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Abstract: Deformation of ultra-deep pit walls and surrounding geotechnical bodies due to engineering
disturbances typically shows intricate spatiotemporal patterns. In this study, deformations at critical
steps of the construction process were first numerically simulated by Midas GTS NX, and this
was followed by lab-scale geophysical model tests of the entire process of the pit construction.
Data on deformation obtained from numerical simulations and lab-scale geophysical model tests
were compared with those obtained from a dynamic monitoring scheme in the field to analyze the
characteristics of the deformation and evolution of the pit wall. This was used to derive a generally
applicable theoretical expression to predict variations in the horizontal displacements.

Keywords: ultra-deep pit; numerical simulation; lab-scale geophysical model test; dynamic monitor-
ing in field; characteristics of evolution of deformation

1. Introduction

The continuing development of urban underground space requires the excavation
of increasingly larger, deeper, and denser pits [1–3]. The excavation and support of a pit
disturbs and changes the distribution of stress in the surrounding rock and soil mass and
leads to the deformation, instability, and even failure of a pit with salient spatiotemporal
characteristics [4,5]. Underground space engineering now involves the excavation of
complex pits, such as ultra-large, ultra-deep pits, pit groups, and pits within pits. These
emerging challenges not only deserve special attention from engineers but also require
detailed investigation by researchers. Numerical simulations, lab-scale geophysical model
tests, and dynamic monitoring in the field are commonly used to study the behavior of pits
when they deform. These methods have different advantages and disadvantages. A pit is
modeled in numerical simulations based on the observed parameters, but the anisotropy of
the rock and soil masses, as well as their modes of connection, are idealized [6–8]. Lab-scale
geophysical model tests avoid such simplification of the rock and soil masses, can be
used to analyze trends and obtain other qualitative conclusions, and have a high reference
value. However, such models can incur the effects of scale [9–11]. Data obtained from
field monitoring are the most accurate of the three methods above but can be collected at
only a limited number of measurement points, require a long time, and are expensive to
obtain [12–15].

Numerous studies have investigated the disturbances and deformations caused by
the construction of pits through the above-mentioned methods and have yielded impor-
tant results. Cui et al. [16] analyzed monitoring data from a pit that had been excavated
throughout the winter in a cold region and used them to investigate the deformation-related
behavior of the pile wall and the causes of damage to it. Feng et al. [17] investigated the
effects of the embedded depth and stiffness of a partition wall on lateral displacement and
internal forces of the retaining structure and surrounding ground by using FE analysis
and orthogonal experiments based on observation data on 20 pits that had been exca-
vated for the construction of metro stations. Xu et al. [18] investigated the load on and
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the deformation of an ultra-deep (77.3 m) circular pit for a shield-receiving shaft at the
Longquan Inverted Siphon section of the Central Yunnan Water Diversion Project by using
monitoring data and found that the circular tube-shaped diaphragm wall deformed into an
elliptical tube-shaped structure (stretched in one direction and compressed in the other).
Shi et al. [19] separately simulated the stepwise and synchronous excavation of a large
circular pit to explore lateral deformations of different sections of the retaining structure,
the distribution of axial stress in the support, and the deformation of the surrounding
ground. Yuan et al. [20] established a 2D coupled numerical model of drainage-induced
consolidation during pit excavation and pit wall construction, discussed the use of nu-
merical simulations and methods of modeling seepage in regional pits, and investigated
the effects of the water-sealing curtain and the aquitard on horizontal displacement and
settlement of ground surrounding pits.

