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Abstract: Adequate power load data are the basis for establishing an efficient and accurate forecasting
model, which plays a crucial role in ensuring the reliable operation and effective management of a
power system. However, the large-scale integration of renewable energy into the power grid has
led to instabilities in power systems, and the load characteristics tend to be complex and diversified.
Aiming at this problem, this paper proposes a short-term power load transfer forecasting method.
To fully exploit the complex features present in the data, an online feature-extraction-based deep
learning model is developed. This approach aims to extract the frequency-division features of the
original power load on different time scales while reducing the feature redundancy. To solve the
prediction challenges caused by insufficient historical power load data, the source domain model
parameters are transferred to the target domain model utilizing Kendall’s correlation coefficient and
the Bayesian optimization algorithm. To verify the prediction performance of the model, experiments
are conducted on multiple datasets with different features. The simulation results show that the
proposed model is robust and effective in load forecasting with limited data. Furthermore, if real-
time data of new energy power systems can be acquired and utilized to update and correct the
model in future research, this will help to adapt and integrate new energy sources and optimize
energy management.

Keywords: deep learning model; multiple features; transfer learning; power load forecasting

1. Introduction
1.1. Background and Challenges

Global warming triggered by greenhouse gases presents an environmental challenge
to humanity [1].As the world’s largest developing country, China proposed the “Carbon
Peaking and Carbon Neutrality” goals to reduce carbon emissions in 2020. The power sector
accounts for more than 1/3 of the national carbon emissions in China. Therefore, exploring
and utilizing new energy sources to generate electricity have become an essential solution
for the decarbonization plan [2]. Owing to the vulnerability of this power generation
type to weather conditions and geographical location, there is increased randomness and
complexity in the power system [3]. Consequently, it is necessary to capture uncertainty
caused by new energy grid connections using power load forecasting, which is conducive
to the sustainable development of the power system. For example, ref. [4] used a novel
stochastic short-term load forecasting technique using classifier regression mapping, and
demonstrated its impact in power system management on a grid-connected multi-energy
system. Ref. [5] proposed a probabilistic net load forecasting framework to unlock the
potential of integrated energy systems by forecasting electricity demand, heat demand, and
photovoltaic generation. Ref. [6] proposed an ensemble-based short-term load forecasting

Processes 2024, 12, 793. https://doi.org/10.3390/pr12040793 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12040793
https://doi.org/10.3390/pr12040793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr12040793
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12040793?type=check_update&version=1


Processes 2024, 12, 793 1 of 18

method tailored for buildings, which was applied to predict future energy demands and
manage the intermittency and variability of renewable energy sources.

1.2. Knowledge Gaps

Even though a lot of researchers have devoted their efforts to power load prediction,
there are still several knowledge gaps in load power prediction research, which can be
listed as follows.

Firstly, inadequate consideration of the online features in the power load series can
easily lead to difficulties in adapting the model to dynamic changes in the data. Although
the existed models are used for mining frequency-division features and adjusting model
parameters in real time, no specific details about their implementation, algorithms, or
technical aspects are provided. Further descriptions would help us to understand the
working principles and practical application scenarios of the models.

Secondly, the lack of limited dataset techniques may expose forecast results to a
dilemma, making them unable to provide reliable information for decision making. Ob-
taining accurate and comprehensive data on historical load patterns, weather conditions,
demographic factors, and other relevant variables is a challenge for researchers. Limited
data might make accurately capturing the complex non-linear relationships between the
load and influencing factors difficult.

1.3. The Model Proposed in This Work

To enable a model to automatically extract features, deep learning is generally em-
ployed, considering that hybrid deep learning models can make full use of the advantages
of different neural networks and thus strengthening the performance and generalization
of the model. Therefore, this paper couples a convolutional neural network (CNN) and
bi-directional long short-term memory (BiLSTM) in a prediction model. In detail, the CNN
extracts deep local features in power load sequences, which are then sent to the BiLSTM
layer to strengthen the connection between temporal features.

The power load forecasting procedures will be divided into a training procedure, a
validation procedure, and a testing procedure. In the training procedure, the training
set is utilized to train the network parameters of the model so that it can recognize data
features and patterns. In the validation procedure, the validation set is used to adjust the
hyperparameters of the model. During the training process, the Bayesian optimization
algorithm is introduced to dynamically set the hyperparameters according to the different
features of the input sequences, which improves the prediction accuracy of the model. In
the test procedure, the test set is used to evaluate the prediction performance of the model
on unfamiliar data as a way of checking the generalization ability of the model.

In addition, taking into account the nonlinearity, non-stationarity, and accessibility of
power load data, especially under a high proportion of new energy sources connected to
the grid, this paper will introduce empirical modal decomposition based on time-varying
filtering and transfer learning to address the challenges that may be faced by power load
forecasting work.

1.4. Novelty and Contributions

Aiming at addressing the knowledge gaps above, a novel hybrid load forecasting
model, cooperating with an online data processing model and transfer learning, is proposed
to forecast the short-term power load with a limited dataset. An online data processing
model is proposed to solve the problem of insufficient frequency-division feature extraction.
Concretely, a novel feature decomposition–reorganization method is used to diversify
and reorganize online features. A hybrid deep learning framework is constructed to train
the model and determine the optimal parameters of the model according to the different
features. Furthermore, a framework based on transfer learning is applied to solve the
problem of insufficient historical load data. The main contributions of this paper are
summarized below:
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(1) Since power loads are characterized by different frequency bands overlapping each
other, an online data processing model is proposed to mine frequency-division features
at different time steps. It can adjust the model parameter settings in real time using the
different characteristics of load series so that the forecasting performance can be effec-
tively improved.

