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Abstract: In the real industrial manufacturing process, due to the constantly changing operational
loads of equipment, it is difficult to collect data from all load conditions as the source domain signal
for fault diagnosis. Therefore, the appearance of unseen load vibration signals in the target domain
presents a challenge and research hotspot in fault diagnosis. This paper proposes a triplet loss-based
domain generalization network (TL-DGN) and then applies it to an unseen domain bearing fault
diagnosis. TL-DGN first utilizes a feature extractor to construct a multi-source domain classification
loss. Furthermore, it measures the distance between class data from different domains using triplet
loss. The introduced triplet loss can narrow the distance between samples of the same class in
the feature space and widen the distance between samples of different classes based on the action
of the cross-entropy loss function. It can reduce the dependency of the classification boundary
on bearing operational loads, resulting in a more generalized classification model. Finally, two
comparative experiments with fault diagnosis models without triplet loss and other classification
models demonstrate that the proposed model achieves superior fault diagnosis performance.

Keywords: fault diagnosis; triplet loss; domain generalization; unseen domain

1. Introduction

In the discrete industry, large-scale equipment is typically a complex system with
numerous components. Among them, rotating machinery such as fans and pumps have
been widely utilized, yet prolonged operation in harsh environments may lead to wear and
subsequent failures. Such failures not only disturb the normal operation of the equipment,
but also have security risks. Hence, research on fault diagnosis of rotating machinery holds
significant importance in quickly identifying fault locations and severity, which can ensure
the safe and smooth operation of equipment and provides manufacturing enterprises
with clear and prompt demands. During the operation of rotating machinery, vibration
signals containing information about the equipment’s operating status are generated. When
equipment malfunctions, changes in the operating status result in vibration signals differing
from those during normal operation. Intelligent sensing units such as sensors can collect
vibration signals from various parts of the rotating machinery, which can be utilized for
process monitoring and fault diagnosis [1]. Moreover, with the development of data-driven
fault diagnosis methods, research based on vibration signals has become a hotspot. Data-
driven methods can make full use of operational data obtained from monitored equipment
to diagnose faults through data acquisition, feature extraction, and modeling [2].

There are three main data-driven methods used in the fault diagnosis of rotating
machinery: signal processing-based methods, machine learning-based methods, and deep
learning-based methods. Signal processing-based fault diagnosis involves processing vibra-
tion data using time-frequency analysis techniques to extract signals that reflect faults [3].
These methods include adaptive mode decomposition [4], short-time Fourier transform [5],
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wavelet transform [6,7], etc. However, such methods require prior information about
fault characteristic frequencies, which limits their applicability. Later, machine learning
methods have been widely combined with signal processing methods to improve model
classification performance. For example, some studies decompose vibration signals of
roller bearing faults into a finite number of stationary intrinsic mode functions and extract
energy features as input vectors for artificial neural networks [8]. Chen et al. proposed a
multi-fault diagnosis model based on wavelet-PCA and fuzzy K-nearest neighbor (KNN)
for rolling bearing data [9]. Wang et al. developed a rolling bearing fault diagnosis model
based on wavelet packet denoising and random forests [10].