After achieving certain progress in the field of pit deformation research using a single
research method of on-site monitoring or numerical simulation, scholars began to lean
towards using two different methods for more in-depth discussions and promoted lab-scale
geophysical models. Massimino and Maugeri [21] analyzed the interaction between soil
and foundation through two model experiments, recorded the time history of acceleration,
and compared the results of the simulations and the model tests to assess the capability
of the former for predicting the displacement and bearing capacity of the foundation.
Hu et al. [22] analyzed the deformation-related behavior of pits under changing levels
of confined water by conducting centrifugal model tests and numerical simulations and
compared their results to investigate the effects of the length, depth, and area of the pit
as well as the level of confined water in it on its three-dimensional (3D) spatial effects.
Based on a large-scale (1:10) physical model test, Dou et al. [23] found that the data
on the passive earth pressure obtained from the experiments were consistent with field
observations in terms of both their magnitude and the trend of variations in them with
the depth of excavation. Wang et al. [24] analyzed the deformation of a deep pit through
on-site monitoring and numerical simulation and evaluated the stability of the pit with
unsupported ribbed plate anchor support using the limit equilibrium method. However,
the above studies on the deformation of pits have used only one or two of the three
above-mentioned methods (numerical simulations, lab-scale geophysical model tests, and
field monitoring). In addition, previous studies have focused on deformations in pits
surrounded by several buildings that are unimportant compared to the main body of the
pit [25–28].

The pits with complex characteristics of the evolution of deformation as well as
spatiotemporal effects warrant multidimensional, multi-perspective investigation by com-
bining several methods. In this study, the authors investigate the deformation of the top
of pit walls and the ground surrounding the ultra-deep pit of Water Purification Plant No.
14 in Kunming City by using numerical simulations, lab-scale geophysical model tests,
and on-site monitoring. The results provide references for the design and construction of
rectangular pits, predictions of deformations in them, and the assessment of their stability.

2. Brief Description of the Pit

Water Purification Plant No. 14 in Kunming City was designed with an annual
average production capacity of 260,000 m3/d and serves a population of approximately
220,000 living in an area spanning 23.75 km2. The main structures of the construction project
included underground box structures and above-ground buildings. The underground box
structures cover an area of 65,800 m2. The retaining structure of the pit was 14–33 m
deep and was divided into four sections that were separately constructed. This study
investigated the room with a water intake pump in the first section of Kunming 14th Water
Plant, which is a typical ultra-deep pit within a super large-scale pit. The pit was formed by
removing 22,400 m3 of earth and had a design depth of 33 m, a floor area of 32 (length) ×
25 (width) m2, edges with lengths of 114 m, and an area of 800 m2. The retaining structure
of the ultra-deep pit for the room with a water intake pump consisted of 1.2 m thick pit
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walls and steel bar-reinforced concrete supports. The pit walls consisted of 22 separate
sections. The pit walls were 44 or 67 m high and 5.1–6.0 m wide. The steel bar cages were
44.25 or 68 m wide. Figure 1 shows the photos of the ultra-deep pit.
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Figure 1. Photos of the ultra-deep pit: (a) the pit engineering plan and (b) the site photo of the pit
walls and the internal supporting structures.

The pit is located in the northern region of Kunming City, in the central region of
the Yunnan–Guizhou Plateau. Owing to the sedimentary environment of the lacustrine
basin of the ancient Dian Lake and Panlong River, the construction ground consisted of a
thick layer of gravelly soil with a high water content. Phreatic water was mainly found in
the alluvial–diluvial gravelly soil strata from the Quaternary that were connected because
there was no stably distributed aquiclude. The gravelly soil consisted of large, round
particles and had a high water content and a high permeability. These properties posed
several challenges to the construction of the pit, including the poor quality of the pile, easily
collapsible holes, and inrushing water into the holes of the anchor cables. The excavation of
the ultra-deep pit for the room with a water intake pump exposed the top five strata. The
earthwork of the ultra-deep pit mainly involved the alluvial–lacustrine gravelly soil strata
from the Quaternary (at an altitude of approximately 1981 m). Table 1 shows the mechanical
parameters of the excavated strata, and Figure 2 shows the stratigraphic distribution map
of the ultra-deep pit.

Table 1. Mechanical parameters of excavated strata.

