. Scatter plots depicting the no-fault gearbox and four types of faulty
gearboxes offer ample visual differentiation for observing image disparities.
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Figure 11. Scatter plot of the gearbox fault model. (a) Scatter plot of the no-fault gearbox at 200 rpm;
(b) scatter plot of the rusty gearbox at 200 rpm; (c) scatter plot of the chipped gearbox at 200 rpm;
(d) scatter plot of the gear worn gearbox at 200 rpm; (e) scatter plot of the gear aged gearbox at 200
rpm; (f) scatter plot of the no-fault gearbox at 300 rpm; (g) scatter plot of the rusty gearbox at 300
rpm; (h) scatter plot of the chipped gearbox at 300 rpm; (i) scatter plot of the gear worn gearbox at
300 rpm; (j) scatter plot of the gear aged gearbox at 300 rpm.

4.2. VGG 19

In this study, the vibration signals from the gearbox were converted into scatter
plots to improve noise resistance in the trained neural network model. To simulate real-
world conditions, 5 dB of noise was added to the training data, resulting in an SNR of
approximately 30%. These noisy vibration signals were then converted into scatter plots
and utilized as training samples for learning and training the VGG. On the other hand,
the vibration signals without noise were also converted into scatter plots and fed into the
trained VGG for identification purposes. Subsequently, the scatter plots were inputted
into VGG 19 for learning and classification of the fault types. The identification results are
summarized in a confusion matrix, as presented in Table 3. Figure 12 displays the confusion
matrix corresponding to the 5 dB noise level. For each fault type, the recognition rates were
calculated based on the number of correctly identified samples out of the total test data
samples. Specifically, Type A was correctly identified in 186 out of 200 test data samples,
yielding a recognition rate of 93.0%. Similarly, the recognition accuracy rates for Type B,
Type C, Type D, and Type E were 96.0%, 100%, 100%, and 99.5%, respectively. Ultimately,
the total recognition accuracy of the system was determined to be 97.7%.

Table 3. Results of wind turbine gearbox fault identification based on VGG 19.

Fault Types Training Pattern Testing Pattern Accuracy (%)

Type A 200 186

97.7
Type B 200 192

Type C 200 200

Type D 200 200

Type E 200 199
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Table 4 presents the recognition results of the network model in this study. The
epochs for the proposed method were set at 50, 100, and 150, to observe the experimental
outcomes. At 100 epochs, the VGG 19 model achieved a recognition accuracy of 96.6%
with 5 dB noise, requiring a training time of 228.4 s. Setting the epochs to 150 resulted in a
recognition accuracy of 95.4% for VGG 19 with 5 dB noise, with a training duration of 344 s.
In this case, setting the epochs to 50 yielded the best results, with a noise-free recognition
accuracy of 99.6% and a recognition accuracy of 97.7% with 5 dB noise. Similarly, this study
implemented scatter plots along with the VGG 16 recognition system, setting epochs at
50, 100, and 150, achieving recognition accuracies of 96.8%, 95.8%, and 93.9% with 5 dB
noise, respectively.

Table 4. Wind turbine gearbox fault identification performance comparison.

Algorithm Training Time (s) Testing Time (s) Epoch
Accuracy (%)

Non-Noise 5 dB

Scatter plot + VGG 19 95.2 0.0049 50 99.6 97.7

Scatter plot + VGG 19 228.4 0.0050 100 97.7 96.6

Scatter plot + VGG 19 344.0 0.0050 150 97.1 95.4

Scatter plot + VGG 16 93.2 0.0053 50 98.2 96.8

Scatter plot + VGG 16 156.5 0.0048 100 97.1 95.8

Scatter plot + VGG 16 223.5 0.0051 150 97.0 93.9

SDP + VGG 16 81.3 0.0049 50 92.1 85.5

SDP + VGG 19 100.1 0.0132 50 91.0 84.6

Scatter plot + CNN 85.1 0.0008 50 93.3 88.4

Scatter plot + HOG + SVM 4.2 0.19 87.3 79.2
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The recognition accuracies with 5 dB noise for SDP, combined with VGG 16 and
VGG 19, are 85.5% and 84.6%, respectively. These results indicate that the accuracy of
scatter plots across different neural networks is consistently higher than that of SDP alone.
Additionally, scatter plots were also inputted into a CNN for recognition, achieving a noise-
free accuracy of 93.3% and a recognition accuracy of 88.4% with 5 dB noise. However, the
highest recognition accuracy when using scatter plots combined with the traditional HOG
+ SVM was only 87.3%. From these results, it can be concluded that VGG 19 outperforms
the others.