Nowadays, due to the increasingly complex structure of rotating machinery and the
variations in vibration signals due to changes in operating conditions, manually extracting
features for diagnosis is time consuming. Thus, a key challenge in rotating equipment fault
diagnosis is to develop more efficient autonomous feature extraction and diagnostic meth-
ods that can effectively identify faults under variable loads and enhance the generalization
of diagnostic models. Therefore, deep learning methods have been widely introduced into
fault diagnosis modeling due to their excellent learning performance. Deep learning meth-
ods can establish end-to-end models for vibration signals, autonomously extract features,
and identify healthy states [11]. Deep models such as deep belief networks [7], stacked
autoencoders [12], and convolutional neural networks [13] are widely applied in rolling
bearing fault diagnosis [14]. Wang et al. proposed a multi-scale learning neural network
containing one-dimensional and two-dimensional convolution channels [15], capable of
learning the local correlations of periodic signals such as neighboring and non-neighboring
intervals in vibration data. Niu et al. proposed an adaptive deep belief network-based fault
diagnosis method for rolling bearings using principal component analysis and parameter-
corrected linear unit activation layers [16]. Cui et al. proposed a feature distance stack
autoencoder for rolling bearing fault diagnosis [17], first classifying normal and faulty data
using a simple linear support vector machine, then classifying faults using the proposed
feature distance stack autoencoder. Nie et al. proposed a normalized recursive neural
network for noisy label fault diagnosis, utilizing normalized long short-term memory to
improve training and introducing forward cross-entropy loss to address the negative effects
of noisy labels [18]. Wang et al. proposed an imbalanced fault diagnosis method based on
a conditional variational autoencoder generative adversarial network [19], initially using
the encoder network of the conditional variational autoencoder to obtain the distribution
of fault samples, then generating a large number of similar fault samples through the
encoder network, and finally continuously optimizing the parameters of the generator,
discriminator, and classifier through adversarial learning mechanisms, applying the trained
model for intelligent fault diagnosis of planetary gearboxes.

However, most existing fault detection methods are designed for situations where
the target domain is visible, meaning the target domain participates in model training.
In real industrial manufacturing environments, target domain data may not be available
for training. On the one hand, the operational loads of equipment vary greatly, making it
impossible to collect complete fault signals for every load condition. On the other hand,
suppose a fault occurs the first time the equipment operates under a certain load. In that
case, there are no fault signals collected for that load condition at that time. Additionally,
some equipment may not be allowed to operate in a faulty state for an extended period,
making it impossible to collect complete fault data. In such cases, how to extract universal
and effective information from available source domain data and apply it to fault diagnosis
in unseen domains is crucial for intelligent diagnostic technologies. In recent years, in
response to the issue of fault diagnosis in unseen domain bearings, an increasing number
of researchers have proposed fault diagnosis algorithms based on domain generalization
networks [20]. The main idea of domain generalization is to learn from one or multiple
source domains and then extract a domain-agnostic model that can be applied to an unseen
domain [21,22]. Chen et al. proposed a generic domain-regressive fault diagnosis model for
unseen bearing faults [23]. Shi et al. developed a domain transferability-based deep domain
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generalization model for rotary machinery cross-domain fault diagnosis [24]. Zhao and
Shen designed a federated domain generalization framework combining edge computing
and cloud computing to realize robust fault diagnosis [25]. Fan et al. developed a deep
mixed domain generalization network to achieve cross-domain fault diagnosis under
unseen working conditions or machines [26]. Wang and Liu proposed a triplet loss-guided
adversarial domain adaptation method [27]. The paper of [27] addressed the domain shift
issue by concatenating two mini-batches of data from the source and target domains into
a single mini-batch and incorporating triplet loss. The commonality between our paper
and [27] lies in the use of triplet loss to minimize the distribution difference between classes
in the feature space. The difference between domain adaptation and domain generalization
is shown in Figures 1 and 2. In Figure 1, the model focuses on whether the distribution
between the source and target domains can be aligned in a certain space so that the model
can classify the target domain correctly but ignores the effect of the model in other unseen
domains. In Figure 2, domain generalization is to learn a classification model that can be
applied to unseen domains through multiple source domains and pay more attention to
the generalization ability of the model.

Figure 1. Sketch of domain adaptation (circles and triangles represent two different categories).

Figure 2. Sketch of domain generalization (circles and triangles represent two different categories).