No. Soil Type Unit Weight
(kN/m3)

Cohesion
(kPa)

Internal Friction
Angle (◦)

Poisson’s
Ratio

Modulus of
Elasticity (MPa) Porosity

1 Backfill soil 18.7 19.5 8.5 0.28 7 0.94
2 Peat soil 13.2 20 6 0.40 12.1 2.16
3 Gravelly soil 1 19.4 10 22 0.31 240 -
4 Gravelly soil 2 19.4 10 21 0.31 240 -
5 Silty clay 19 40 12 0.30 16 0.84
6 Gravelly soil 3 19.4 10 22.5 0.31 240 -

The observed static water level in the proposed pit site is between 1.6 and 5.2 m, and
the water level elevation is between 1899.03 and 1903.48 m. The water level in the whole site
is high in the east and low in the west, and there is a certain slope drop in the groundwater
surface. The ultra-deep pit of the water intake pump house is located on the west side of
the site, with a depth of about 5.2 m at the infiltration line. Inside the ultra-deep pit of
the water intake pump house, there are two 34 m deep dewatering wells, with the inner
diameter of the steel pipe being 273 mm, and the pumping pipe in the wells is connected to
the pumps with 100 mm fire belts. Three recharge wells are arranged along the west side
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of the pit wall to keep the groundwater level in a certain dynamic equilibrium state and
prevent ground subsidence.
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3. Numerical Simulations of the Excavation and Support of Ultra-Deep Pit

Midas GTS NX was used to simulate the construction process of the ultra-deep pit
based on the mechanical parameters of the major strata and the retaining and supporting
structures. The ultra-deep pit was numerically simulated with a scale of 32 m × 25 m × 33 m
in a coordinate system in which the positive directions of the X- and Y-axes corresponded
to the north and west of the pit, respectively. For simulations to be as accurate as possible,
the computational domain was extended beyond the prototype and had dimensions of
180 m × 120 m × 120 m. The pit walls and supports were strong and were simulated as
linear elastic materials. The surrounding ground was assumed to be made of elastoplastic
material satisfying the Mohr–Coulomb failure criterion. The model calculation adopts
displacement boundary conditions, with fixed displacement in the x-direction at the left
and right boundaries of the model, fixed displacement in the y-direction at the front and
rear boundaries of the model, and fixed displacement in three directions at the bottom of
the model. However, in order to make the numerical simulation results closer to the real
deformation state, real mechanical parameters are used instead of local boundary conditions
when modeling the pit wall (E: 31.5 GPa; µ: 0.3; γ: 26 kN/m3). The overall numerical
model of ultra-deep excavation includes 77,202 grids and 47,899 nodes, using a mixed grid
consisting of hexahedral and tetrahedral grids. To achieve higher computational accuracy,
the grid density near the pit wall is higher, and tetrahedral grids are used. The model of
the pit was excavated in five layers, and five layers of support for it were constructed, with
the excavation of each layer followed by the construction of support for it. Figure 3 shows
the 3D numerical model of the ultra-deep pit. Figure 4 illustrates the simulated horizontal
displacements of the pit at different time points during construction.
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The numerical simulations showed that once the ultra-deep pit had been excavated,
the horizontal deformations of the top of pit walls and surrounding ground directed toward
the pit exhibited significant spatiotemporal effects. The horizontal displacements were
larger at positions closer to the pit. In addition, deformations were larger at positions
closer to the edges of the rectangular pit, while those closer to the rectangular corners were
smaller. As the corners of the pit have mutual support for the enclosure structures in both
directions, the corner stiffness strengthening effect effectively limits the deformation at
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the right angles of the pit. The disturbed zones on the southern and northern sides were
32.77 m long on average, while those on the eastern and western sides were 50.39 m long
on average. Figure 5 shows the horizontal displacements on each pit wall.
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(b) the western and eastern pit walls.

The horizontal displacements on the southern and northern pit walls exhibited similar
temporal variations to those on the eastern and western pit walls, and the difference
between the maximum lateral deformation on long-edged sides and that on short-edged
sides was small. The maximum horizontal displacement at the top of the long-edged
pit walls was approximately 17.9 mm, equal to approximately 0.0515% of the maximum
depth of excavation of the pit. The maximum horizontal displacement at the top of the
short-edged pit walls was approximately 17.1 mm, equal to approximately 0.0518% of the
maximum depth of excavation of the pit.

