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Abstract: Pillar stability is of paramount importance in ensuring the safety of underground rock 
engineering structures. The stability of pillars directly influences the structural integrity of the mine 
and mitigates the risk of collapses or accidents. Therefore, assessing pillar stability is crucial for safe, 
productive, reliable, and profitable underground mining engineering processes. This study devel-
oped the application of decision intelligence-based predictive modelling of hard rock pillar stability 
in underground engineering structures using K-Nearest Neighbour coupled with the grey wolf op-
timization algorithm (KNN-GWO). Initially, a substantial dataset consisting of 236 different pillar 
cases was collected from seven underground hard rock mining engineering projects. This dataset 
was gathered by considering five significant input variables, namely pillar width, pillar height, pil-
lar width/height ratio, uniaxial compressive strength, and average pillar stress. Secondly, the origi-
nal hard rock pillar stability level has been classified into three types: failed, unstable, and stable, 
based on the pillar’s instability mechanism and failure process. Thirdly, several visual relationships 
were established in order to ascertain the correlation between input variables and the corresponding 
pillar stability level. Fourthly, the entire pillar database was randomly divided into a training da-
taset and testing dataset with a 70:30 sampling method. Moreover, the (KNN-GWO) model was 
developed to predict the stability of pillars in hard rock mining. Lastly, the performance of the sug-
gested predictive model was evaluated using accuracy, precision, recall, F1-score, and a confusion 
matrix. The findings of the proposed model offer a superior benchmark for accurately predicting 
the stability of hard rock pillars. Therefore, it is recommended to employ decision intelligence mod-
els in mining engineering in order to effectively prioritise safety measures and improve the effi-
ciency of operational processes, risk management, and decision-making related to underground 
engineering structures. 

Keywords: pillar stability; safety; grey wolf optimization; decision-making; underground  
structures; KNN 
 

1. Introduction 
In underground hard rock mining, pillars are crucial structural elements for mine 

safety. One of the primary functions of underground engineering processes is to provide 
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safe access to work areas, while another is to support the weight of overburden materials 
to ensure global stability [1]. The presence of unstable pillars poses a significant threat to 
worker safety, as it has the potential to result in extensive collapses [2]. In the event of a 
pillar failure, the remaining pillars are required to bear an increased load. If the load sur-
passes the strength of the nearby pillars, it may result in a failure. The potential exists for 
the initiation of a rapid and extensive cascade, analogous to the phenomenon known as 
the domino effect. Moreover, empirical evidence suggests that an increase in the depth of 
mining operations corresponds to a rise in ground stress levels, thereby causing a greater 
frequency of pillar instability-related incidents [3,4]. The maintenance of stability in un-
derground pillars is of paramount importance in safeguarding the integrity and safety of 
underground mining engineering operations. Implementing effective evaluation and con-
trol measures regarding pillar stability can mitigate hazardous events and protect the sur-
rounding environment. Ground control is rendered impossible in the absence of stable 
pillars. Hence, the evaluation of pillar stability has significant importance in ensuring the 
effectiveness, safety, efficiency, and profitability of underground hard rock mining. 

Pillar stability assessment in hard rock mining involves one of three methods. The 
first strategy is referred to as the safety factor (SF) ratio. The SF is an approach indicating 
the ratio of pillar stability/stress [5]. By employing this methodology, it is possible to de-
termine the strength of the pillar, the stress exerted on the pillar, and the safety threshold. 
Several experimental methods have been proposed to analyse the calculation of pillar 
strength. These approaches include the linear shape effect, the power shape effect, the size 
effect, and the Hoek–Brown methods [6]. The determination of pillar stress involves the 
utilisation of two approaches, namely the tributary area model and numerical modelling 
[7]. The determination of the safety factor necessitates the consideration of both the ap-
plied force and the structural integrity of the pillar. Increasing the SF will result in the 
enhanced strength of the pillar. Theoretically, the bearable degree of risk is deemed as 
equal to unity. According to Cauvin et al. (2009), a pillar is deemed stable when the SF 
exceeds one; however, in other contexts, it is regarded as unstable [8]. When considering 
the potential variations of this technique, it is generally necessary for the safety threshold 
to exceed one in order to provide user protection during practical implementation. Alt-
hough the SF technique is convenient to apply, there is still a lack of recognised unified 
equations for pillar strength and safety thresholds. 