(2) To resolve the problem of historical power load inadequacy, the proposed forecast-
ing model based on transfer learning is applied to a limited dataset. Before transferring the
model, Kendall’s coefficient is introduced to assess transferability among datasets, which
can avoid negative migration. Experimental results on the limited dataset show that the
method can significantly decrease the forecasting error on the limited dataset.

(3) A hybrid forecasting deep learning framework is constructed, which combines
an intelligent optimization algorithm, a modal decomposition technique, and transfer
learning. To validate the reliability and generalization of the proposed forecasting model,
experiments are conducted on multiple datasets with different features, and the results
are compared with current popular prediction models. The experimental results of the
proposed model have a higher accuracy and better stability.

2. Literature Review

Relevant research indicates that power load forecasting techniques can be divided
into classical statistical methods, machine learning methods, and hybrid models based on
deep learning. Classical statistical methods, such as regression analysis [7], exponential
smoothing [8], auto-regressive integrated moving average [9], and the gray model [10],
have a simple structure. However, these models require strict smoothness of the input
data and cannot explain the various nonlinear factors affecting the power load. Traditional
machine learning techniques have been proposed to learn nonlinear relationships, such
as support vector machine [11] and extreme learning machine [12]. They can only learn
shallow features, while deep learning can dig deeper into the temporal features [13]. For
example, due to the complex implicit layer and loop structure, gated recurrent units, long
short-term memory (LSTM), and BiLSTM mine deeper features from power loads.

In recent years, hybrid models based on deep learning have been widely used in the
field of load forecasting. In comparison to a single neural network, the coupling of multiple
neural networks, especially the coupling of a CNN and other networks, can improve the
generalization ability and forecasting accuracy [14]. For example, ref. [15] combined a CNN
and LSTM in a prediction model with an attention mechanism, and applied it to short-term
power load forecasting. As one of the most popular models in load forecasting, BiLSTM is
trained to utilize both sequential and reverse-time direction information to obtain more
data features [16]. Therefore, it is meaningful to couple a CNN and BiLSTM to predict
future power load trends.

Feature extraction plays a crucial role in deep learning models to recognize and
learn load randomness and volatility features. Since the high percentage of new energy
grid connections has increased the volatility and uncertainty of power loads, it is highly
challenging to extract valid features in depth. To obtain more rich and valuable information,
some scholars utilize feature extraction methods to decompose the time subsequence
into multiple sub-sequences [17]. Representative methods, including empirical modal
decomposition (EMD) [18], ensemble empirical mode decomposition [19] and variational
modal decomposition [20], are widely used in the field of power load forecasting. The
above methods may suffer from the modal mixing problem, the final averaging problem,
and poor parameter self-adaptation [21]. By construct, time-varying filtering-based EMD
(TVFEMD) can mitigate the modal mixing problem and has strong robustness to noise
interference. Ref. [22] applied TVFEMD to wind speed forecasting and achieved the
desired prediction accuracy. Moreover, TVFEMD is rarely used in the field of power load
forecasting. Therefore, TVFEMD is applied to reduce the volatility of the raw power load in
this paper to mine frequency-division features at different time steps. In addition, to avoid
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the computational burden and information redundancy caused by excessive decomposition,
sample entropy theory is applied in this paper.

Additionally, most researchers focus on how well the forecasting models fit at the
data level, providing that a sufficiently large dataset is available. However, due to the
high cost of manual annotation and the noise in raw data, there are often insufficient
sample data in practice [23]. A limited training dataset is prone to overfitting deep learning
models, resulting in a sub-optimal prediction accuracy. The latest research suggests that
transfer learning can solve the above problems, and it has a large number of successful
applications in the field of energy prediction [24,25]. In detail, transfer learning takes the
knowledge gained from one domain containing a rich training dataset and uses it to solve
problems in the target domain. For example, ref. [26] described a transfer learning model
based on the attention mechanism, which utilized similar building datasets to enhance
the predictive accuracy for new buildings with the limited dataset. Ref. [27] presented
an approach based on a modified K-means method combined with a mutual information
feature selection algorithm, XGBoost, and transfer learning; the experimental results show
that using knowledge learned from other domains reduces the prediction errors. Therefore,
considering the scarcity of historical power load data, it is necessary to study the load
forecasting accuracy of deep learning models combined with transfer learning.

3. Methodology

The model proposed in this paper is applied to short-term electricity load forecasting,
which combines the theoretical knowledge of TVFEMD, sample entropy, CNN, BiLSTM
and the Bayesian optimization algorithm. Therefore, the theoretical knowledge of the
used methods is carefully introduced in Sections 3.1–3.4, while Section 3.5 describes the
prediction framework and the specific implementation of the proposed prediction model.

3.1. Time-Varying Filter-Based EMD

Time-varying filter-based empirical mode decomposition was proposed to alleviate
the aliasing mode problem [28]. In EMD, the estimation of the local average is viewed as
a linear filter with a constant local cutoff frequency, which makes it difficult to deal with
nonlinear and nonsmooth signals. In contrast, TVFEMD adopts the B-spline approximation
as a filter with a time-varying cutoff frequency. The biggest improvements of TVFEMD
are that it makes full use of the instantaneous amplitude and instantaneous frequency, it
adaptively designs the local cut-off frequency, and then it decomposes the original signal
into local high-frequency series and local low-frequency series. The implementation process
of TVFEMD is as follows.