4. Lab-Scale Geophysical Model Test of Ultra-Deep Pit in Gravelly Soil Strata
4.1. Monitoring and Testing Schemes

A laboratory model of the ultra-deep pit containing certain simplifications was built.
The monitoring points were set up along the top of the pit walls, and the monitoring lines
were established in the surrounding ground [29,30]. Accurately positioned marks were
used to identify the monitoring points and lines as well as the reference points. White pins
were used to identify the reference points, and red pins on a circular white background
were used to identify monitoring points along the pit walls and monitoring lines in the
surrounding ground.

A total of four reference points (RP-1 to RP-4 in Figure 6) were used and were located
near the four corners of the rectangular pits but outside of the zones subject to disturbances
from its excavation and construction. A total of 54 monitoring points were set up along the
tops of the pit walls at a spacing of 2 cm, with 16 monitoring points each on the southern
and the northern walls and 11 monitoring points each on the western and the eastern walls.
A total of 174 horizontal monitoring points for displacement, arranged in 12 lines, were
set up in the surrounding ground, with three lines with a spacing of 3 cm on each side.
Figure 6 shows the configuration of monitoring items at the top of the pit walls.

Close-range photogrammetry technology uses images obtained from close-distance-
target photography to determine the spatial positions of manual marking points [31–34].
A FUJIFILM-XT20 non-metric camera was used in the lab-scale geophysical model test
to this end. The camera was mounted at a fixed position and took multiple photographs
of the marks, which were subsequently used to measure changes in their 2D coordinates.
Close-range photogrammetry spatial coordinate system with the east and north sides of
the pit as positive X-axis and Y-axis directions, respectively, and the camera located in the
positive Z-axis direction. Due to the distortion of the lens, the pixel coordinates of the
images did not coincide with the actual pixel coordinates. Therefore, lens correction was
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performed on the images obtained by the camera by using the following equation in an
image processing software (V.2021):{

x = xu + δx(x, y)
y = yu + δy(x, y)

(1)

where (x,y) are the pixel coordinates of the distorted image, (xu,yu) are the pixel coordinates
of the actual scene, δx(x,y) is the distortion along the X-axis, and δy(x,y) is that along the
Y-axis.
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Following the correction of the close-range photographs, the 2D coordinates of the
marks were calculated by using the single-station time-parallax method. A photograph of
the target taken before it was deformed, referred to as the “zero photograph” here, was
used to record the natural initial state of the target. Another photograph was taken after the
target had been deformed. The on-site displacement of a monitoring point is obtained by
scaling the displacement value generated on two photos of the monitoring point through
the ratio of photography distance and camera main distance. The displacements of a
characteristic point, ∆x and ∆z, were subsequently calculated as follows:{

∆x = ∆xi·z/ f
∆y = ∆yi·z/ f

(2)

where ∆x and ∆y are the actual displacements (m), ∆xi and ∆yi are the photographed
displacements, viz. the parallax (mm), z is the distance (m) used for photography, and f is
the principal distance.

Gravelly soil and similar materials were used as the filling materials of the model box.
Based on similarity theory, the constant of geometric similarity was set to 100, the similarity
ratios of the angle of internal friction and the unit weight were set to 1, and the modulus
of compressibility and the similarity ratios of cohesion were set to 10. The mechanical
parameters of the prototype were obtained by direct shear test and consolidation test
and were compared with those of ideally similar materials [35–37]. Finally, the optimal
mixing ratio of the material for simulating the water-rich gravelly strata was determined as
follows: gypsum:liquid laundry detergent:bentonite:water:barite power:dolomitic sand =
1:1:1.4:3.5:8.8:13.2. The mixture was filled into the model box layer by layer. Liquid laundry
detergent, the major active ingredient of which was a non-ionic surfactant, served to reduce
water tension as well as regulate the cohesion of the mixture. The volume of the filling of
the optimally similar material was 60 cm (length) × 50 cm (width) × 44 cm (height), and
the mass of the filling was 292.83 kg.
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The filled model was covered with a thin film and left to rest for 48 h. Once the
entire volume of the fill material had settled and stabilized, the model was excavated.
The excavation was performed in twenty steps over six stages (divided according to the
five layers of support). The net depth of excavation in each step was 1.5–2 cm. Upon the
completion of each step of excavation, the data on horizontal displacement were collected
by using the close-range photogrammetry system. The depths (from the ground surface) of
the five layers of internal support were −6, −14, −19, −24, and −29 cm. Figure 7 shows
the preparation of the lab-scale geophysical model test of the ultra-deep pit, and Figure 8
shows the processes of excavation and support.
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Figure 8. Excavation and support processes of the ultra-deep pit.