Numerical modelling serves as an alternative method for ascertaining the value of 
pillar stability. Numerical modelling approaches have gained extensive use due to their 
ability to account for the intricate boundaries and rock-mass properties. In order to exam-
ine the failure mechanism and non-linear displacement of rock pillars, Mortazavi et al. [9] 
employed an immediate Lagrangian analysis of continuum approach. Shnorhokian et al. 
[10] employed FLAC3D to assess the performance of the pillar stability in different mining 
sequence circumstances. In their study, Elmo and Stead [11] examined the failure charac-
teristics of naturally fractured pillars. To do this, they employed a hybrid approach that 
integrated the finite element method (FEM) with the discrete element method (DEM). Li 
et al. utilised rock failure process analysis to ascertain the pillar stability in the presence 
of coupled thermo-hydrologic-mechanical conditions [12]. Jaiswal et al. utilised the 
boundary element approach to replicate the asymmetry observed in the produced stresses 
exerted on pillars [13]. Li et al. introduced the finite discrete element method (FDEM) to 
investigate the mechanical characteristics of the pillars and the variables contributing to 
their failure [14]. Moreover, a number of scholars employed numerical modelling in con-
junction with other computational methodologies in order to examine the pillar stability 
phenomenon. The optimisation of the pillars’ structure was achieved by the utilisation of 
the finite element method (FEM), artificial neural network (ANN), and reliability evalua-
tion methodologies [15]. Griffiths et al. employed the random field concept, elastoplastic 
finite element method (FEM), and Monte Carlo simulation in their study of the likelihoods 
associated with pillar collapse [16]. Numerical modelling methods offer the capability to 
replicate the intricate failure behaviours shown by pillars, hence enabling the acquisition 
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of valuable insights on the underlying mechanisms of failures and their associated ranges. 
However, accurately determining the model inputs and constitutive formulae might pre-
sent difficulties because of the complex non-linear characteristics and anisotropic nature 
of the rock mass [17]. Consequently, the use of the theoretical framework becomes chal-
lenging. Consequently, the validity of the implications that can be derived from this meth-
odology is constrained. 

Over the past decade, a multitude of soft computing techniques have been widely 
utilized to address engineering challenges, showcasing superior accuracy in predictive 
modelling [18–23]. Jian et al. employed support vector regression (SVR) to estimate pillar 
stability for mining in underground spaces chosen from a variety of coals and rock mines 
[24]. By utilising a range of metrics, it was determined that SVR possesses an adequate 
capability, which makes it a valuable method for predicting pillar stability. Random for-
ests and C4.5 decision trees are two techniques that were suggested by Ahmad et al. for 
predicting pillar stability of underground mines; these models were capable of estimating 
pillar stability with a level of precision that was considered to be satisfactory [25]. In order 
to estimate the stability of hard rock pillars, Liang et al. applied the gradient algorithms 
and discovered that all three models provided an excellent capacity for predicting the pil-
lar stability [26]. Ghasemi et al. obtained a high potential for performance in their devel-
opment of pillar stability by employing two distinct intelligent categorisation strategies 
[27]. Zhou et al. evaluated the effectiveness of several metaheuristic algorithms to opti-
mize ANN technique in terms of their ability to anticipate pillar stress [28]. Tawadrous 
and Katsabanis employed ANNs to examine the stability of surface crown pillars [29], 
whereas Wattimena applied multinomial logistic regression for pillar stability estimation 
[30]. Ding et al. used an algorithm known as stochastic gradient boosting (SGB) to predict 
and model pillar stability [31]. The proposed approach shows a superior accuracy com-
pared to the other developed models. Zhou et al. assessed the effectiveness of six artificial 
intelligence techniques in determining the potential of the pillar stability predictive model 
[6]. A recent study utilized t-distributed stochastic neighbour embedding (t-SNE), k-
means clustering, and support vector classifier to predict pillar stability [32]. Table 1 de-
picts the recent advances in the field of artificial intelligence for predicting pillar stability. 
Despite the fact that various machine learning methods can address pillar stability predic-
tion problems to some degree, none of them can be used in all engineering scenarios. A 
universally accepted standardized algorithm for mining professionals has not yet been 
developed. 

Table 1. Recent advances in the field of artificial intelligence to predict pillar stability. 

Machine Learning Algorithms Number of Datasets Accuracy (%) References 
Multinomial logistic regression 84 79 [30] 

Logistic Model Trees 178 79.1 and 80.5 [33] 
ANN-BP model with Ensemble Learning 423 87.98 [34] 
Stochastic Gradient Boosting Technique 205 90 [31] 

Random Forest 205 85 [31] 
GBDT 236 83 [26] 

XGBoost  236 83 [26] 
Support Vector Machine 251 83.2 [6] 

Artificial Neural Network 251 80.9 [6] 
Logistic regression model 80 81.25 [1] 

Fuzzy logic model 80 87.50 [1] 

Researchers have made significant advancements in their understanding of methods 
and mechanisms by using innovative approaches in recent years. The practical relevance 
of the learned knowledge has been empirically proven in the fields of engineering, envi-
ronment, and risk analysis [35–38]. However, our present level of scientific understanding 



Processes 2024, 12, 783 4 of 22 
 

 

is insufficient to create underground engineering projects that possess the essential qual-
ities of safety, reliability, environmental sustainability, and the ability to sustain innova-
tive solutions, especially in situations where rigorous testing is not feasible. There is a 
significant amount of data that demonstrates a link between these advancements and the 
engineering fields that are responsible for protecting mining environments and maintain-
ing the integrity of underground engineering processes. 