Perform the Hilbert transform on the original signal D(t); the result is denoted by
D̃(t). Then, calculate the instantaneous amplitude A(t) and instantaneous phase φ(t).

A(t) =
√

D(t)2 + D̃(t)2 (1)

φ(t) = arctan
[
D̃(t)/D(t)

]
(2)

Find out the local maximum sequence and local minimum sequence of A(t), expressed
as A({tmin}) and A({tmax}), respectively.

Interpolate A({tmin}) and A({tmax}), respectively, to estimate µ1(t) and µ2(t). The
instantaneous amplitudes α1(t) and α2(t) can be obtained via Equations (3) and (4).

α1(t) = [µ1(t) + µ2(t)]/2 (3)

α2(t) = [µ2(t)− µ1(t)]/2 (4)
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Interpolate A({tmax})2φ
′
(tmax) and A({tmin})2φ

′
(tmin) to obtain δ1(t) and δ2(t), respec-

tively. The instantaneous frequencies φ
′
1(t) and φ

′
2(t) can be computed by Equations (5) and (6).

φ
′
1(t) =

δ1(t)
2α2

1(t)− 2α1(t)α2(t)
+

δ2(t)
2α2

1(t) + 2α1(t)α2(t)
(5)

φ
′
2(t) =

δ1(t)
2α2

2(t)− 2α1(t)α2(t)
+

δ2(t)
2α2

2(t) + 2α1(t)α2(t)
(6)

The local cut-off frequency φ
′
bias(t) can be rearranged by solving Equation (7) to

address the intermittence problem.

φ
′
bias(t) =

φ
′
1(t) + φ

′
2(t)

2
=

δ2(t)− δ1(t)
4α1(t)α2(t)

(7)

After obtaining a local cut-off frequency φ
′
bias(t), calculate the signal ∂(t).

∂(t) = cos
[∫

φ
′
bias(t)d(t)

]
(8)

Then, perform the B-spline approximate filter on x(t) by taking the local extreme
points {tmin} and {tmax} of ∂(t) as nodes, the approximate result denoted m1(t).

A stop criterion is defined here.

ζ(t) =
BLoughlin(t)

φavg(t)
(9)

If ζ(t) ≤ τ, D(t) is treated as an intrinsic mode function; otherwise, D(t)− m1(t) will
be used as a new input signal, and the above steps are repeated. The bandwidth threshold
τ is set to 0.1, φavg(t) denotes the weighted average of instantaneous frequencies, and
BLoughlin(t) represents the Loughlin instantaneous bandwidth.

Finally, the original signal D(t) is decomposed via TVFEMD to obtain s components
as

{
mi(t)|i = 1, 2, · · · , s

}
, satisfying

D(t) =
s

∑
i=1

mi(t) (10)

3.2. Sample Entropy

Sample entropy (SE) was proposed to measure the probability of generating a new
pattern of the original signal [29], and reflects the complexity and irregularity of the time
series. The greater the probability of a new pattern, the higher the complexity of the
sequence and the greater the entropy value. On the contrary, the lower the probability of a
new pattern, the lower the complexity of the sequence and the lower the entropy value.
Theoretically, the sample entropy of the time series is formulated as follows:

SampEn = −In
[

Bϖ+1
ε (t)
Bϖ

ε (t)

]
(11)

where ϖ is the reconstruction dimension, ε represents the similarity tolerance, with its value
set to 0.1, and Bϖ

ε (t) is the probability of two sequences matching ϖ points under ε.

3.3. Convolutional Neural Network

A CNN is a deep feedforward neural network which can extract deep local features
from multi-dimensional inputs with sparse connections and parameter sharing [30]. To
effectively extract and compress data features, the CNN in this paper is composed of
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two convolution layers, one pooling layer, and a flattening operation. In particular, Elu
activation and maximum pooling functions are selected during neural network training.

The convolution layer extracts valid information from the input data through Equation (12).

cont
ℓ = F(w ⊗ xt + b) (12)

where xt is the t-th input date, cont
ℓ is the output feature map of the ℓ-th convolution kernel,

F is the activation function, w and b are, respectively, the weight matrix and bias of ℓ-th
convolution kernel, and ⊗ is the sign of the convolution operation.

The pooling layer compresses the output features of the convolutional layer to generate
more important information ϱt, implemented as in Equation (13).

ϱt = max(cont
ℓ) (13)

3.4. Bi-Directional Long Short-Term Memory

For the purpose of avoiding gradient disappearance and explosion problems, LSTM
is used to extract historical information from power load data [31]. The network is made
up of three gates, namely the input gate, the output gate, and the forgetting gate, and the
memory cell’s state. Specifically, the memory cell selectively “forgets” and “remembers”
information through the Sigmoid activation function and the point-by-point multiplication
operation [32].

The forgetting gate ft determines what information is discarded from memory cell ct−1.

ft = σ(w f [ϱt, ht−1] + b f ) (14)

The input gate it determines what new information is added to the memory cell ct.

it = σ(wi[ϱt, ht−1] + bi) (15)

ĉt = tanh(wc[ϱt, ht−1] + bc) (16)

ct = ft ⊙ ct−1 + it ⊙ ĉt (17)

The output gate ot determines what important information is output.

ot = σ(wo[ϱt, ht−1] + bo) (18)

ht = ot ⊙ tanh(ct) (19)

Since the LSTM propagates data from front to back in chronological order, it is difficult
to learn the internal features of the data in depth. BiLSTM integrates a forward LSTM layer
and a backward LSTM layer, enabling historical and future information generated by the
hidden layers to be recursive and feedback towards the neural network [33]. The updated
states of the forward LSTM and backward LSTM hidden layers and the final output process
are calculated as follows:

ht = LSTM(ϱt, ht−1) (20)

