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Abstract: The performance and quality of steel products are significantly impacted by the alloying
element control. The efficiency of alloy utilization in the steelmaking process was directly related to
element yield. This study analyses the factors that influence the yield of elements in the steelmaking
process using correlation analysis. A yield prediction model was developed using a t-distributed
stochastic neighbor embedding (t-SNE) algorithm, a whale optimization algorithm (WOA), and
a long short-term memory (LSTM) neural network. The t-SNE algorithm was used to reduce the
dimensionality of the original data, while the WOA optimization algorithm was employed to opti-
mize the hyperparameters of the LSTM neural network. The t-SNE-WOA-LSTM model accurately
predicted the yield of Mn and Si elements with hit rates of 71.67%, 96.67%, and 99.17% and 57.50%,
89.17%, and 97.50%, respectively, falling within the error range of ±1%, ±2%, and ±3% for Mn and
±1%, ±3%, and ±5% for Si. The results demonstrate that the t-SNE-WOA-LSTM model outperforms
the backpropagation (BP), LSTM, and WOA-LSTM models in terms of prediction accuracy. The
model was applied to actual production in a Chinese plant. The actual performance of the industrial
application is within a ±3% error range, with an accuracy of 100%. Furthermore, the elemental
yield predicted by the model and then added the ferroalloys resulted in a reduction in the elemental
content of the product by 0.017%. The model enables accurate prediction of alloying element yields
and was effectively applied in industrial production.

Keywords: alloy element yield; converter steelmaking; t-SNE; prediction model; industrial
applications

1. Introduction

The converter steelmaking process is the primary method of long-flow steelmaking
in China’s iron and steel industry, resulting in significant carbon emissions [1,2]. The
steel industry must address the urgent issue of reducing energy consumption and carbon
emissions, given the implementation of the Peak Carbon strategy [3,4]. Ferroalloys are
essential raw materials in converter steelmaking used to regulate steel composition and
achieve standard mechanical properties, accounting for 5–10% of the cost of steelmaking [5].
The quantity of the alloy in the steel has a significant impact on its quality. An excessively
high amount will result in a waste of resources, which will ultimately lead to the scrapping
of steel. Conversely, a deficiency in the alloy will result in the product failing to meet the
requisite performance standards and increasing production costs. The yield of the alloying
element is a crucial parameter for calculating the quantity of the alloy and represents
the primary indicator for evaluating the utilization efficiency of ferroalloys. Currently,
the majority of enterprises rely on manual experience to determine alloy yield, which
often results in significant discrepancies. The accurate determination of alloy element
yield is conducive to the ‘narrow control’ of the liquid steel. This ultimately achieves the
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objective of energy saving and emission reduction. Consequently, the accurate prediction
of elemental yield is of paramount importance in converter steelmaking.

The conventional approach to predicting elemental yield involves using historical data.
The average yield from past furnaces is taken as the current furnace’s elemental yield and
then used to calculate the necessary alloy addition [6]. If the historical furnace data fluctuate
or do not match the current furnace data, the predicted result will have a significant error
compared to the actual value. Due to the improvement of steelmaking equipment, Artificial
Intelligence (AI) has become increasingly important in modern steelmaking [7]. The imple-
mentation of AI algorithms in the steelmaking process can achieve precise prediction and
control of the process [8], optimal control of material consumption [9], analysis of working
conditions, and quality assessment [10]. Neural network algorithms are characterized
by easy feature extraction, high generalization, and high model adaptability [11]. The
steelmaking process involves complex physicochemical reactions and numerous operat-
ing means. The neural network possesses remarkable adaptability and intelligence. It
can adjust its network structure and function according to different application scenarios,
demonstrating its flexibility and versatility [12].