In addition, the initiatives intending to predict pillar stability in hard rock mining 
have rarely incorporated the implementation of cutting-edge decision intelligence models. 
In this study, K-nearest neighbour coupled with grey wolf optimization algorithm (KNN-
GWO) would be utilised to develop an early warning system for pillar stability. This re-
search proposes a novel and state-of-the-art system for identifying and evaluating pillar 
stability in deep underground projects. Its novel features include an algorithm derived 
from observations that permits continuous evaluation of the pillar’s stability and its pre-
dictions. In turn, the learning process of the data-driven network allows the model to con-
tinuously adapt to the underground mining production process in which it will be imple-
mented. Consequently, this provides the opportunity for extremely precise and immedi-
ate outcomes, both of which are essential in the mining industry and in the case of pillar 
stability. 

The application of the KNN-GWO algorithm for pillar stability entails determining 
the most effective design characteristics for deep hard rock mining. The grey wolf optimi-
zation algorithm (GWO) algorithm imitates the social behaviour of grey wolves to find 
the optimal solution, whereas the K-nearest neighbour (KNN) aids in assessing the stabil-
ity of pillars based on the characteristics of surrounding pillars. This integrated method 
enhances the accuracy and effectiveness of pillar stability analysis, thereby contributing 
to the design of safer and more stable underground mining operations. 

The remaining part of the paper is structured as follows: The second section presents 
the data curation and visualization. The third section provides an overview of the pro-
posed methodology, including GWO, KNN, and their mathematical model. The fourth 
section illustrates decision intelligence and its application in the discipline of mining en-
gineering. The fifth section subsequently discusses the results and discussion. In the sixth 
section, the limitations of the proposed paradigm and future possibilities are discussed. 
The conclusion is finally drawn in the last section. 

2. Data Curation and Visualization 
In order to create an accurate prediction model, historical data on hard rock pillar 

incidents must be gathered from real-life events. In the framework of the present study, a 
total of 236 instances were obtained from seven subsurface hard rock mining sites [5,7,39]. 
These mines include the Elliot Lake uranium mine, the Selebi-Phikwe mine, the Open 
stope mine, the Zinkgruvan mine, and the Westmin Resources Ltd.’s H-W mine, the Mar-
ble mine, and the Stone mine. Table 2 lists the statistics for the dataset related to pillar 
stability. The input variables were pillar width in meters (represented by Z1), pillar height 
in meters (represented by Z2), the ratio of pillar width to pillar height (represented by Z4), 
uniaxial compressive strength in MPa (represented by Z4), and average pillar stress in 
MPa (represented by Z5). The pillar stability level was the output variable, failed pillars 
(represented by 0), unstable pillars (represented by 1), and stable pillars (represented by 
2), based on the failure process and instability mechanism of pillars. Researchers broadly 
acknowledge that the input criteria selected by Liang et al. [26] constitute a comprehensive 
and appropriate dataset for predicting pillar stability. When designing room-and-pillar or 
stope-and-pillar systems, the strength of a pillar, which refers to its loading capacity, is 
just as crucial as the stability of the roof and walls [40]. The failure mechanisms for a nat-
urally fractured pillar include: (a) failure due to the lateral release of pre-formed blocks 
under increasing vertical load and inadequate confinement, (b) failure caused by the de-
velopment of inclined shear fractures reducing through the pillar, particularly in pillars 
with a low Z1/Z2 ratio, and (c) failure involving transgressive fractures where the fracture 
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inclination angle surpasses the angle of friction with the main loading axis of the pillar. 
The mechanical response of a pillar in these mechanisms is closely linked to the geological 
features of the ground, with the most significant impacts observed in slender pillars. 
Wider pillars are prone to collapsing due to a combination of brittle and shearing mecha-
nisms. Geological discontinuities in rock layers are crucial for studying the strength, per-
meability, and deformability. Understanding the discontinuity in geometry, such as spa-
tial connectivity, persistence length, and aperture, is crucial for comprehending the be-
haviour of rock masses [41]. Discontinuities in rock profiles are widely recognized to have 
a significant impact on their strength qualities. Several examples from the pertinent rock 
failure literature could be identified due to an incorrect assessment of the impact of dis-
continuities on rock strength. Jessu and Spearing found that discontinuities have a signif-
icant impact on pillar inclination, even at higher Z1/Z2 ratios [42]. Shang et al. aimed to 
tackle issues related to the tensile strength of initial rock fractures and measured this char-
acteristic using data from tests conducted in laboratories [43]. Data collection poses the 
greatest obstacle to the applicability of these variables, which are regarded as the primary 
variables for quantitatively identifying the occurrence of rock mass mechanical responses 
within the pillar. Thus, in the present study, the five variables are taken into account. 

A robust Python library designed for machine learning, Scikit-learn [44], provides 
numerous tools, including those for data pre-processing, classification, regression, and 
clustering. Jupyter notebooks facilitate data exploration, analysis, and visualization 
through the integration of code, text, and multimedia components in an interactive envi-
ronment [45]. To analyse the data related to pillar stability in hard rock mining, the Scikit-
learn library was utilized to perform the computations in Jupyter notebook. Figure 1 dis-
plays the distribution of the pillar database based on the failure process and instability 
mechanism of pillars. 