Ht = LSTM(ϱt, Ht−1) (21)

yt = a f ht + ab Ht + bt (22)

where σ and tanh denote the Sigmoid function, w f , wi, wc, and wo are the weights matrices,
b f , bi, bc, bo, and bt are the corresponding bias vectors, ⊙ is the point-by-point multiplication
operation, and ht−1 and ht indicate the output of the previous and current cells in the
forward layer, respectively. LSTM is the operation of the traditional LSTM network and
Ht denotes the output of backward hidden layers. a f and ab are the output weights of the
hidden layers of the forward and backward propagation units, respectively.
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3.5. The Proposed Hybrid Model in This Study

This study proposes a hybrid model combining dynamic feature extraction methods,
called TVFEMD-BO-CNN-BiLSTM, with transfer learning for short-term power load fore-
casting (shown in Algorithm 1 and Figure 1). Figure 1 illustrates the forecasting framework
of the proposed model in this paper for electricity load. First, in the blue boxes of the top
left part, the source domain dataset and target domain datasets are identified and applied
to the corresponding model. Then, the blue dashed box of the lower left part (source
domain model) aims to migrate the trained biases and weights into the orange dashed
box of the lower right (target domain model). In this case, the migrated CNN-BiLSTM
network layer parameters are detailed as shown in the upper-right orange box, including
the input layer and the hidden layer. The gray-shaded portion is for freezing and migrating
the network layer parameters in the source domain model into the target domain model.
Algorithm 1 shows the specific operation and implementation of the prediction framework
in Figure 1. The proposed model aims to mine frequency-division features at different
time steps adopting the TVFEMD approach, and then, BO-CNN-BiLSTM is constructed to
recognize and learn sub-sequence features; moreover, the hyperparameters of the proposed
model are searched for different features of the input sequences. The proposed model is
transferred to deal with limited datasets, and Kendall’s correlation coefficient is introduced
to assess the transferability between the datasets.

Figure 1. Power load forecasting with the limited dataset based on parameter transfer.
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Algorithm 1 The pseudocode of the proposed model
Input:
Power load datasets: D(t) = {xt, yt}N

t=1.
The initial hyperparameters Θ = {θ1, θ2, . . . , θz}.
Output:
Forecasting values: Tpred = {ŷt}N+k

t=N+1.
Accuracy: MAE, R2, RMSE and MAPE
Optimal hyperparameters: Θ∗ =

{
θ∗1 , θ∗2 , . . . , θ∗z

}
.

1: The calculated similarity coefficients between the datasets are evaluated to determine
Ssource and Ttarget, let Ssource be D(t) = {xt, yt}N

t=1.
2: Decompose power load series D into s sub-sequences, denoted as

{
Ft

1,Ft
2, · · · ,Ft

s
}N

t=1.
3: Calculate the sample entropy according to Eq. (11) to measure the complexity of{

Ft
1,Ft

2, · · · ,Ft
s
}N

t=1.
4: Superimpose the decomposed sub-series with similar sample values to obtain the new

series
{
St

1, St
2, . . . , St

q

}N

t=1
.

5: Divide S into a training set, validation set and test set as S = {Strain, Svalid, Stest}.
6: Search for model hyperparameters with the Bayesian optimization algorithm, imple-

mented as:
7: for k = 1, 2, · · · ,Maxiter do
8: Update the mean and variance of the posterior probability distribution.
9: Construct the acquisition function u(Θk−1 | S1:k−1

train ) according to the mean and
variance.

10: Maximize u(Θk−1 | S1:k−1
train ) to determine the sampling point of the next iteration,

denoted as Θk = arg max u(Θk−1 | S1:k−1
train ).

11: Obtain the loss function L(Θk).
12: Update the new dataset by adding point [Θk, L(Θk)] to the set S1:k

train.

13: Update Θ∗ by objection function L(Θ∗) = min
{

L(Θ1), L(Θ2), · · · , L(Θk)
}

.
14: end for
15: return Θ∗ =

{
Θ∗

1 , Θ∗
2 , · · · , Θ∗

z
}

.
16: Input Stest into the source domain model Msource with Θ∗ to obtain a forecasted series

Pred =
{

Predt
1, Predt

2, . . . , Predt
q

}N

t=1
.

17: Superimpose Pred to obtain the final forecast Spred = {ŷt}N
t=1.

18: Calculate the accuracy to determine if the parameters in the network layers can be
migrated. If the accuracy is ideal, transfer the parameters from Msource to the target
domain model Mtarget.

19: Let Ttarget be D, repeat steps 2 to 4 to process Ttarget, and then put it into Mtarget to
obtain the predicted values Tpred = {ŷt}N

t=1 according to steps 16 to 17.

This study adopts the TVFEMD method to decompose load data D(t) = {xt, yt}N
t=1

into several scales. At each data sampling time, apply the EMD method with a time-varying
filter to the preprocessed data and obtain a real-time sequence of intrinsic mode functions
(IMFs). Based on the real-time IMF sequence, features including frequency domain features,
time domain features, and statistical features that can describe different aspects of the
electrical load are extracted. At each new data sampling time, repeat the empirical mode
decomposition and feature extraction steps with the latest real-time data. As new data enter,
the feature values may change. To avoid learning redundant features, sample entropy is
adopted to measure the complexity and irregularity of each IMF, IMFs with similar values
of sample entropy are coalesced. In this way, the feature extraction process cannot only
learn different frequencies adaptively, but also reduce the redundancy of calculations.