Calculating elemental yields using neural network algorithms is one of the most
effective ways to improve prediction accuracy. Zheng et al. developed a combined model
using particle swarm optimization (PSO) and long short-term memory (LSTM). This model
was specifically designed to support the HRB400E production process. After applying this
model, the efficiency of steel composition control increased by 4% [13]. The LSTM model
has a relatively slow training process due to its complex gating mechanism and multiple
weighting parameters [14]. Xu et al. developed a support vector regression (SVR) model to
predict the elemental yield of the LF furnace [15]. While the prediction accuracy is high,
the training time for the SVR model is considerable. This is particularly true when dealing
with large amounts of data. The computational complexity associated with such large
datasets can become a significant challenge for the stable operation of the SVR model. The
choice of hyperparameters has a significant impact on the performance of the SVR model,
which is prone to overfitting or underfitting [16]. Table 1 compares the prediction models
designed by the researchers for the alloying element yield. The IPSO-ELM model obtains
a 95% hit rate, is fast to train, and is suitable for solving high-dimensional problems but
is affected by random initial weights. The ENN model has a strong learning ability and
memory function, but the computational complexity is relatively high. The Mn element
yield prediction models all achieved an accuracy of over 84.50%, with the PCA-DNN model
achieving the highest accuracy at 99.50% for predicting Mn with an error of±3%. However,
the high complexity of DNN models makes training difficult and model interpretability
poor. It is time consuming in industrial application engineering and is not suitable for the
fast-paced production of converter steelmaking. Thus, it is necessary to create a prediction
model that has high computational accuracy and data processing capabilities to achieve
precise control of alloying elements.

Table 1. Comparison of prediction models for the converter endpoint.

Alloying Element Model Hit Rate Advantages Disadvantages Reference

Mn MLR 84.50%
(1) Non-linear
learning; (2) scalability;
(3) sparsity

(1) Multicollinearity
problem; (2) high
correlation among
total variables

[17]

Mn PCA–DNN 99.50%
(1) Highly non-linear
problems; (2)
large-scale data

(1) Difficult to train; (2)
poor model
interpretability

[6]
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Table 1. Cont.

Alloying Element Model Hit Rate Advantages Disadvantages Reference

Mn AO-ENN 86.00%

(1) Stronger learning
and memory skills; (2)
easy to train; (3) highly
interpretable

(1) Relatively high
computational
complexity; (2) easy to
fall into local minima

[18]

Mn GA-BP 98.42%

(1) Strong non-linear
mapping capability; (2)
high self-learning and
self-adaptive
capabilities; (3) some
fault tolerance

(1) Slow convergence
speed; (2) easy to fall
into local minima

[19]

Mn SVM 88.57%

(1) Generalization
properties; (2)
high-dimensional
issues; (3) avoiding
neural network
structure selection and
local minima problems

(1) Sensitive to missing
data; (2) no generic
solution to non-linear
problems

[20]

Mn IPSO-ELM 95.00%

(1) Fast training; (2)
high-dimensional
issues; (4) avoiding
neural network
structure selection and
local minima problems

(1) Poor model
interpretability; (2)
affected by random
initialization weights

[21]

Si MLR 73.50%
(1) Non-linear
learning; (2) scalability;
(3) sparsity

(1) Multicollinearity
problem; (2) high
correlation among
total variables

[17]

Si PCA–DNN 98.80%
(1) Highly non-linear
problems; (2)
large-scale data

(1) Difficult to train; (2)
poor model
interpretability

[6]

C AO-ENN 88.00%

(1) Stronger learning
and memory skills; (2)
easy to train; (3) highly
interpretable

(1) Relatively high
computational
complexity; (2) easy to
fall into local minima

[18]

This paper proposes a prediction model for the Mn/Si yield of the Q345B smelting
process. The model combines the t-distributed stochastic neighbor embedding (t-SNE)
algorithm with the long short-term memory (LSTM). Additionally, the whale optimization
algorithm (WOA) is utilized to enhance the model’s performance. The t-SNE algorithm is
used to reduce the dimensionality of production process data. This allows for the expression
of the internal structural relationships of high-dimensional data in a lower-dimensional
space [22]. This is suitable for the converter steelmaking process, which involves complex
reactions and a large amount of data. The elemental yield of the steelmaking process is
presented as time series data, and the LSTM neural network is chosen to establish the
model. To achieve fast and accurate hyperparameter optimization of the LSTM neural
network, introduce the WOA optimization algorithm, which addresses the difficulty of
optimizing hyperparameters for LSTM neural networks. Comparing the prediction results
of the established model with those of the backpropagation (BP), LSTM, and WOA-LSTM
models and applying them to industrial production, it was found that the Mn/Si yield
prediction model based on t-SNE-WOA-LSTM established in this paper has high prediction
accuracy and good generalization performance. The model accurately predicts Mn/Si yield
and is effective for industrial production.
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2. Data Preprocessing and Methodology
2.1. Data Preprocessing