Table 2. Descriptive statistics of the pillar stability dataset. 

Influential Varia-
bles Mean Standard Devia-

tion  Minimum Maximum 

Z1 (m) 11.51 7.75 1.90 45 
Z2 (m) 12.58 11.34 2.4 61 

Z3 1.17 0.61 0.21 4.50 
Z4 (MPa) 141.06 64.62 61 316 
Z5 (MPa) 41.50 31.41 0.14 127.60 

 

Figure 1. The donut chart of hard rock pillar stability levels. 

42%

23%

35%

Failed
Unstable
Stable
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Figure 2 depicts the diagonal correlations between the influencing variables and the 
pillar stability level. In order to display the correlation coefficient of the relevant variables 
of the pillar stability database, a seaborn correlation heatmap developed using Python has 
been utilised. Overall, the relationship coefficients between the influential variables and 
the pillar stability level are comparatively small. Hence, all the variables have been in-
cluded in this study to optimize the performance of the final model for predicting the 
stability of pillars in deep hard rock mining. 

 
Figure 2. Correlation heatmap of pillar stability database. 

Figure 3 illustrates the box plot representing the distribution of each variable across 
different degrees of pillar stability level. The data depicted in Figure 3 exhibit several in-
teresting characteristics. Initially, it should be noted that each variable encompasses a cer-
tain quantity of outliers. Furthermore, the stability level of the pillar has a negative corre-
lation with Z1 and Z3, but a positive correlation with Z5. Nevertheless, there are no evi-
dent relationships between Z2 and Z4. Also, the variances between the top and lower 
quartiles exhibit variability across different levels of the same variables. It should be noted 
that there exists an overlapping region within the ranges of results for several variables. 
Likewise, it is worth noting that the median does not coincide with the precise midpoint 
of the box, suggesting a lack of uniformity in the distribution of variable values. Therefore, 
these scenarios illustrate the intricate characteristics of the pillar stability phenomena. 
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Figure 3. Boxplot of each of the parameters for different pillar stability levels. 

3. Methodology 
3.1. Grey Wolf Optimization Algorithm (GWO) 

A metaheuristic algorithm called Grey Wolf Optimization algorithm (GWO) was de-
veloped in order to model the social foraging behaviour of grey wolves in the wild [46]. 
Beginning with a base population of grey wolves, the GWO algorithm iteratively modifies 
the population by simulating wolf social behaviour [47,48]. The steps required to update 
the wolf population during the hunting process are shown in Figure 4. 
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Figure 4. Steps for Updating GWO population during training [49]. 

Mirjalili et al. modified the multi-objective technique in GWO for the first time to 
optimise situations with various goals [50]. In order to save and retrieve optimum solu-
tions, a fixed-size external archive has been added within the GWO. Gupta and Deep pre-
sented the concept of random walks (RW-GWO) as a modified algorithm to increase Grey 
Wolf’s search capacity [51]. The modified RW-GWO algorithm was found to be an efficient 
and reliable solution for handling both continuous and real-world optimization issues. 
Nadimi-Shahraki et al. developed an enhanced the GWO method to address the lack of 
population inclusion, the disparity among exploitation and exploration, as well as the 
GWO algorithm’s early convergence [52]. The I-GWO algorithm utilises a dimension 
learning-based hunting (DLH) seeking approach, a new movement technique derived 
from the hunting behaviour of wild wolves. In the newly designed GWO, the DLH strat-
egy employs a distinct method for developing a neighbourhood around every wolf 
whereby details about its neighbours are able to be disseminated. The software models 
wolf social structure. The wolves are classified as alpha, beta, or delta according to this 
method. The alpha wolves lead the pack and make choices, while the beta wolves provide 
assistance (see Figure 5). Delta wolves are subservient to alpha and beta wolves. The cir-
cling of their prey begins the hunting staging phase. Equations (1)–(6) contain the algo-
rithm for outlining expressions. 

Searching 
• In this step, each wolf searches for prey (i.e., the optimal

solution) in its own territory. Each wolf's position indicates a
possible solution to the optimisation issue being addressed.

Encircling 

• The wolves assemble as a collective unit and proceed to
surround their prey in order to restrict any potential avenues
for escape. Inside the algorithmic framework, this particular
phase entails the modification of the wolves' locations by a
movement directed towards the location of the most superior
wolf inside the collective.

Attacking

• During this phase, wolves begin to pursue their prey. Within
the algorithm framework, this particular phase involves the
process of modifying the locations of the wolves. This
modification is achieved by bringing the wolves closer to the
location of the most optimal solution that has been identified
up to that point in time.
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Figure 5. Pivot point illustration of GWO position update equations [53]. 