The CNN is adopted to recognize and learn the reconstructed sub-sequence features,
and consists of an input layer, two convolutional layers, a maximum pooling layer, and
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a flattening operation. The convolutional layers extract the deep local features of input
data, and the pooling layer compresses the extracted features into more critical information.
BiLSTM consists of forward LSTM units and reverse LSTM units, which are used to learn
temporal features extracted by the CNN to further mine long-term dependencies. Since the
multiple reconstructed sub-sequences are characterized by different frequency bands, it is
necessary to select appropriate parameters for different sequences dynamically in the CNN
and BiLSTM networks. During the training process, the Bayesian optimization algorithm is
employed to search for the optimal hyperparameters Θ by minimizing the loss function
L(Θ). In order to choose the network parameters that minimize the prediction error, this
study uses loss functions such as the root mean squared error (RMSE), mean absolute error
(MAE), coefficient of determination (R2), and mean absolute percentage error (MAPE) to
measure the difference between the true and forecasted values. This process of minimizing
the loss functions is viewed as a multi-objective optimization problem.

To make the proposed model suitable for more scenarios, this study generalizes the
proposed hybrid model to limited load datasets. The Kendall correlation coefficient ([34])
is introduced to calculate the similarity between the datasets {Data1, Data2, . . . , Datad} to
avoid negative transfer caused by a low or non-existent correlation between datasets in
this study. The two datasets with the highest similarity are selected, and one is identified
as Ssource and the other as Ttarget.

The proposed model is trained on the source domain Ssource, and the optimal parame-
ters of trained layers are saved. For the target domain Ttarget, the input and hidden layers
are frozen without updating their weights, and the parameters of the fully connection
layer are trained with Ttarget. Since the TVFEMD-SE algorithm divides load series into
sequences with multiple frequency division features, selecting the network with a similar
time complexity in the source domain is necessary to forecast future power loads.

4. Case Studies and Experimental Results

Two experiments are conducted in this section to demonstrate the performance of
the proposed model; experiment I is conducted to validate the online feature extraction
ability of the model, and experiment II verifies the performance of the model on the
limited datasets.

4.1. Data Sources and Descriptions

In the first experiment, two datasets are adopted. The first dataset is collected from a
region of Australia (dataset 1), and the other dataset is collected from the 9th Electrician
Mathematics Competition in China (dataset 2). Dataset 1 contains 8759 samples from
January to December 2010, while Dataset 2 contains 8760 samples from January to December
2013. All sample points were collected every hour and divided into three parts, including
the training set, validation set, and test set.

In the second experiment, the power load datasets from New York State divisions
are selected, including Western New York, Genesee, Central New York, Mohawk Valley,
Hudson Valley, Millwood, and Long Island, which were obtained from the New York
Independent System Operator (NYISO). These datasets contain hourly power loads from
January to December 2019.

4.2. Performance Metrics

To quantitatively assess the performance of different models, four indicators are
selected, including the MAPE, RMSE, MAE, and R2, which are mathematically defined
as follows:

MAPE =
1
N

N

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (23)

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)2 (24)
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MAE =
1
N

N

∑
t=1

|yt − ŷt| (25)

R2 = 1 − ∑N
t=1(yt − ŷt)2

∑N
t=1(yt − ȳt)2

(26)

where N is the number of sampling points and yt, ȳt, and ŷt denote the actual values,
average values, and forecasted values of the power load, respectively.

4.3. Experiment I: Online Feature Extraction Process Simulation

Datasets from Australia and China are applied to validate the performance of the
TVFEMD-BO-CNN-BiLSTM model. The comparison models are divided into two types of
predictive models. One type includes individual models, such as ELM, CNN, GRU, LSTM,
and BiLSTM. The other type includes hybrid models, such as CNN-LSTM, CNN-BiLSTM,
BO-CNN-BiLSTM, and EMD-BO-CNN-BiLSTM.

TVFEMD is used to decompose the historical power load sequence into multiple sub-
series with different frequency division features. To improve the decomposition efficiency
of TVFEMD, the left parts in Figure 2a,b show the decomposition results from the high-
frequency series to the low-frequency series for Datasets 1 and 2, respectively. In this figure,
the lines in order from top to bottom are the decomposition sequences

{
F1

1 ,F1
2 , · · · ,F1

10
}

and
{
F2

1 ,F2
2 , · · · ,F2

10
}

. It can be seen that the original power load sequences in Australia
and China are divided into ten sub-series, which reflect the fluctuation pattern and local
characteristics of the power load on different time scales.

Figure 2. Decomposition and reconstruction results based on the TVFEMD-SE algorithm.

A large number of sub-series may substantially increase the model’s forecasting time
and computational cost. Hence, SE is used to conduct complexity evaluations for each
sequence, and the evaluation results of each sequence are shown in Table 1. The series
with similar frequency-division features are combined into a new sequence according to
the sample entropy values. Series in Australia are reconstructed into five sub-sequences
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{
S1

1, S1
2, S1

3, S1
4, S1

5
}

, which are represented sequentially from the first line to the last line
in the right part of Figure 2a. Meanwhile, series in China are reconstructed into six sub-
sequences

{
S2

1, S2
2, S2

3, S2
4, S2

5, S2
6
}

, expressed as in the right part of Figure 2b in order from
the first line to the last line.

Table 1. Sample entropy and reconstruction of each sequence.