4.2. Analysis of Horizontal Displacement at the Top of Pit Walls

Excavation of soil inside pit walls disrupted the original equilibrium of stress and
redistributed it; the pit walls and surrounding ground are horizontally displaced toward
the pit as a result [38,39]. The pit walls were constrained by the internal supports to a certain
degree. Consequently, the displacements at their top increased stepwise as excavation
proceeded. The monitoring data on the horizontal displacements at the 54 measurement
points along the pit walls were converted according to geometric similarity to obtain curves
of the distribution of variations in the horizontal displacement with the depth of excavation.
Figure 9 shows the horizontal displacements of the top of each pit wall obtained from the
lab-scale geophysical model test.
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eastern pit wall.

The horizontal displacements of the southern and northern pit walls exhibited sim-
ilar trends. The eastern pit wall was more disturbed than the western pit wall by the
construction of the third layer of supports at a depth of excavation of 19 m, resulting in
drastic increases in the displacements at some monitoring points. Toward the end of the
excavation, the incremental increases in the horizontal displacements at the tops of pit walls
on all four sides decreased to varying degrees, with the displacements at most monitoring
points increasing stably or stabilizing.

Once the excavation of the lab-scale geophysical model had been completed, the
maximum horizontal deformation of the top of the northern pit wall was 29.16 mm (at mon-
itoring point N-9), and the minimum deformation (at monitoring point N-16) was 74.07%
of the maximum. The maximum horizontal displacement of the top of the southern pit wall
was 29.10 mm (at monitoring point S-9), and the minimum deformation (at monitoring
point S-1) was 73.88% of the maximum. The maximum and minimum horizontal displace-
ments of the southern pit wall were consistent with those of the northern pit wall, with an
average difference close to 1 mm. The maximum horizontal displacement of the top of the
western pit wall was 22.1 mm (at monitoring point W-5), and the minimum deformation (at
monitoring point W-1) was 70.59% of the maximum. The maximum horizontal deformation
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of the top of the eastern pit wall was 24.6 mm (monitoring point D-7). The difference
between the maximum displacements of the eastern and western pit walls was 2.5 mm. The
minimum deformation in the eastern pit wall was 58.94% of the maximum deformation.

4.3. Analysis of Cumulative Horizontal Displacements of the Surrounding Ground

Three lines of monitoring points were configured on each of the four sides of the
model, with the line farthest from the pit, the line at the mean distance, and the line
nearest to the pit designated as lines A, B, and C, respectively. The monitoring data were
converted based on geometric similarity to establish graphs of the spatial distributions
of cumulative displacements, which were consistent with those of the on-site prototype.
Figure 10 shows the horizontal displacements of the ground on each side of the above
model. The cumulative horizontal displacement of the surrounding ground had significant
spatial effects, as did the horizontal displacements of the pit walls. As the distance between
the ground and the pit increases, the total horizontal displacement decreases. Except for
the western side, horizontal displacements at the central monitoring points were larger
than those at monitoring points on the two sides in a line of monitoring points.
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The distance between the farthest lines of the monitoring points and the edges of
the ultra-deep pit was approximately 10 m. The ratio of average displacements of the
ground along the three lines of monitoring points on the northern side was N-A:N-B:N-C =
1:0.50:0.17, that along the three lines of monitoring points on the southern side was S-A:S-
B:S-C = 1:0.50:0.10, the ratio between the average displacements of the ground along the
three lines of monitoring points on the western side was W-A:W-B:W-C = 1:0.73:0.29, and
that on the eastern side was E-A:E-B:E-C = 1:0.63:0.34. Based on these ratios of the model
and the area of the disturbed surrounding ground obtained from the numerical simulations,
the authors preliminarily estimated the range of disturbance in the surrounding ground
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due to the excavation of the ultra-deep pit and the support for it in gravelly soil strata to be
10–25 m on the southern and northern sides and 12–32 m on the eastern and western sides.