The data were obtained from a steel company located in eastern China, with Q345B
serving as the subject of the research. The composition of Q345B steel is shown in Table 2.
From October to December 2023, 971 data items were collected to record converter and re-
fining production process data and molten steel composition. The data included 16 variable
indicators. The following measures were applied to the raw data for data processing:

Table 2. Composition of Q345B steel (wt%).

C Si Mn P S

0.15–0.17 0.41–0.45 1.42–1.46 ≤0.025 ≤0.010

(1) Due to the large amount of data and the small number of missing values, the
furnace containing missing values is rejected. Firstly, the data rows containing missing
values are filtered out and the IFERROR function is selected for elimination;

(2) The abnormal zero values of certain variables are filled with mean value processing.
Screen out data lines containing abnormal zero values and select the AVERAGE function
to fill;

(3) In order to reduce the impact of repeated values on the prediction accuracy, the
repeated item parameters in the dataset are removed;

(4) The outliers are removed using the 3-fold mean square deviation method. Firstly,
the standard deviation of the sample is calculated, then, the permissible range of the sample
is determined, and finally, extreme outliers are removed.

(5) The data were normalized using Equation (1).
Experiments were conducted using a total of 800 sets of data after screening. The

maximum, minimum, average, and range of values for each indicator variable are counted
in Table 3.

x∗i =
xi − xi min

xi max − xi min
(1)

where xi is the input feature variable and xi max and xi min are the maximum and minimum
values of each independent sample data.

Table 3. Statistics of main parameters of indicator variables.

No Indicator Variables Maximum Minimum Mean Range

X1 Molten iron loading quantity [t] 88.12 70.08 80.01 18.04
X2 Scrap steel loading quantity [t] 13.8 0 6.50 13.8
X3 Number of turndown/times 3 1 1.43 2
X4 Tapping temperature [◦C] 1682 1535 1602.87 147
X5 Nitrogen consumption [m3] 1734 306 956.74 1428
X6 Oxygen consumption [m3] 3962 1911 2668.16 2051
X7 Lime addition amount [kg] 3361 591 1488.40 2770

X8
Light-burned dolomite addition

amount [kg] 2592 0 823.72 2592

X9 Tapping weight [t] 91.6 72 82.30 19.6
X10 C content of molten iron [%] 0.14 0.02 0.066 0.12
X11 Mn content of molten iron [%] 0.158 0.005 0.046 0.153
X12 Ferrosilicon alloy [kg] 190 0 73.1 190
X13 Silicomanganese alloy [kg] 2045 881 1589.53 1164
X14 High carbon manganese alloy [kg] 403 0 40.90 403
X15 Medium-carbon manganese alloy [kg] 512 0 62.99 512
X16 Low-carbon manganese alloy [kg] 599 0 24.51 599
Y1 Yield of the Si element [%] 92.84 66.34 77.43 26.58
Y2 Yield of the Mn element [%] 99.28 80.25 89.31 18.33
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The calculation formula of the alloying element yield is shown in Equation (2) [6]
as follows:

ηi =
[wia − wib]× G

wi × Gk
× 100% (2)

where ηi is the yield of element i in alloy k; wi is the content of element i in alloy k; Gk is the
weight of alloy k, kg; G is the weight of molten steel, kg; wia is the final content of element i
after alloying; and wib is the initial content of element i before alloying.