The mechanism of wolf positioning is represented by Equation (1) 𝑍(𝑛 + 1) = 𝑍 (𝑛) +  𝐴 × 𝐷 (1)𝐷 = ǀ𝑐 × 𝑍 (𝑛 + 1) − 𝑍 (𝑛)ǀ (2)𝐼 = 2 × 𝑎 × 𝑣 − 𝑎 (3)𝐶 = 2 × 𝑣  (4)𝑎 = 2 − 𝑛( ) (5)

where Z represents the position of the grey wolf, n depicts the total quantity of cycles, Zp 
is the position of the prey, and D and A can both be determined using Equations (2) and 
(3). I depicts the iteration number ranging from zero to two, Nn represents the entire num-
ber of occurrences, and v1 and v2 are randomly selected vectors for the hunting process 
simulation, ranging between [0, 1]. As shown in Equation (6), there is an optimal prey 
location that provides the best hunting result at each position adopted by the wolves. The 
method iterates until a stopping criterion, such as a limit on the number of iterations or a 
desired degree of solution quality, is fulfilled. 𝑍(𝑡 + 1) = (𝑍 + 𝑍 + 𝑍 )/3 (6)

The position of each prey within the space field (𝑍 , 𝑍 , 𝑎𝑛𝑑 𝑍 ) are computed using 
Equations (7)–(9), respectively. 
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𝑍 = [𝑍 − 𝐴 × 𝐷∝] (7)𝑍 = [𝑍 − 𝐴 × 𝐷 ] (8)𝑍 = [𝑍 − 𝐴 × 𝐷 ] (9)

The GWO as an optimization technique has found applicability in a variety of scien-
tific disciplines. Ahmed et al. [54] developed predictive models for determining the com-
pressive strength of ground granulated blast furnace slag concrete using 268 samples and 
six soft computing models. GWO constitutes a single of the utilised methods to optimise 
the support vector regression method with a 0.9522 correlation coefficient [54]. Adithiyaa 
et al., used k-nearest neighbours (KNN) along with GWO to optimise the manufacturing 
variables involved in stirring-squeeze moulding of augmented composites from metal 
matrix material [55]. A composite predictive algorithm has been developed for building 
power consumption by employing a machine learning strategy based on the fuzzy C-
means clustering algorithm-GWO- back propagation neural network. To enhance the ef-
ficacy of the optimizer, Tian et al. clustered previous electrical usage data based on statis-
tical distribution characteristics using the fuzzy C-means clustering technique [56]. In ad-
dition, Chen et al. utilised the step-wise weight assessment ratio analysis technique to 
determine the starting weight of every category of Chinese landslide-affecting variables 
in order to develop a combined landslide-illustrating structure that combines an adaptive 
neuro-fuzzy inference system (ANFIS) with GWO optimizer techniques [57]. Fattahi and 
Hasanipanah developed intelligent ground vibration models using 95 Malysia quarry da-
tasets by combining relevance vector regression (RVR) with GWO [58]. Additionally, the 
GWO method has been shown to be effective for a variety of optimization tasks, such as 
engineering design, image processing, and machine learning [52]. 

3.2. K-Nearest Neighbor (KNN) Algorithm 
The K-Nearest Neighbour (KNN) technique is a popular classification and regression 

machine learning algorithm [59]. The fundamental principle of KNN is to locate the K 
training data points which are closest to the particular test data point and use their labels 
(in classification) or values (in regression) to predict the test data point’s label or value 
[60]. The KNN classification constitutes one of the most elementary and easy-to-use ap-
proaches to classification and ought to be one of the first alternatives when one has no 
previous expertise regarding the data dispersion. The inspiration behind the development 
of KNN classification was the need for discriminant evaluation in cases where accurate 
parametric computations of probability densities are not accessible or undetermined [61]. 
Figure 6 illustrates the fundamental mechanism of the KNN algorithm. 
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Figure 6. A basic multi-class KNN model for three-dimensional spaces. 

The KNN algorithm can be summarized as follows: 
1. Choose the number of K neighbours to consider. 
2. Calculate the distance between the test data point and each point in the training set 

using a distance metric (e.g., Euclidean distance). 
3. The distance metric can be computed using Equations (10)–(13) 

d(x, y) = 2
1

( )n
i ii
Y X

=
−  (10)

where d(x, y) is the Euclidean straight-line distance between the query point (Yi) and the 
other point being measured (Xi). 

Md(x, y) = 
1

m

i= |Xi − Yi| (11)

where Md(x, y) is the navigating Manhattan distance from point Xi to another point Yi. 

Kd(x, y) = 1/
1

( | |)n p
i ii
X Y

=
−  (12)

where Kd(x, y) is the navigating Minkowski distance from point Xi to another point Yi. 

Dh(x, y) = 
1

k

i= | |i iX Y−  X = Y, Dh = 0, X ≠ Y, Dh ≠ 1 (13)

where Dh(x, y) is the navigating Hamming distance from point Xi to another point Yi. 