5. Evolution of Deformation of the Ultra-Deep Pit
5.1. Comprehensive Deformation Analysis Combined with On-Site Monitoring

Supporting structures that combine pit walls and internal supports are widely used
to bolster pits as they can ensure their stability [40–44]. In response to earth pressure
on the side of the pit being released, the pit walls are displaced laterally. The horizontal
displacement at the tops of pit walls is a major index for measuring the safety of supporting
structures of the pit and reflects the stability of the pit and the magnitude of the pressure of
the earth behind the wall [45,46]. The authors designed a real-time systematic monitoring
scheme involving setting measurement points along the top of the pit walls that were
likely to undergo a large horizontal displacement. The resulting data were sorted and
summarized. Figure 11 shows the on-site monitoring items at the top of the pit walls.
Table 2 shows the corresponding relationships between the monitoring points used in the
different methods. Figures 12–15 show a comparison of the horizontal displacements at the
tops of pit walls obtained from the different methods.

Processes 2024, 12, x FOR PEER REVIEW  12  of  19 
 

 

different methods. Figures 12–15 show a comparison of the horizontal displacements at 

the tops of pit walls obtained from the different methods. 

   
(a)  (b) 

Figure 11. On-site monitoring items at the top of pit walls: (a) on-site monitoring plan and (b) mon-

itoring point. 

Table 2. Corresponding relationships between monitoring points used in different methods. 

Research method  Serial Numbers of Monitoring Points 

On-site dynamic monitoring  WY71  WY72  WY73  WY78  WY79  WY80 

Lab-scale geophysical model test  N-3  N-9  N-13  S-3  S-9  S-13 

Node of numerical simulation  11  22  27  86  74  69 

On-site dynamic monitoring  WY02  WY03  WY04  WY75  WY76  WY77 

Lab-scale geophysical model test  W-10  W-6  W-2  E-10  E-6  E-2 

Node of numerical simulation  8286  8295  8292  50  37  62 

 

Figure 12. Comparison of horizontal displacements at the tops of northern pit wall. 

W04

W03

W02 W75

W76

W77

W71 W72 W73

W78W79W80

Figure 11. On-site monitoring items at the top of pit walls: (a) on-site monitoring plan and
(b) monitoring point.

Table 2. Corresponding relationships between monitoring points used in different methods.

Research Method Serial Numbers of Monitoring Points

On-site dynamic monitoring WY71 WY72 WY73 WY78 WY79 WY80
Lab-scale geophysical model test N-3 N-9 N-13 S-3 S-9 S-13

Node of numerical simulation 11 22 27 86 74 69

On-site dynamic monitoring WY02 WY03 WY04 WY75 WY76 WY77
Lab-scale geophysical model test W-10 W-6 W-2 E-10 E-6 E-2

Node of numerical simulation 8286 8295 8292 50 37 62

The data obtained from on-site dynamic monitoring and the lab-scale geophysical
model test exhibited similar overall patterns of temporal variations. The horizontal dis-
placement first increased, stabilized, and then increased again to exhibit an S-shaped trend
of evolution. Numerical simulations showed first a slow increase and then a steady increase.
The data from field monitoring showed that the horizontal displacement exhibited a stage
of stable variation that was longer than that of the lab-scale geophysical model test and had
a zero rate of variation. The horizontal displacements at temporal points #1 and #2 obtained
from the numerical simulations differed considerably from those obtained from on-site
dynamic monitoring and the lab-scale geophysical model test. Even though the lab-scale
geophysical model test and the numerical simulations had appropriate parameters, the
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horizontal displacements obtained from the lab-scale geophysical model test were generally
larger than those obtained from field monitoring, while those obtained from the numerical
simulations were smaller than those obtained from field monitoring.
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Figure 12. Comparison of horizontal displacements at the tops of northern pit wall.

Processes 2024, 12, x FOR PEER REVIEW  13  of  19 
 

 

 

Figure 13. Comparison of horizontal displacements at the tops of southern pit wall. 

 

Figure 14. Comparison of horizontal displacements at the tops of western pit wall. 