2.2. Methodology of t-SNE-WOA-LSTM

t-SNE is a non-linear method for reducing data dimensionality. It has the advantage of
identifying data manifold features using the stream shape learning method and projecting
them onto a low-dimensional space while preserving local information [23,24]. The t-SNE
algorithm converts the high-dimensional Euclidean distance between data points into a
conditional probability that represents similarity. The conditional probability of similarity
pj|i of data point xi with respect to data point xj can be expressed mathematically.

pj|i =
exp

(
−‖xi − xj‖2/2σ2

i

)
∑k 6=l exp

(
−‖xi − xk‖2/2σ2

i

) (3)

where σ2
i is the Gaussian variance centered on the data point xj. The pairwise similarity

pj|i value is 0.
For the low-dimensional representations yi and yj of data point xi and xj, their con-

ditional similarity probabilities qj|i can be computed accordingly in mathematical form
as follows:

qj|i =
exp

(
−‖yi − yj‖2

)
∑k 6=l exp

(
−‖yi − yk‖2

) (4)

Since yi and yj model the state of data point xi and data point xj in the low-dimensional
space, the conditional probability of similarity between two points in these two spaces is
equal, i.e., pj|i = qj|i.

The t-SNE algorithm achieves dimensionality reduction by minimizing the error
between pj|i and qj|i. The loss function C is computed by minimizing the KL (Kullback–
Leibler) scatter of pj|i and qj|i through a gradient descent algorithm as follows:

C = ∑i KL(Pi‖Qi) (5)

where Pi denotes the conditional probability distribution of all other data points on a given
data point xi and Qi denotes the conditional probability distribution of all other data points
on a given data point yi. The final convergence result is obtained by minimizing the loss
function C.

LSTM neural networks are excellent variants of the recurrent neural network
(RNN) [25,26]. LSTM neural networks were developed to address the limitations of
conventional RNNs, such as vanishing gradients and the inability to capture long-time
dependencies in sequences. Figure 1 illustrates the neural network structure. The LSTM
model creates a distinct pathway for transmitting long-term dependencies. Each LSTM
unit performs basic addition and subtraction operations on this pathway to preserve the
long-term dependency information. The training and inference time for LSTM neural
networks is long due to high computational complexity. To mitigate this, the WOA
optimization algorithm optimal exploration mechanism is used to quickly find the global
optimal solution with high convergence efficiency and computational speed [27].
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Figure 1. The structure of long short-term memory [28].

The WOA is an algorithm that simulates the hunting behavior of whales rounding up
prey using random or optimal search agents and spirals to simulate the bubble net attack
mechanism of humpback whales. The WOA is characterized by its simple mechanism,
few parameters, and strong optimization capability [29]. The distance and position vectors
between individuals in the WOA are as follows:{

D =
∣∣∣CX∗(t) − X(t)

∣∣∣
X(t+1) = X∗(t) − AD

(6)

where t denotes the current number of iterations, X(t) vector is the position vector, X∗(t)
is the position vector of the best solution obtained so far, and A and C are the coefficient
vectors: A = 2a × r1 = a, C = 2 × r2. During the iteration, the values of 2 and 0 should be
decreased linearly. The variables r1 and r2 represent random vectors within the range of
[0, 1].

The WOA employs two primary mechanisms for whale predation: encircling predation
and bubble net predation. The position is updated based on the probability p of choosing
either bubble net predation or contraction encirclement, as shown in Equation (7) as follows:

X(t+1) =

{
X∗(t) − AD p ≤ 0.5

D′eBLcos(2πL) + X∗(t) p > 0.5
(7)

where D′ is the distance between the current searching individual and the current optimal
solution; Bis is the spiral shape parameter; and Lis is a uniformly distributed random
number with value domain [−1, 1]. P is the probability of the predation mechanism, a
random number with value domain [0, 1].