Processes 2024, 12, 882 4 of 16

This paper introduces the triplet loss-based domain generalization network (TL-DGN)
method for diagnosing faults in unseen domain bearings, addressing challenges from dif-
ferences in load conditions between training and testing samples. By integrating the triplet
loss, it effectively tackles this issue. The TL-DGN method uses both cross-entropy loss for
classification accuracy and triplet loss to manage feature distribution, promoting proximity
among similar samples and separation among dissimilar ones. This results in a more gener-
alized classification boundary. The TL-DGN method demonstrates discrimination between
fault categories, achieves low classification errors through cross-entropy loss, facilitates
feature clustering, and enhances generalization capabilities, making it less sensitive to
changes in load conditions. The TL-DGN method proposed in this paper can integrate
information from multiple source domains based on triplet loss. This method can delineate
nonlinear boundaries among data categories from these domains, thus generalizing to
unseen domains for fault classification.

The remainder of this paper is organized as follows. In Section 2, a brief introduction
of domain generalization is given. In Section 3, the detailed description of triplet loss is
shown. In Section 4, the structure of TL-DGN and the flowchart of the TL-DGN method are
given. Section 5 validates the effectiveness of the proposed algorithm through a bearing
data set and a gearbox data set.

2. Brief Introduction of Domain Generalization

In domain generalization, available fault data may come from different operating
conditions, such as different speeds or loads. Given M source domains {Ds

m}M
m=1, the dis-

tributions between the source domains are different. The m-th source domain contains
ns

m labeled samples Ss
m = {xs

m,i, ys
m,i}

ns
m

i=1 ∼ Ds
m, and the total number of source samples

is Ss = {Ss
m}M

m=1. The target domain is Dt, the source domain is Ds, and the samples of
the target domain are unseen during model construction and training process. The data
distributions between the source and target domains are different, Ds ̸= Dt. The goal
of domain generalization networks is to learn an effective fault classification function
from multiple known source domains, with available training samples {Ss

m}M
m=1. This

domain generalization network is then directly applied to the target domain with unseen
operating conditions.

3. The Triplet Loss for Domain Generalization

Triplet loss is an effective loss in contrastive learning. The sketch of the triplet loss is
given in Figure 3.

Figure 3. Sketch of triplet loss.
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Triplets are composed of three samples, including the anchor sample xa
i , the positive

sample xp
j , and the negative sample xn

k . Among them, the anchor sample and the positive
sample belong to the same category, while the anchor sample and the negative sample
belong to different categories. The optimization goal of triplet loss is to reduce the distance
between the anchor sample and the positive sample while increasing the distance between
the anchor sample and the negative sample and can be represented as Equation (1).

∥ f (xa
i )− f (xp

j )∥
2
2 + α < ∥ f (xa

i )− f (xn
k )∥

2
2 (1)

∀( f (xa
i ), f (xp

j ), f (xn
k )) ∈ T, where T is the set of all triplets, α is the margin value, α > 0,

f (·) is a deep neural network-based feature extractor. For each anchor sample, when
forming a triplet, positive and negative samples are selected through traversal. However,
not all arbitrary sets of three samples can form a triplet; two conditions must be satisfied:

(1) i, j, k are not equal, meaning all three samples are different.
(2) The anchor sample and the positive sample belong to the same category, while the

anchor sample and the negative sample belong to different categories.

Then, the triplet loss can be given as Equation (2):

Lt =
Ntr

∑
i
[∥ f (xa

i )− f (xp
j )∥

2
2 − ∥ f (xa

i )− f (xn
k )∥

2
2 + α]+ (2)

where Ntr represents the number of triplets, ∥ ∗ ∥2
2 indicates the squared Euclidean distance,

[∗]+ indicates taking ∗ when ∗ > 0 and taking 0 when ∗ < 0. The margin value α can avoid
projecting all samples to the same point in the feature space, i.e., Lt = 0. Meanwhile, α also
affects the size of the triplet loss, aiming to minimize the loss during training iterations.
That is to say, the objective is to bring the anchor sample closer to the positive sample and
farther from the negative sample. The choice of α can be analyzed as follows:

(1) When α is smaller, the loss tends to approach 0 more easily. In this case, the anchor
sample does not need to be pulled too close to the positive sample, and the anchor
sample does not need to be pulled too far from the negative sample to quickly ap-
proach a loss of 0. However, the result obtained from such training may not effectively
distinguish samples with different labels.