1. Select the K data points in the training set that are closest to the test data point. 
2. For classification tasks, determine the class label of the test data point based on the 

majority class of the KNN. For regression tasks, estimate the value of the test data 
point based on the average value of the KNN. 

3. Return the predicted class label or value [61]. 
As a criterion, the kernel function is applied to configure the KNN model, which in-

cludes quartic (Equation (14)), tri-weight (Equation (15)), and cosine (Equation (16)) [62]. 

K(u) = (1 − 𝑢 )  (14)

K(u) = (1 − 𝑢 )  (15)
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K(u) = 𝑐𝑜𝑠( 𝑢)  (16)

Guo et al. noted that KNN technique can be used to solve issues involving binary and 
multi-class classification, as well as regression [63]. It is a non-parametric method, which 
implies no inferences are established regarding the distribution of the underlying data. To 
achieve optimum performance, both the distance measure and the number of neighbours 
must be selected with consideration. Alkhatib et al. utilised the KNN and a non-linear 
regression approach to forecast the price of stocks for a sample of six major Jordanian 
companies to assist shareholders, executives, decision makers, and consumers in order to 
reach accurate and well-informed choices regarding investments [64]. Adaptive KNN was 
presented by Subramaniyaswamy and Logesh as an innovative version of the KNN 
method for constructing a knowledge-driven, domain-dependent taxonomy for the crea-
tion of personalised recommendations using a collaborative filtering-based recommender 
system [65]. 

4. Decision Intelligence and Its Application in Mining Industry 
The emerging discipline of “Decision Intelligence” integrates artificial intelligence, 

decision theory, and the behavioural sciences to enhance the decision-making processes 
employed by organizations. Decision Intelligence, often referred to as decision manage-
ment and decision analytics, is an alternative term used to describe the field of study and 
practice concerned with making informed decisions. The use of decision intelligence holds 
potential for several domains, including engineering, finance, healthcare, and cybersecu-
rity. This tool proves to be highly advantageous for both overarching strategic decisions 
and more specific individual selections. The concept of “decision intelligence” pertains to 
the use of information and expertise to enhance the calibre of decision-making, particu-
larly in intricate situations. Decision intelligence encompasses a range of methodologies, 
including machine learning, data analytics, optimisation, and game theory. These strate-
gies are advantageous in facilitating the comparison of prospective outcomes across dif-
ferent scenarios and assessing the relative significance of various components [66]. 

The use of decision intelligence in the field of mining engineering involves the utili-
sation of data science and machine learning techniques, leading to useful results. The do-
mains of rock engineering and rock mechanics can benefit greatly from the use of decision 
intelligence when it comes to various scenarios and decision-making procedures. Figure 
7 depicts the practical use of decision intelligence within the domain of mining engineer-
ing. A few strategies that mining companies could employ to effectively utilize decision 
intelligence are as follows: 
(1) Resource Allocation: The efficient use of limited resources to attain desired objectives 

is a core component of decision intelligence [67,68]. Allocating resources like labour, 
money, and equipment may be performed more efficiently by mining businesses 
with the use of decision intelligence. This approach facilitates the optimisation of re-
source allocation and scheduling, resulting in better operational efficiency. 

(2) Safety and Risk Management: The application of decision intelligence has the poten-
tial to facilitate risk assessment and safety supervision by means of analysing data 
obtained from sensors, previous event reports, and geological surveys [69]. The un-
derground mining engineering sector faces various hazards, such as rock bursts, 
gases, poor air quality, high temperatures, ventilation issues, and the presence of 
toxic chemicals. Decision intelligence models have the ability to aid in the implemen-
tation of preventive measures, risk management, and incident response by analysing 
instances. 

(3) Mine Planning and Design: The process of mine planning and design necessitates the 
involvement of mining engineers, who possess the necessary skills to make crucial 
decisions pertaining to many aspects, such as the layout of the mine, extraction meth-
ods, and production scheduling. The analysis of geological data, geotechnical 
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constraints, and economic variables can be facilitated by the application of decision 
intelligence methodologies, hence aiding in the process of decision-making in this 
context [70]. The enhancement of mine planning and design may be achieved via the 
application of models that facilitate the simulation of various situations, enable the 
comparison of alternative strategies, and identify the most optimal techniques. 

(4) Predictive Maintenance: Mining equipment plays a crucial role in operational activi-
ties; nonetheless, equipment failures can incur significant costs. In order to enhance 
the accuracy of maintenance estimations and optimise maintenance schedules, the 
use of decision intelligence may be employed to analyse sensor data, historical 
maintenance records, and equipment performance [71]. The use of a preventative 
maintenance strategy in mining enterprises has the potential to optimise operating 
efficiency, prolong the lifespan of equipment, and minimise instances of downtime. 

(5) Environmental Impact Assessment: The implementation of decision intelligence can 
enhance the assessment and efficient handling of the environmental impacts linked 
to mining activities [72]. The understanding of probable consequences arising from 
mining operations can be improved by employing analytical models that evaluate 
environmental data related to air quality, water quality, and biological attributes. 
This comprehension adds to the improvement of waste management practices, land 
restoration endeavours, and compliance with environmental standards. 