As the number of iterations t increases, the parameter A and the convergence factor
gradually decrease. If |A| < 1, the whale swarm gradually surrounds the current optimal
solution and is in the local optimization stage. To guarantee that all whales can search
effectively in the solution space, the WOA updates the position based on the whales’
distance from each other to achieve a random search. Therefore, when |A| ≥ 1, the
searching individual will swim towards the random whale to obtain the optimal solution.{

D′′ =
∣∣∣CXrand(t) − X(t)

∣∣∣
X(t+1) = Xrand(t) − AD

(8)

where D′′ is the distance between the current search individual and the random individual.
Xrand(t) is the current position of the random individual.
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Figure 2 shows the algorithmic flow of the elemental yield prediction model based on
t-SNE-WOA-LSTM.
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2.3. Evaluation Indicators

This study validates the algorithmic performance of the developed models using
the same raw data. Model performance is evaluated using the root-mean-square error
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), coefficient of
determination (R2), and hit rates with different error ranges. The formulae for the indicators
are as follows [30,31]:

RMSE =

√
1
n∑n

i=1

(
Yi −Y′i

)2 (9)

MAE =
1
n∑n

i=1

∣∣Yi −Y′i
∣∣ (10)

MAPE =
1
n∑n

i=1

∣∣∣∣Yi −Y′i
Yi

∣∣∣∣× 100 (11)

R2 =
∑n

i=1
(
Yi −Y

)2 −∑n
i=1
(
Yi −Y′i

)2

∑n
i=1
(
Yi −Y

)2 (12)

where Yi, Y′i , and Y represent the actual, predicted, and average values, respectively, and n
is the number of samples.

3. Results and Discussion
3.1. Correlation Analysis

The heat map of the Pearson correlation coefficient is shown in Figure 3. The corre-
lation coefficient between the Mn content of molten iron and the silicomanganese alloy
is −0.77, indicating a strong negative correlation. This means that the amount of the sili-
comanganese alloy added increases as the Mn content in the blow mold decreases. The
correlation coefficient between the quantity of molten iron and the quantity of scrap loading



Processes 2024, 12, 974 8 of 15

is −0.72, indicating a strong negative correlation. This means that as the quantity of iron
loading increases, the quantity of scrap loading decreases. The correlation coefficient be-
tween the silicomanganese alloy and the high-carbon manganese alloy is −0.54, indicating
a moderate negative correlation. Specifically, as the incorporation of the silicomanganese
alloy increases, the incorporation of high-carbon ferromanganese decreases. The correlation
coefficient between the number of turndowns and C content of molten iron is 0.50, which
shows a more moderate positive correlation; the higher the C content of molten steel, the
higher the number of turndowns.
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3.2. The Effect of the Structure on the Prediction Results

The experiment selected the six network parameters of learning rate, dropout, batch
size, iteration number, number of neurons, and time step using the control variable method.
The RMSE and R2 were used as the judgment criteria. In this section of the experiment, the
processed dataset is used as the input variable, and the Mn/Si element yield is used as the
only output variable to obtain the LSTM network parameters suitable for predicting the
Mn/Si element yield.

The experiment controlled the dropout at 0.1, batch size at 30, iteration number at
3000, number of neurons at 50, and time step at 3. The LSTM neural network was built
with an adjusted learning rate, and the resulting RMSE of the prediction model for Mn
element yield is shown in Figure 4a. The optimal learning rate for the prediction model
was found to be 0.01, as it produced the lowest RMSE and highest R2. Therefore, a learning
rate of 0.01 is recommended for the prediction model. Controlling the learning rate to 0.01,
batch size to 30, number of iterations to 3000, number of neurons to 50, and time step to 3,
the optimal parameter of dropout was obtained to be 0.05 (Figure 4b). In the same steps,
the optimal hyperparameter batch size is 32 (Figure 4c), the number of iterations is 7000
(Figure 4d), the number of neurons is 20 (Figure 4e), and the time step is 4 (Figure 4f).

The optimal LSTM model parameters for Si element yield were experimentally deter-
mined using the same control variable method as shown in Figure 5. The hyperparameters
of the LSTM model for Si yield prediction were optimized using the WOA to improve the
poor fitting effect. As a result, the WOA-LSTM neural network model was obtained with a
small error value. The WOA’s initial population size is set to 50, with 35 iterations. The
learning rate, dropout, batch size, number of iterations, and number of neurons are all
within the range of [0.001,0.02], [0,0.1], [1,100], [5,1000], and [1,100], respectively. Figure 6
displays the optimization process for the adaptability of the element yield prediction model.
It is evident that the adaptability value gradually decreases, indicating a reduction in
the error between the predicted and actual values. The model fit improves progressively
as the parameter combinations are optimized. The Mn element yields prediction model
reached the optimal parameter combination at 18 iterations, while the Si element yields
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prediction model reached the optimal parameter combination at 20 iterations. It indicates
that the Si element yields prediction model requires more iteration time and a number of
calculations in the hyperparameter optimization process. This is related to the influencing
factors of the element Si in steelmaking, which is not only used in the alloying process but
also deoxidation. Therefore, Si element yield data have more influence factors than Mn
element yield, and the Si element yield prediction model hyperparametric optimization
process requires a higher number of iterations. Table 4 presents the optimal parameter
combinations for the Mn/Si element yield prediction model after 30 iterations.
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Table 4. Mn/Si element yield model optimal parameter combination.