Australian
Dataset

Series F1
1 F1

2 F1
3 F1

4 F1
5 F1

6 F1
7 F1

8 F1
9 F1

10

Sample entropy 0.0759 0.0414 0.0318 0.0307 0.0172 0.0158 0.0131 0.0107 0.0074 0.0061

Reconstruction S1
5 S1

4 S1
2 S1

2 S1
1 S1

1 S1
1 S1

1 S1
3 S1

3

Chinese
Dataset

Series F2
1 F2

2 F2
3 F2

4 F2
5 F2

6 F2
7 F2

8 F2
9 F2

10

Sample entropy 0.2572 0.1575 0.1421 0.1103 0.0957 0.0927 0.0902 0.0711 0.0642 0.0517

Reconstruction S2
3 S2

1 S2
1 S2

1 S2
2 S2

2 S2
2 S2

4 S2
5 S2

6

In this study, the hyperparameters of the proposed model are optimized using the
Bayesian optimization algorithm, the results of which have been listed in Table 2. Addi-
tionally, to validate the effectiveness and generalization ability of the proposed model, we
conducted experiments using two datasets with different features. The load forecasting
results of ten models for a future week in Australia and China are shown in Figure 3a,b,
respectively, which demonstrate the following conclusions: (a) Compared to the forecasting
curves of other models, the forecasting curve of the proposed TVFEMD-BO-CNN-BiLSTM
model is most closely aligned with the fluctuations in the actual power load curve, which
means that the proposed model can better fit the trend of the actual power load, especially
at the peaks and troughs of the curve. (b) The forecasting curves of the single models,
such as ELM, CNN, GRU, LSTM, and BiLSTM, are consistent with the trend in the actual
power load curve. However, in comparison to combined models such as CNN-LSTM and
CNN-BiLSTM, the performance of single models is ineffective; the power load fluctuates
substantially, such as in the curve’s peaks and valleys. Furthermore, four indicators, includ-
ing MAPE, RMSE, MAE, and R2, are selected to quantify the error of the forecasting models.

Table 2. Hyperparameter settings for the proposed model.

Model Hyperparameter Range

Australian
Dataset

Chinese Dataset

Optimization
Results

Optimization
Results

CNN
numfilter [2, 256] 57 64
sizefilter [2, 4] 3 2
Dropout [0.01, 1] 0.0208 0.0122

BiLSTM

MaxEpoch [50, 100] 42 16
InitialLearnRate [0.001, 0.01] 0.0012 0.0016
LearnRateDropPeriod [1, 100] 8 5
LearnRateDropFactor [0.1, 1] 0.1010 0.1244

To evaluate the prediction effect of each model more intuitively, the gap between the
prediction results and the actual values under different datasets in Australia and China
was calculated, and then the difference results were plotted as a curve, which is shown in
Figure 4. The closer the results are to the horizontal line 0, the smaller the gap between
the predicted values and actual values is and the better the prediction effect of the model.
As can be seen from Figure 4, compared to other models, the error values at the red point
in the curve of the TVFEMD-BO-CNN-BiLSTM model are closer to the horizontal line 0,
which means that the proposed model better fits the fluctuation of the actual load values.
Moreover, detailed error values are listed in Table 3.
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Figure 3. Forecasting results of the datasets in experiment I.

Figure 4. Forecasting error values in experiment I.
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Table 3. Error comparison of different model forecasting results in Australia and China.

Models
Dataset in Australia Dataset in China

MAPE(%) RMSE MAE R2 MAPE(%) RMSE MAE R2

ELM 2.3704 239.4930 192.9309 0.9550 5.5325 443.1403 345.2088 0.9176
CNN 2.3562 234.7214 188.2177 0.9568 4.9592 436.0833 320.7937 0.9202
GRU 2.2960 227.9039 185.9117 0.9592 4.5806 403.8322 293.3329 0.9316
LSTM 1.8397 216.0864 152.3165 0.9634 3.8580 360.6637 244.0518 0.9454
BiLSTM 1.9120 199.7428 160.5922 0.9687 3.2272 264.0626 199.9038 0.9708
CNN-LSTM 1.2892 134.8267 104.3219 0.9857 1.7995 157.0683 113.3924 0.9897
CNN-BiLSTM 1.2262 130.5426 102.5207 0.9866 1.7793 153.3386 112.1061 0.9901
BO-CNN-BiLSTM 1.1172 115.5108 93.0379 0.9895 1.6267 142.4330 101.9695 0.9915
EMD-BO-CNN-BiLSTM 0.8982 99.9201 74.0757 0.9922 1.1496 94.4236 70.0163 0.9963
TVFEMD-BO-CNN-BiLSTM 0.3893 39.3832 31.5929 0.9988 0.8289 50.96943 64.9864 0.9982

From Table 3, it can be observed that the proposed TVFEMD-BO-CNN-BiLSTM model
has the best forecasting performance, with the minimum MAPE, RMSE, MAE, and max-
imum R2. Compared with the other nine models on the Australian dataset, the MAPE
values of the proposed model are reduced by 1.9811%, 1.9669%, 1.9067%, 1.4504%, 1.5227%,
0.8999%, 0.8369%, 0.7279%, and 0.5089%, respectively; the RMSE values of the proposed
model are lowered to 200.1098, 195.3382, 188.5207, 176.7032, 160.3596, 95.4436, 91.1594,
76.1276, and 60.5369, respectively; the MAE values of the proposed model are decreased
by 161.3380, 156.6248, 154.3188, 120.7236, 128.9993, 72.7290, 70.9278, 61.4450, and 42.4828,
respectively; and the R2 reaches 0.9988, which is the best result of all these models.