(6) Market and Pricing Analysis: Decision intelligence technologies may be employed to 
examine market trends, dynamics of pricing, and scenarios of supply and demand 
[73]. The models can offer valuable insights into production quantities, pricing strat-
egies, and market positioning through the incorporation of market data, sales rec-
ords, and economic variables. 

 
Figure 7. Application of decision intelligence in the field of mining engineering. 

By incorporating decision intelligence approaches into mining engineering practices, 
mining businesses may make data-driven decisions, optimise operations, increase safety, 
reduce environmental impact, and boost overall productivity and profitability. 

5. Results and Discussion 
Python is a widely used programming language that has undergone significant ex-

pansion in recent years. It is used in the task of undertaking scientific and computational 
studies on enormous databases. Python is a language for programmers that is capable of 
being employed for assisting with procedures and algorithms that focus on the sorting 
and organising stages of the data mining process [74]. When it comes to creating flexible 
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applications, this option is among the best options to choose because it provides such a 
wide variety of valuable perks. Python has become the language of choice for developers 
working on a wide variety of challenges due to its ease of use, extensive library support, 
and thriving community. This means that large datasets associated with pillar stability 
data may be studied using big data analysis techniques in order to produce reliable out-
comes. 

In this study, two decision intelligence models are developed to evaluate the stability 
of pillars in underground rock mining. Firstly, the KNN model has been developed to 
classify the different levels of l pillar stability levels. Moreover, in order to further enhance 
the accuracy of the proposed model, the KNN-GWO approach has been utilized. This ap-
proach combines the social behaviour of grey wolves, as simulated by the GWO optimi-
zation algorithm, with the KNN to aid in determining pillar stability based on the charac-
teristics of adjacent pillars. By utilizing this optimization technique, we trained the ma-
chine learning model using the training data sent by the GWO. Several studies have con-
firmed that optimizing hyperparameters using the GWO algorithm can significantly en-
hance machine learning performance [75,76]. Figure 8 provides a depiction of the overall 
structure of the KNN-GWO technique that has been proposed in this study. 

 
Figure 8. The structure of the KNN-GWO technique employed in this study. 
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The prediction summary of a classification-based data driven model is shown as a 
confusion matrix [77–79]. It summarises the algorithm’s predictions and evaluates how 
well they match up with the true values of the intended variable. The confusion matrix is 
often displayed as a table where rows represent predictions and columns reflect actual 
values. It displays the number of accurate and wrong predictions made for each class. The 
entire number of attributes that the data-driven framework is capable of accurately pre-
dicting is shown in the cells that are diagonal to the primary diagonal of the matrix. The 
number of attributes that the data-driven framework incorrectly categorised is shown by 
the number of classes that are located outside of the diagonal. The projected classes from 
the data-driven framework can be viewed along the axis that is horizontal to the confusion 
metric, while the ground truth can be viewed along the vertical axis of the metric. We can 
extrapolate from this that a reliable model will have more information along the diagonal. 

In addition, researchers have used a variety of performance indices to assess the per-
formance of a classification centred around a data model [66,78,80]. In this study, four 
evaluation standards are utilised to define the relationship between the true and predicted 
values. These assessment criteria are accuracy, precision, specificity, and sensitivity. 

5.1. Accuracy 
Accuracy is computed by taking the total number of correct predictions and dividing 

it by the sum of the numbers of true positives and true negatives. If the simulation is ade-
quate, this is a straightforward portrayal of actuality. In the event that there is an imbal-
ance between the classes, the results will not be appropriate. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 (17)

5.2. Precision 
The term “precision” refers to a classifier’s ability to abstain from classifying input as 

positive when it is negative. The ratio of the number of true positives to the combined 
number of true and false positives is how each class’s precision value is defined. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 (18)

5.3. Recall 
The potential of a classification algorithm to determine each successful instance is 

referred to as its recall. At each level, the proportion of true positives to the combined total 
of true positives and false negatives is referred to as the “Recall.” 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 (19)

5.4. F1 Score 
The F1 score is a weighted harmonic mean, and its value may vary, ranging from 0.0 

to 1.0. It is important to keep in mind that F1 scores are derived by incorporating both 
precision and recall into their calculations, which is one reason why they frequently per-
form worse than accuracy measurements. When evaluating classifier models, the 
weighted average of F1 is often suggested rather than total accuracy because of its more 
sophisticated nature. 𝐹𝐼 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (20)

The swarm sizes and the number of iterations must be set as the GWO’s parameters. 
The right choice of these parameters can efficiently and rapidly produce the best 
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outcomes. The swarm sizes for each optimisation procedure are set to 50, 100, 150, and 
200, respectively, after building the model numerous times. The number of iterations is 
set at 1000. 

The KNN-GWO model has been utilized as follows to predict pillar stability levels in 
hard rock mining. 
(1) Data preparation: The raw data were arbitrarily partitioned into two subsets: the 

training set, which comprised 70% of the records, and the testing set, which com-
prised the remaining 30%. 