Element Learning Rate Dropout Rate Batch Size Iterations Number of Neurons Time Step

Mn 0.0100 0.0500 32 194 30 4
Si 0.0043 0.4621 16 89 56 3

3.3. Comparison of the t-SNE-WOA–LSTM Model with Other Models

This study compares the commonly used BP neural network prediction model and
the common LSTM neural network model with the t-SNE-WOA-LSTM model proposed in
this study for predicting steel production data. The BP model uses a three-layer network
structure with one hidden layer and five nodes in the hidden layer, with an initial learning
rate of zero. The number of training iterations is set to 1000, with the activation function of
neurons in the hidden layer selected as both tansig and purelin functions, and the training
function chosen is the trainlm function.

Figure 7a displays the results of the BP neural network used to predict the yield of
the Mn element. The RMSE is 2.065, the MAPE value is 1.871, and the R2 is only 0.374.
Therefore, the BP model has the worst prediction effect, and there is a large gap between
the predicted value and the actual value. The prediction performance of the ordinary
LSTM model is improved compared to BP, with an RMSE of 1.880, a MAPE value of 1.684,
and an R2 of only 0.535, as shown in Figure 7b. The traditional BP prediction model and
the ordinary LSTM model are not effective in predicting data with slightly larger data
volume and non-linear characteristics. For the WOA-LSTM neural network, their prediction
accuracy is significantly improved compared to the previous two models, with the RMSE
value decreasing by 0.733, the MAPE value decreasing by 0.729, and the R2 value exceeding
0.7, as shown in Figure 7c. This indicates that the WOA-LSTM neural network model
has a better fitting ability for data with non-linear characteristics and is able to process
large amounts of data, which is a significant advantage in steelmaking yield prediction
research. The t-SNE-WOA-LSTM model is further optimized based on the WOA-LSTM
neural network, and the fitting ability is significantly improved, with the RMSE reaching
0.779, the MAPE reaching 0.571, and the R2 close to 0.9, as shown in Figure 7d. Figure 9a
shows the statistics of the hit rates of the four models in different ranges. The hit rate of
the BP prediction model for Mn element yield is 38.33% within ±1% and 73.33% within
±3%. Under the condition of the same test dataset, the t-SNE-WOA-LSTM model has a hit
rate of 71.67% within ±1% and 99.17% within ±3%, which is 33.34% and 25.84% higher,
respectively, and the prediction accuracy is significantly improved.
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Figure 8 shows the comparison of the effectiveness of the four neural networks in
predicting Si element yield. It can be seen that the RMSE of the BP model is 3.840, the
MAPE is 4.177, and the R2 is 0.539. The accuracy of the BP model within ±1%, ±3%, and
±5% is 23.33%, 46.67%, and 69.17%, respectively. Therefore, the BP neural network model
was not effective in predicting Mn/Si element yield, and the prediction error was large for
some furnaces. The RMSE of the LSTM model is 3.551, the MAPE value is 3.630, and the R2

is only 0.599. The LSTM model achieved hit rates of 30.83%, 53.33%, and 75.83% within
±1%, ±3%, and ±5%, respectively. Although the prediction effect is improved compared
to the BP model, the fit is still low. The WOA-LSTM neural network has an RMSE of 2.551,
a MAPE value of 2.407, and an R2 of 0.730. The hit rate of the WOA-LSTM model within
±1%, ±3%, and ±5% is 44.17%, 75.83%, and 91.67%, respectively. The predicted values of
Si elemental yield are closer to the actual values. This is because the WOA optimization
algorithm autonomously optimizes the hyperparameters of the LSTM model, which speeds
up prediction and improves accuracy. Figure 9b shows that the t-SNE-WOA-LSTM model
predicts Si element yield with a high degree of accuracy. The hit rate within ±5% is 97.5%,
which is significantly higher than the other three element yield prediction models.