Due to the addition of the CNN local feature extraction module, the combination mod-
els are superior to individual models under different metrics for forecasting non-smooth
time-series data. Additionally, the CNN-BiLSTM-based model has a better forecasting
performance in capturing the long-term time-series characteristics of power load data.

Compared with the CNN-BiLSTM model, the MAPE, RMSE, and MAE are smaller
and the R2 is larger in the BO-CNN-BiLSTM model, which indicates that BO can optimize
the model hyperparameters to further improve the forecasting accuracy. EMD-based and
TVFEMD-based models have lower forecasting errors than other forecasting models, which
implies that the signal decomposition technique can deal with the noise in raw power load
data effectively. Therefore, modal decomposition techniques can improve the forecasting
accuracy. In addition, the decomposition effect of TVFEMD is better than that of EMD.

4.4. Experiment II: Transfer Learning Process Simulation

To verify the performance of the proposed model on the limited dataset, this study
develops comparative models based on transfer learning (TL), including TL-LSTM, TL-
GRU, TL-BiLSTM, TL-CNN-LSTM, TL-CNN-GRU, and TL-CNN-BiLSTM. In detail, the
structure and weights of the input and hidden layers learned in the source domain are
frozen and transferred to the target domain. Additionally, a TVFEMD-BO-CNN-BiLSTM
model based on raw data is constructed to illustrate that the migration effect is positive.
The hyperparameters of all these models are fine-tuned via the Bayesian optimization
algorithm, which enables an efficient search for the best combination of hyperparameters.

In this study, the Kendall coefficient will be employed to calculate the correlation
between the source and target domains, and the results are shown in Figure 5. As seen
in Figure 5, the highest significant correlation, with a correlation coefficient of 0.8414, is
between Central New York and the Mohawk Valley. The correlation coefficient between
Central New York and Genesee is likewise significant, at 0.8399. Therefore, to ensure the
credibility and representation of the experimental results, the hourly power load dataset
in Central New York is utilized as the source domain and migrated to the target domains,
including Mohawk Valley and Genesee, respectively. It is assumed that the target domain
only has a power load from 1 to 31 January. We forecasted the power load for the week of 1
to 7 February using the proposed method based on transfer learning.
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Figure 5. Heat map of correlations among New York State divisions.

Figure 6a,b show a comparison of the forecasting results of the eight models after
migration in Mohawk Valley and Genesee. The contours of power load profiles forecasted
by each model are consistent with the actual power load, but there are still differences in
the magnitude of the errors. Compared with other models, the forecasting performance
of TL-LSTM is relatively poor, while the forecasting curve of the TL-TVFEMD-BO-CNN-
BiLSTM model can fit the actual power load better. The forecasting errors of these models
for the future week’s load can be seen visually in Figures 7 and 8, and detailed error results
are shown in Table 4.

In the left part of Figures 7 and 8, it is intuitively observed that the bars for the MAPE,
RMSE, and MAE in the TL-TVFEMD-BO-CNN-BiLSTM model are the shortest among
all models. The R2 value of the model is closest to the boundary line with 1 in the radar
plot. As presented in Table 4, regarding the coming week’s load forecast in Mohawk
Valley and Genesee, the TL-TVFEMD-BO-CNN-BiLSTM model has a superior forecasting
performance over other comparative models. For example, in comparison to other models
based on transfer learning, for load forecasting in Mohawk Valley, the MAPE value of the
TL-TVFEMD-BO-CNN-BiLSTM model decreases by 2.2936%, 2.1573%, 1.4415%, 1.0789%,
1.4510%, and 0.8964%, respectively; the RMSE value of the TL-TVFEMD-BO-CNN-BiLSTM
model decreases by 32.5346, 32.5522, 21.8817, 17.2464, 20.6845, and 15.1349, respectively;
yjr MAE value of the TL-TVFEMD-BO-CNN-BiLSTM model decreases by 26.2631, 25.0583,
16.5619, 12.7903, 16.9332, and 10.6666, respectively; and the goodness-of-fit coefficient R2 is
as high as 0.9983. Furthermore, compared to pre-migration, the MAPE, RMSE, and MAE
values in the TL-TVFEMD-BO-CNN-BiLSTM model are reduced by 0.5202%, 7.6002, and
5.8849, and the R2 is higher, which demonstrates that transfer learning can improve the
accuracy of the forecasting model when dealing with a limited dataset.

By accurately predicting the future power load, the model proposed in this paper helps
grid operators to rationally arrange the generation resources to avoid energy waste and
cost increases, and also helps power companies to develop scientific operation planning to
ensure the operation efficiency and stability of their power system. Moreover, the model
based on transfer learning can be updated quickly to adapt to new data features, reducing
the retraining time and costs.
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Figure 6. Forecasting results of different models after migration in experiment II.

Figure 7. Comparison of MAPE, RMSE, MAE and R2 results after migration in Mohawk Valley.



Processes 2024, 12, 793 15 of 18

Figure 8. Comparison of MAPE, RMSE, MAE and R2 results after migration in Genesee.

Table 4. Error comparison of different model forecasts after migration in Mohawk Valley and Genesee.