 

Figure 15. Comparison of horizontal displacements at the tops of eastern pit wall. 

Figure 13. Comparison of horizontal displacements at the tops of southern pit wall.

Processes 2024, 12, x FOR PEER REVIEW  13  of  19 
 

 

 

Figure 13. Comparison of horizontal displacements at the tops of southern pit wall. 

 

Figure 14. Comparison of horizontal displacements at the tops of western pit wall. 

 

Figure 15. Comparison of horizontal displacements at the tops of eastern pit wall. 

Figure 14. Comparison of horizontal displacements at the tops of western pit wall.



Processes 2024, 12, 941 13 of 18

Processes 2024, 12, x FOR PEER REVIEW  13  of  19 
 

 

 

Figure 13. Comparison of horizontal displacements at the tops of southern pit wall. 

 

Figure 14. Comparison of horizontal displacements at the tops of western pit wall. 

 

Figure 15. Comparison of horizontal displacements at the tops of eastern pit wall. Figure 15. Comparison of horizontal displacements at the tops of eastern pit wall.

From the pit was excavated to the second internal support construction was completed,
there was a difference in the horizontal displacement of the top of the pit walls. The average
differences between the horizontal displacements obtained from dynamic monitoring and
the lab-scale geophysical model test, those between dynamic monitoring and the numerical
simulations, and between the latter and the lab-scale geophysical model test were 2.11, 3.91,
and 5.109 mm, respectively. On the whole, the horizontal displacements at the tops of the
pit walls, from the completion of the second layer of internal supports to the completion of
the fifth layer of internal supports, obtained by using the three methods, exhibited large
average incremental increases and similar trends of variation. This indicates that, during
this period, the pit underwent significant disturbances due to excavation engineering.
The omnidirectional average incremental increases obtained from the on-site dynamic
monitoring, numerical simulations, and lab-scale geophysical model tests were 8.33, 11.07,
and 12.52 mm, respectively.

Compared to the Coulomb theory, which focuses on wedges, the Rankine theory,
which focuses on one point, is more suitable for the analysis of soil pressure on pit walls
and roofs [47,48]. When conducting stress analysis, multiple strata should be considered as
cohesive soil, and it should be noted that the drainage measures of the pit do not account
for water pressure. The cohesive soil and internal support on both sides of the pit wall
can respectively reduce and increase the σx of the stress Mohr circle, but the combined
support structure of internal support and pit wall only provides horizontal stress in the
ultimate equilibrium state and deformation. Therefore, when the pit wall undergoes vertical
deformation, the cohesive soil generates active soil pressure with a soil pressure coefficient
of Ka. However, when the pit wall is stable, this point may be in a limit equilibrium state.
As excavation and support progress, the soil pressure at a certain point on the top of the pit
wall is dynamically changing, and the soil pressure coefficient will fluctuate between K0
and Ka.

5.2. Analysis and Prediction of the Stability of Retaining Structure

The authors compared the differences among the cumulative horizontal displacements
at the tops of pit walls that were caused by the excavation of ultra-deep pit, at 12 field
monitoring points, and at the corresponding nodes of the numerical simulations and the
monitoring points of the lab-scale geophysical model test. Figure 16 shows the comparison
of the cumulative displacements by using the three methods.
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The maximum deformations observed through the above three methods were below
the warning level, which shows that the design of the supporting structure based on a
combination of pit walls and internal supports was appropriate and feasible. Considering
that the spans of the southern and northern pit walls were larger than those of the eastern
and western pit walls, the area of coverage representing the cumulative horizontal dis-
placements in Figure 16a was larger than that in Figure 16b. The cumulative horizontal
displacements at the tops of pit walls obtained using the three methods were different. The
horizontal displacements obtained from the numerical simulations were the smallest; those
obtained from the field monitoring were larger than them by 237.4%, and the horizontal
displacements obtained from the lab-scale geophysical model test were larger than those
yielded by the field monitoring and the numerical simulations by 242.4% and by 575.4%,
respectively. These differences can be tentatively attributed to temporal effects. Excavation
of the pit and installation of the support system were provided instantaneously during
the numerical simulations. By contrast, these processes required time during the actual
construction of the pit, and the retaining structure underwent slow deformation during
this period. The different cumulative horizontal displacements obtained in the lab-scale
geophysical model test were also related to temporal effects. The excavation in the model
began before the internal supports were adequately consolidated and cured to achieve an
equilibrium of stress.