(2) When α is larger, the network parameters need to work harder to reduce the distance
between the anchor sample and the positive sample while increasing the distance
between the anchor sample and the negative sample. Setting the margin value too
large may result in the loss, maintaining a relatively large value, making it difficult to
approach 0.

Therefore, setting a reasonable margin value is crucial, as it is an important parameter
of the loss function. In summary, a smaller margin value makes the loss approach 0 more
easily but may struggle to differentiate similar samples. A larger margin value makes it
harder for the loss to approach 0 and may even lead to the network not converging, but it
can more confidently differentiate relatively similar samples.

There are three types of triplets formed by samples: easy triplets, semi-hard triplets,
and hard triplets. The distinctions among them are as follows.

The distance relationship among the three samples of easy triplets is given in
Equation (3). The diagram of easy triplets is shown in Figure 4. Here, the distance between
the anchor sample and the positive sample, plus α, is smaller than the distance between the
anchor sample and the negative sample. In this situation, such triplets have no impact on
the total triplet loss.

∥ f (xa
i )− f (xp

j )∥
2
2 + α < ∥ f (xa

i )− f (xn
k )∥

2
2 (3)
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Figure 4. The diagram of easy triplets.

The distance relationship among the three samples of semi-hard triplets is given in
Equation (4). The diagram of semi-hard triplets is shown in Figure 5. Here, the distance
between the anchor sample and the positive sample is smaller than the distance between
the anchor sample and the negative sample. However, the sum of the distance between
the anchor sample and the positive sample, and α is larger than the distance between the
anchor sample and the negative sample. In this case, the semi-hard triplets have an impact
on the triplet loss.

Figure 5. The diagram of semi-hard triplets.

∥ f (xa
i )− f (xp

j )∥
2
2 < ∥ f (xa

i )− f (xn
k )∥

2
2

< ∥ f (xa
i )− f (xp

j )∥
2
2 + α (4)

The distance relationship among the three samples of hard triplets is given in
Equation (5). The diagram of hard triplets is shown in Figure 6. Here, the distance between
the anchor sample and the positive sample is larger than the distance between the anchor
sample and the negative sample. In this situation, the hard triplets have a significant impact
on the triplet loss.

Figure 6. Diagram of the hard triplet.

∥ f (xa
i )− f (xp

j )∥
2
2 > ∥ f (xa

i )− f (xn
k )∥

2
2 (5)
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Since easy triplets have no impact on triplet loss, to expedite the training speed of the
network, attention is focused only on semi-hard triplets and hard triplets during training.

4. The Proposed TL-DGN Method for Unseen Domain Fault Diagnosis

Firstly, the triplet loss-based domain generalization network structure (TL-DGN) is
constructed and illustrated in Figure 7. The TL-DGN consists of a feature extractor and a
classifier. The feature extractor utilizes a one-dimensional convolutional neural network
(CNN). The classifier employs two fully connected layers. Multi-source domain signals
are input to the feature extractor. Then, the features extracted by the feature extractor are
used to calculate the triplet loss without considering the source domain of the samples.
The features are further input to the classifier, and the classification loss is computed for
multi-source domains.

Figure 7. Network structure of the triplet loss-based domain generalization network (TL-DGN).

The loss function of TL-DGN can be given as in Equation (6):

J = Jc + βJtr (6)

where Jc represents the classification loss of multi-source domains, β is a weight coefficient.
A larger β indicates that the network pays more attention to the triplet loss. Jtr represents
the triplet loss. Jc and Jtr can be represented as Equations (7) and (8):

Jc =
M

∑
m=1

Jce(ŷm, ym) (7)

Jtr = Lt

=
Ntr

∑
i
[∥ f (xa

i )− f (xp
j )∥

2
2 − ∥ f (xa

i )− f (xn
k )∥

2
2 + α]+ (8)

where Jce(·) is the cross-entropy loss, M is the number of source domains, ŷm and ym,
respectively, represent the classification result and the true label of fault data on the m-th
source domain.