Models
Dataset in Mohawk Valley Dataset in Genesee

MAPE(%) RMSE MAE R2 MAPE(%) RMSE MAE R2

TL-LSTM 2.7129 38.6663 30.9617 0.9323 3.1507 41.8600 32.1833 0.9066
TL-GRU 2.5766 38.6839 29.7569 0.9323 2.8379 35.0285 28.2472 0.9346
TL-BiLSTM 1.8608 28.0134 21.2605 0.9645 2.2195 28.6088 22.8857 0.9564
TL-CNN-LSTM 1.4982 23.3781 17.4889 0.9753 1.6499 21.8287 16.993 0.9746
TL-CNN-GRU 1.8703 26.8162 21.6318 0.9674 1.7202 23.0775 17.5707 0.9716
TL-CNN-BiLSTM 1.3157 21.2666 15.3652 0.9795 1.6039 20.9308 16.4696 0.9766
TVFEMD-BO-CNN-BiLSTM 0.9395 13.7319 10.5835 0.9915 1.8213 23.9374 18.9842 0.9695
TL-TVFEMD-BO-CNN-BiLSTM 0.4193 6.1317 4.6986 0.9983 1.2256 14.6354 12.4256 0.9886

5. Discussion

When implementing grid planning for low-carbon development, the feed-in power is
dominated by a high proportion of renewable energy consumption. Nonetheless, increased
output volatility from renewable sources causes increased power load volatility and inter-
mittency. As a result, short-term electricity load forecasts face significant challenges and
there are limitations in the implementation process, including data preprocessing, online
feature extraction, model prediction costs, dynamic selection of hyperparameters, and
hybrid model selection. In this study, the above problems are addressed using a hybrid fore-
casting model built by introducing a data-driven approach, artificial neural networks, and
intelligent optimization algorithms. Forecasting results from the model provide decision-
making information for new energy grid integration, such as layout planning, operational
testing and management, scheduling and operational control, and access planning and
management in new energy power generation equipment. Therefore, accurate power load
forecasting results can mitigate the operational risks of the power system and resource
waste such as power abandonment.

The electricity generated from renewable energy sources is affected by climate change,
geographic location, and other factors, leading to large fluctuations in the time-series
curve. If a prediction model directly performs a forecasting task, it experiences difficulty
in recognizing the load’s characteristics, causing large prediction errors. Therefore, it is
especially necessary to preprocess the data using a robust time-varying filtering-based
EMD method, which can extract the load’s frequency-division characteristics at different
times, allowing the prediction model to recognize and learn the load regularity. In this
paper, the corresponding prediction model is constructed separately for each decomposed
sequence and the Bayesian optimization algorithm is used to adjust the hyperparameters
for sequences with different features to improve the prediction accuracy. To avoid excessive
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computational overhead due to over-decomposition, sample entropy is used to assess the
complexity of the sequence and improve the model’s predictive efficiency.

The amount of effective and abundant power load data significantly affects the ac-
curacy of the forecasting model. Scarce historical data may lead to a reduced forecasting
accuracy, difficulties in power system risk management, inadequate energy planning, and
increased operating costs. Real-life situations are often characterized by the scarcity of load
data. For example, in areas where wind and solar energy is growing rapidly, it is difficult
to predict the capacity of these energy sources due to poor stability and predictability,
leading to a scarcity of electricity load data. Insufficient data for power load forecasting
may also occur due to buildings lacking data collection systems, due to sensor malfunctions
generating low-quality data, or due to newly constructed buildings coming online. In
addition, collecting sufficient electrical load data is time-consuming and costly, and this
may even make it difficult to meet quality requirements. Therefore, in the case of limited
load data, there is a necessity to find an effective way to obtain enough high-quality data to
train the model and improve the accuracy of the prediction model. In this study, transfer
learning is introduced to solve this problem. We achieve the desired prediction accuracy
with a limited dataset.

6. Conclusions

This study developed a hybrid method that not only dynamically extracts features
from power load data but also reduces redundant learning of similar features. Additionally,
this method is effective for limited datasets. The proposed model is verified on two different
datasets. The specific conclusions are shown below:

(1) Compared with other models, the proposed model performs better in terms of the
metrics of MAPE, MAE, and RMSE. The R2 values indicate that the proposed model has the
best performance among all models and that it has a better forecasting performance and a
stronger generalization ability on different datasets. Different experiments are conducted to
verify the three modules of the proposed model, namely the feature extraction module, the
hyperparameter optimization module, and the forecasting module. Reasonable comparison
models are constructed to imply that each module can improve the forecasting accuracy.

(2) Decomposition and reorganization of temporal features can further mine poten-
tial information at different frequencies. The decomposition and reorganization process
highlights that the power load shows certain fluctuation patterns on different time scales.
In detail, the decomposed features are a series of different frequency bands, which are
beneficial for feature recognition. The coalesced features ensure that the training process
for the deep learning models is low-cost; furthermore, it can help in learning the frequency
division of time series efficiently.

(3) The proposed hybrid model shows excellent performance on a limited dataset. In
this study, transferability between different datasets has been measured to avoid negative
transfer; the pretrained model is transferred to forecast power load data with a high
similarity. In this way, the proposed model can achieve the desired forecasting accuracy
without a large amount of training data.

The prediction method proposed in this paper is experimentally simulated on the
public power load dataset and achieves an ideal prediction accuracy. However, there are
still some deficiencies. Since actual grid data are confidential and difficult to obtain, the
model in this paper was trained using early public datasets. Also, the model needs to
be constantly revised using real-time data in practical applications. Therefore, in future
research, the results of this paper will be applied to power load forecasting in a power
system after a new energy grid is connected, not only to further validate the results of
this paper, but also to enhance their application value. In addition, due to the black-box
characteristics of deep learning models, it is difficult to explain and verify the prediction
results of the models, which may lead to potential biases and errors in the models that are
difficult to detect. Future research should explore ways to improve the interpretability of
deep learning to make it more reliable and transparent.
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