In terms of training time in deep learning methods, under the condition where epochs
are set to 50, the SDP combined with the VGG 19 recognition system took about 100 s
to complete training, making it the most time-consuming method among all recognition
systems. Combining SDP with VGG 16 took 81.3 s, the shortest training time among
all systems. Finally, the recognition time spent by all systems was less than one second,
demonstrating that using different feature maps and neural networks for recognition does
not significantly impact the testing time.

To evaluate the performance of different algorithms’ models, various indicators were
used to calculate the model’s evaluation scores [27]. Four classification indicators can
be obtained from the confusion matrix: true positives (TPs), false positives (FPs), false
negatives (FNs), and true negatives (TNs). TPs represent cases where the actual samples are
positive and predicted as positive. FPs denote cases where the actual samples are negative
but misjudged as positive. FNs refer to cases where the actual samples are positive but
misjudged as negative. TNs indicate cases where the actual samples are negative and
predicted as negative. Calculating these four classification indicators yields evaluation
metrics such as precision, recall, F1-score, and kappa, as shown in Equations (6)–(9).

Precision represents the proportion of correctly predicted positive samples among
all those predicted as positive. Recall indicates the proportion of actual positives that
were correctly predicted. The F1-score represents the harmonic mean of precision and
recall, serving as a standard measure of test accuracy. Meanwhile, kappa is a statistical
measurement used to determine the consistency between model predictions and actual
classification outcomes. In Equation (9), po represents the overall accuracy of the model
while pe represents the level of consistency between the model’s predictions and actual
class values, calculated as the sum of the product of the actual counts of each class and
their predicted counts, divided by the square of the total number of all classes.

In this study, the accuracy with 5 dB noise was used to calculate the model evaluation
metrics for different algorithms, and the results are summarized in Table 5. Taking Figure 12
as an example, the problem focuses on the presence or absence of faults, constituting a
binary classification. In the no-fault category, TP, FP, FN, and TN values are 186, 1, 14, and
799, respectively. Therefore, the precision is 0.9947, recall is 0.93, F1-score is 0.9612, and
kappa is calculated as 0.971, where po is 0.977 and pe is 0.2.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 − score = 2 × Precision × Recall
Precision + Recall

(8)

Kappa =
po − pe
1 − pe

(9)
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Table 5. Model evaluation metrics for different algorithms.

Algorithm Accuracy (%) Precision Recall F1-Score Kappa

Scatter plot + VGG 19 97.7 0.9947 0.930 0.9612 0.971

Scatter plot + VGG 19 96.6 0.9946 0.920 0.9558 0.958

Scatter plot + VGG 19 95.4 0.9891 0.910 0.9479 0.943

Scatter plot + VGG 16 96.8 0.9946 0.915 0.9531 0.960

Scatter plot + VGG 16 95.8 0.9943 0.870 0.9280 0.948

Scatter plot + VGG 16 93.9 0.9836 0.900 0.9399 0.924

SDP + VGG 16 85.5 0.8458 0.850 0.8479 0.819

SDP + VGG 19 84.6 0.8458 0.850 0.8479 0.808

Scatter plot + CNN 88.4 0.6491 0.925 0.7629 0.855

Scatter plot + HOG + SVM 79.2 0.5217 0.900 0.6606 0.740

5. Conclusions

This study proposes a fault diagnosis method for wind turbine gearboxes by integrat-
ing scatter plots and VGG 19. The system diagnoses gearbox faults by extracting fault
features from vibration signals. Five gearbox fault states were considered: no-fault, rust,
chipping, wear, and aging. Gaussian white noise was added to the training data to enhance
the network’s noise resistance. Fault identification was conducted using VGG 19, with
test results showing an accuracy of 97.7% in identifying the no-fault and four fault states
of the gearbox, confirming the method’s effectiveness. The study also examined model
performance under different epoch settings, revealing optimal results with 50 epochs.
Additionally, comparison with VGG 16 demonstrated the superior performance of VGG
19, effectively extracting gearbox fault features and improving diagnostic accuracy. This
technology holds potential for application in fault diagnostics of other components in
the future.
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