Then, the TL-DGN method can be applied to an unseen domain-bearing fault diag-
nosis. In real fault diagnosis scenarios, when the training sample and the test sample are
not under the same load, and the load information of the test sample is unknown, the fault
diagnosis model is always ineffective. To deal with the problem, TL-DGN is used for fault
diagnosis of unseen domain bearings. Here, in addition to focusing on the classification loss
measured by cross-entropy loss, triplet loss is used to consider the feature distribution of
samples. This encourages similar samples to be close to each other and dissimilar samples
to be separated, resulting in a more generalized classification boundary. The TL-DGN
method for unseen domain bearing fault diagnosis has the following characteristics.
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(1) Discrimination: Firstly, the TL-DGN method can discriminate between fault features
of different categories. Moreover, based on cross-entropy loss, the model can achieve
low classification errors on fault data.

(2) Feature clustering: In addition to classifying features, the introduced triplet loss
allows features of similar fault data to cluster together, while features of dissimilar
fault data are dispersed. This leads to a more discriminative classification boundary.

(3) Generalization: Due to the discrimination and feature clustering characteristics of the
proposed model, it can classify faults of different categories and aggregate features
of the same category. This enhances the model’s generalization capability, making it
relatively insensitive to changes in the load conditions.

The detailed process of the TL-DGN method for unseen domain-bearing fault diagno-
sis can be given as follows:

(1) Collect vibration signals of bearing fault states under multiple loads as fault datasets
from multi-source domains.

(2) Establish the TL-DGN model based on Equation (6). In this model, the feature
extractor is CNN, the activation function is ReLU, and the optimizer is Adam.

(3) Divide the source domain datasets into equal-length segments. Input the vibration
data from multi-source domains into the model for training while keeping the model
parameters fixed.

(4) Collect vibration signals from the target domain (signals from the target domain were
not involved in the training phase). Input these signals into the trained model to
obtain the diagnosis results for rolling bearing faults in the target domain.

The flowchart of the TL-DGN method for unseen domain-bearing fault diagnosis is
shown in Figure 8.

Figure 8. Flowchart of the triplet loss-based domain generalization network (TL-DGN) method.
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5. Case Study
5.1. German Paderborn Bearing Data Set

In this section, the German Paderborn bearing data set [28] is utilized to verify the effec-
tiveness of the proposed algorithm. The data set contains four types of loads. Among them,
the rotational speed of the drive system, the radial force exerted on the test bearing, and
the load torque are the main load-related operating parameters. During each measurement
and acquisition process, the three parameters remain unchanged. The description of these
loads is shown in Table 1.

Table 1. Description of loads.

Date Set Rotational Speed Load Torque Radial Force Name(rpm) (Nm) (N)

A 1500 0.7 400 N15_M07_F04
B 1500 0.1 1000 N15_M01_F10
C 900 0.7 1000 N09_M07_F10
D 1500 0.7 1000 N15_M07_F10

In this paper, four categories of faults, KI01, KA01, KA07, and KI03, were chosen for the
diagnosis experiment. To simplify the description, datasets with load names N15_M07_F04,
N15_M01_F10, N09_M07_F10, and N15_M07_F10 are respectively referred to as datasets
A, B, C, and D. Bearing damage includes two types: artificial damage and real damage.
Both types of damage are applied to the inner and outer races of the 6203 model bearings.
Here, artificial damage includes three types: electro-discharge machining (with a groove
length of 0.25 mm in the rolling direction and a depth of 1–2 mm), drilling (with diameters
of 0.9 mm, 2 mm, and 3 mm), and manual electric engraving (damage lengths ranging from
1–4 mm). Detailed information about artificially damaged bearings is provided in Table 2,
where OR refers to the outer race and IR refers to the inner race.