Data on the displacement of pit walls obtained by using the three methods were
divided into four groups corresponding to the four sides of the rectangular pit. They were
then subjected to weighted averaging and linear regression analysis, and the results were
used to predict the horizontal displacements at the tops of pit walls based on sigmoid
functions. The predicted horizontal displacements at the tops of the pit walls of the
rectangular (length-to-width ratio = 1.28) ultra-deep pit increased monotonically but non-
uniformly as the depth of excavation increased. The trends of the sigmoid function on the
short-edged sides were more typical than those on the long-edged sides. For the design,
construction, and prediction of deformations of retaining structures for pits, this empirical
formula and its parametric ranges will be helpful. Figure 17 shows the sigmoid functions
for predicting the horizontal displacements at the tops of pit walls on each side.
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6. Conclusions

Compared to previous studies, this study used more research methods to have a
deeper discussion on the deformation of ultra-deep pits. The horizontal displacements of
the pit wall and the surrounding ground were investigated by field parametric numerical
simulations and lab-scale geophysical model tests based on close-up photogrammetry,
revealing significant spatial and temporal effects during excavation and support. Then, the
horizontal displacements of the pit wall obtained using different methods were compared
and predicted by regression with a sigmoid function:

(1) The horizontal displacement of surrounding ground in numerical simulation increased
with the distance from the pit, while soil masses near the four corners of the pit had
higher rigidity and underwent smaller displacements. The horizontal displacements
on the southern and northern pit walls exhibited similar trends of temporal variations
to those of the eastern and western pit walls, and the difference between the maximum
lateral deformation on long-edged sides and that on short-edged sides was small.

(2) The horizontal displacements of the southern and northern pit walls in lab-scale
geophysical model tests exhibited similar trends. The eastern pit wall was more
disturbed than the western pit wall by the construction of the third layer of supports
at a depth of excavation of 19 m, resulting in drastic increases in displacements at some
monitoring points. The maximum horizontal displacements at the tops of northern,
southern, western, and eastern pit walls were 29.16, 29.10, 22.10, and 24.60 mm,
respectively. Based on the results of lab-scale geophysical model tests and numerical
simulations, the authors preliminarily estimated the range of disturbances in the
ground surrounding the excavated ultra-deep pit and its supports in the gravelly soil
strata to be 10–25 m on the southern and northern sides and 12–32 m on the eastern
and western sides.
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(3) The data obtained from on-site dynamic monitoring and the lab-scale geophysical
model test exhibited similar overall patterns of temporal variations. The horizontal
displacement first increased, stabilized, and then increased again to exhibit an S-
shaped trend of evolution. According to data from the numerical simulations, it
exhibited a trend of first increasing slowly and then increasing stably. The overall
displacements at the tops of the pit walls obtained by using the three methods differed
owing to temporal effects. The displacements obtained from the lab-scale geophysical
model test were the largest, followed by those obtained from the on-site monitoring
and the numerical simulations. The predicted horizontal displacements at upper
sections of the pit walls of rectangular (length-to-width ratio = 1.28) ultra-deep pit
increased monotonically but non-uniformly as the depth of excavation increased.
The sigmoidal trends on the short-edged sides were more typical than those on the
long-edged sides.

Due to the idealized geological distribution in numerical simulations and the un-
certainty caused by size effects in lab-scale geophysical model tests, there are certain
differences in the deformation characteristics obtained by different research methods. How-
ever, the research findings in this article will provide a research basis for narrowing this
difference and using limit equilibrium theory to further discuss deformation characteristics.
In addition, this ultra-deep pit has a high original groundwater table and has systematic
drainage measures. According to unsaturated soil mechanics and previous studies [49–52],
groundwater and unsaturated zones above the saturation zone may play a crucial role in
the stability of pit walls. Discussing the effect of soil on the pit wall after dewatering will
be a very valuable research direction for the next phase of this study.
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