A comparison was conducted between the computational results of this model and
those of the BP, LSTM, and WOA-LSTM models. The t-SNE-WOA-LSTM prediction model
was found to have the highest prediction accuracy. Comparison with the published models
in Table 1 reveals that the prediction accuracy is higher than most models (Figure 10), with
a 99.5% hit rate for the PCA-DNN model Mn prediction. PCA-DNN is utilized in the LF
refining process, which has a long refining cycle, lower complexity compared to converter
steelmaking, and lower computational requirements for the model. The t-SNE-WOA-LSTM
model is well-suited to the converter steelmaking process, which exhibits complex response
and a large data volume. It is highly efficient in terms of computing speed and adept
at optimization searching, rendering it a more optimal choice for the actual production
scenario of converter steelmaking than other models.
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In summary, the neural network model is more effective than the traditional simple
prediction model in predicting non-linear data and is suitable for fitting the elemental yield
of the steelmaking process. A comparison between the BP neural network and the LSTM
neural network shows that the latter provides more accurate predictions. The WOA-LSTM
model and the t-SNE-WOA-LSTM combined model can improve the fitting ability of the
prediction model based on the LSTM neural network.

3.4. Application Effect Evaluation

The t-SNE-WOA-LSTM Mn/Si element yield prediction model established in this
study was applied to the Q345B production process. Production data were collected to
verify the application effect of the prediction model and to compare the element content of
the steel after adding ferroalloys according to the predicted yield. A sample of production
data from 20 furnaces was used for comparative analysis. The statistical results of actual
application errors are shown in Figure 11a. The yield prediction error for Mn in the 20 test
furnaces is within ±3%. Figure 11b displays a comparison of the Mn/Si element content in
the final liquid steel product. The results demonstrate that the element content control of
the finished product is more stable and accurate than the traditional method.
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4. Conclusions

This paper focuses on the Mn/Si element yield in the Q345B smelting process. The
element yield is predicted using an LSTM neural network combined with correlation analy-
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sis, the t-SNE dimensionality reduction algorithm, and the WOA optimization algorithm.
The research and analysis lead to the following conclusions:

(1) The steelmaking process element yield is time series data, which is related to the
current furnace influencing factors, and the data are non-linear in character. It is appropriate
to use the LSTM neural network to predict the Mn/Si elemental yield. The Mn content and
the amount of silicomanganese alloy show a strong negative correlation; the lower the Mn
content, the greater the amount of the silicomanganese alloy.

(2) The optimal t-SNE-WOA-LSTM neural network structure was obtained by compar-
ing the prediction results under different experimental hyperparameters. The prediction
model for Mn yield has a learning rate of 0.01, a dropout rate of 0.05, a batch size of 32,
194 iterations, 30 neurons, and a time step of 4. The prediction model for Si yield has a
learning rate of 0.0043, a dropout rate of 0.4621, a batch size of 16, 89 iterations, 56 neurons,
and a time step of 3.

(3) This study compared the t-SNE-WOA-LSTM neural network structure with other
prediction models. The Mn yield model’s prediction error ranges were within ±1%, ±2%,
and ±3%, respectively, with a prediction accuracy of 71.67%, 96.67%, and 99.17%. The
Si yield model’s prediction error ranges were within ±1%, ±3%, and ±5%, respectively,
with a prediction accuracy of 44.17%, 75.83%, and 91.67%. The t-SNE-WOA-LSTM neural
network structure had the best prediction accuracy among the models.

(4) During practical application, the element yield model has a prediction error within
±3%. The Mn/Si content in the liquid steel is at the lower limit of the control standard,
achieving ‘narrow composition’ control of the liquid steel.
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