Table 2. Description of faults.

Bearing Code Module Damage Degree Damage Mode

KI01 IR 1 Electro discharge machining
KA01 OR 1 Electro discharge machining
KA07 OR 1 Drilling
KI03 IR 1 Electric engraving

Here, fault signals in each category were partitioned into segments of length 1024,
with 1000 samples for each fault category. In this experiment, the training and testing sets
were split in an 8:2 ratio for each load. The data sets under each load are shown in Table 3.

Table 3. Experimental data set.

Fault Category Label Number of Sample Dimension of Sample

KI01 0 1000 1 × 1024
KA01 1 1000 1 × 1024
KA07 2 1000 1 × 1024
KI03 3 1000 1 × 1024

The structure and parameters of the proposed model are shown in Table 4. The experi-
ment was undertaken under the Python 3.9 (pytorch) framework. The number of iterations
was set to 50, the sample batch size was set to 128, the optimizer was Adam. The initial
learning rate was set to 0.005 and adjusted according to exponential decay during the
iteration process.

In order to verify the effectiveness of triplet loss, an experiment was first conducted
with data set A. The training set of data set A was input into the model for network
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training, and the testing set of data set A was used to obtain the diagnosis results. Use
t-SNE to observe the difference in feature distribution when the model was trained with
triplet loss and without triplet loss. The feature visualizations of data set A are given
in Figures 9 and 10. In the experiment, considering the convergence speed of the model,
in each round of iteration, for each anchor point sample, the nearest negative sample
and the farthest positive sample are selected to form the hardest triplet to participate
model optimization.

Table 4. Model structure and parameters.

Layer Parameter

Input / /
Conv1D_1 kernel_size = 11, filters = 32 ReLU

MaxP_2 pool_size = 11 /
Feature Conv1D_3 kernel_size = 5, filters = 32 ReLU

Extractor MaxP_4 pool_size = 5 /
Conv1D_5 kernel_size = 3, filters = 16 ReLU
AverP_6 pool_size = 3 /
Dropout 0.5 /

Label FC1 50 ReLU
Classifier FC2 4 Softmax

Figure 9. Feature visualization of data set A (without triplet loss).

In this case, the margin α of the triplet loss was set to 10, and the weight parameter β
of the triplet loss was set to 0.1. Adding or not adding triplet loss into the loss function,
the model distributions obtained from the test set of data set A showed a noticeable
difference. The same category of data in Figure 9 was not as clustered as in Figure 10.
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Figure 10. Feature visualization of data set A (triplet loss-based domain generalization network
(TL-DGN)).

Then, the domain generalization comparison experiment with and without adding
triplet loss was conducted. Similarly, in this experiment, the margin α of the triplet loss
was set to 10, and the weight parameter β of the triplet loss was set to 0.1. The fault
diagnosis accuracy results of the model with and without adding triplet loss are shown in
Table 5. In Table 5, the source domain column represents the data set participating in the
training process, and the target domain column is the data set that cannot participate in
the training process, that is, the unseen domain. For example, if the source domains are A
and B, and the target domain is C, it indicates that the model was trained using datasets A
and B, and tested on dataset C. In order to mitigate the randomness of diagnostic results,
each experiment was repeated five times, and the results in Table 5 are the average of
five repetitions.

Table 5. Accuracy of the model in the generalization experiment (%).

Source Domain Target Domain With Triplet Loss Without Triplet Loss

A,B C 70.02 69.15
A,B D 99.97 99.97
A,C B 98.67 97.77
C,D A 96.52 94.02
C,D B 99.45 97.50
A,C D 99.22 99.02

Average 93.98 92.91

With the addition of triplet loss, it has a higher fault diagnosis accuracy in the unseen
target domain compared to the contrast experiments. However, in the generalization task
between different loads, when the target domain is C, both the proposed method and the
comparative methods have lower fault diagnosis accuracy compared to other tasks. This
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is attributed to the significant differences between data set C and the others. Data set C
was collected at a driving system speed of 900 rpm, while the other three data sets were
collected at a speed of 1500 rpm. When the A, B, and D data sets were used as target
domains, the proposed algorithm achieved higher accuracy in the target domain. Judging
from the average value of the six generalization tasks, the fault diagnosis accuracy obtained
by the proposed method was higher than that of the comparative experiment.

5.2. HUSTgearbox Data Set

The HUSTgearbox data set is publicly available from Huazhong University of Science
and Technology and consists of gearbox data [29]. Gearbox fault testing was conducted
using the Spectra-Quest mechanical fault simulator. There are three health states for the
gearbox: Normal, Tooth broken, and Tooth missing, labeled 0, 1, 2. Test rig of HUSTgearbox
dataset is shown in Figure 11. Photographs of the failure gears are given in Figure 12. In the
experiment, a total of four different operating conditions were set. The operating conditions
(rotating speed and load) include: A: 20 Hz and 0.113 Nm; B: 25 Hz and 0.226 Nm; C: 30 Hz
and 0.339 Nm; D: 35 Hz and 0.452 Nm. Under each operating condition, 1000 samples were
selected for each health state, divided into training and testing sets in an 8:2 ratio. Here,
the three health states of conditions A, B, and C were used as the training set, while the three
states of condition D were used as the testing set to validate domain generalization effects.

Figure 11. Test rig of HUSTgearbox dataset [29].

Figure 12. Photographs of the failure gears [29].

In this case, the margin α of the triplet loss was set to 5, and the weight parameter β
of the triplet loss was set to 0.001, 0.002, and 0.005. For the TL-DGN model, the number
of iterations was set to 100, the sample batch size was set to 50, and the optimizer was
Adam. The proposed model was compared with the KNN [30] and support vector machine
(SVM) [31] methods, classification model without triplet loss (β = 0), and β = 0.01, 0.02,
and 0.05. The experimental results are given in Table 6.
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Table 6. Accuracy of the model in the generalization experiment (%).

KNN SVM Without
Triplet Loss β = 0.01 β = 0.02 β = 0.05

Accuracy 0.3783 0.5050 0.6540 0.7556 0.7254 0.7238

Figures 13–16 present feature visualizations of data set D.

Figure 13. Feature visualization of data set D (without triplet loss).

Figure 14. Feature visualization of data set D (triplet loss-based domain generalization network
(TL-DGN), β = 0.001).

From Table 6 and Figures 13–16, it can be observed that introducing triplet loss to
some extent enables different class samples in the target domain to be more dispersed,
while samples of the same class are more aggregated, thereby improving the prediction
accuracy of the model.
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Figure 15. Feature visualization of data set D (triplet loss-based domain generalization network
(TL-DGN), β = 0.002).

Figure 16. Feature visualization of data set D (triplet loss-based domain generalization network
(TL-DGN), β = 0.005).

6. Conclusions

This paper innovatively introduces the TL-DGN model. In this method, in addition
to focusing on the classification loss measured by cross-entropy loss, triplet loss is used
to consider the feature distribution of samples. This encourages similar samples to be
close to each other and dissimilar samples to be separated, resulting in a more generalized
classification boundary. Through two comparison experiments with fault diagnosis models
without triplet loss and other models, the proposed model in this paper achieved the best
fault diagnosis performance. It can be observed that directly applying the model trained
by multi-source domain data to fault diagnosis in unseen domains achieves poor results.
However, the model based on triplet loss introduces contrastive learning principles, which
can reduce the distance between samples of the same class from different domains and can
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be extended to unseen domains. From multiple feature visualization figures, it can be seen
that after incorporating triplet loss, there is a certain improvement in the clustering effect
in the target domain.
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