(2) Data pre-processing: To prepare the dataset for model training, we employed a pre-
processing scheme. The first step was to apply the standardization technique. 

(3) Fitness assessment: The population’s fitness value has been and then save the best 
fitness value before beginning the subsequent iteration. 

(4) Parameters adjustments: The fitness value has been adjusted based on each iteration’s 
results in an effort to capture the best outcomes. 

(5) Retention requirements check: The optimal solutions of the weights of KNN are at-
tained when the ideal fitness value no longer changes, or the maximum number of 
trials is reached. 
The Python default configuration is used to develop the KNN algorithm. The KNN 

algorithm demonstrated a significant degree of accuracy in predicting outcomes across 
the 71 instances of the pillar. Overall, the KNN’s performance accuracy was 60%. The per-
formance evaluation matrices used in the testing datasets for pillar stability in under-
ground hard rock mines are presented in Table 3. In addition, the confusion matrix of the 
proposed KNN algorithm is shown in Figure 9. As the pillar stability instances are small 
and the data points are disproportional, this impacts the model’s consistency, reliability, 
and universality. As a result, the KNN-GWO model has been incorporated into this inves-
tigation in order to provide a model that is more accurate for the stability of underground 
pillars stability in hard rock mines. 

 
Figure 9. Confusion matrix of KNN algorithm based on pillar stability database. 
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Table 3. Performance evaluation indices of KNN algorithm. 

 Precision (%) Recall (%) F1-Score (%) 
Failed 55 79 65 

Unstable 30 17 21 
Stable 81 68 74 

An adequate predictive model was developed by using the KNN-GWO for each of 
the different levels of hard rock pillar stability. The parameters and their settings that were 
utilised for this approach are outlined in Table 4, where the iterations, wolves, dimension 
numbers, and search domain are identified. The a and b fitness function parameters are 
specified. As can be seen in Figure 10, the KNN-GWO results in the inaccurate prediction 
of only five levels within the entire testing datasets, whereas the KNN-GWO algorithm 
generated accurate predictions for the 66 pillar instances. In addition, the same assessment 
attributes were employed in the implementation of the KNN-GWO performance analysis. 
The values of the three within-class KNN-GWO measures for each pillar stability level are 
displayed in Table 5. The KNN-GWO has a total accuracy of 93%, which signifies that it 
executes satisfactorily in predicting the level of pillar stability in deep hard rock mines. In 
addition, as shown by the comprehensive assessment in Table 1, the KNN-GWO model 
demonstrated an excellent degree of performance that surpassed all the other models re-
ported previously in the literature to predict pillar stability. Hence, it is suggested that the 
proposed KNN-GWO mechanism is adequate for predicting the stability of pillars in un-
derground hard rock mining. 

 
Figure 10. Confusion matrix of KNN-GWO algorithm based on pillar stability database. 

Table 4. The setting of the parameters for the proposed method. 

Parameters Numbers 
Number of iterations 100 
Number of Wolves 5 

Number of Dimensions 14 
Search domain [0, 1] 

α in fitness function 0.99 
β in fitness function 0.01 
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Table 5. Performance evaluation indices of KNN-GWO algorithm. 

 Precision (%) Recall (%) F1-Score (%) 
Failed 93 96 95 

Unstable 93 78 85 
Stable 93 100 96 

The practical use of decision intelligence in underground mining has been shown to 
be a highly effective methodology for accurately predicting the stability of pillars. The 
implementation of decision intelligence may be employed to effectively acquire and ana-
lyse data from the monitoring system in real-time, aiding in the identification of possible 
stability issues associated with the pillar. Upon the acquisition of pertinent data, the rock 
engineer and technician are able to ascertain the optimal approach for mitigating roof col-
lapse while ensuring the integrity of the pillars remains intact. 

It may be possible to predict pillar stability in underground mining production pro-
cesses using artificial intelligence that takes into account past data from continuous mon-
itoring. The machine learning system possesses the capability to discern data instances 
and attributes that might potentially signify an elevated susceptibility to instability. The 
implementation of decision intelligence, monitoring systems, and artificial intelligence 
has the potential to enhance the safety of underground mining operations. By making 
judgements based on better information, it is feasible to decrease the probability of em-
ployee injuries and minimise the duration of delays. 

The risk assessment method may be enhanced by incorporating a comprehensive 
evaluation of many elements that influence the stability of pillars. The integration of the 
proposed model into decision support systems has the potential to enhance efficiency and 
safety in several aspects of mine planning, pillar design, and mining sequencing for engi-
neers and stakeholders. Optimization algorithms can aid in identifying the most effective 
mining procedures that encompass production requirements, safety concerns, and envi-
ronmental considerations. 

6. Limitations of the Proposed Model and Possible Developments for the Future 
Although the suggested decision intelligence technique exhibits a certain degree of 

reliability in its outcomes, it is crucial to recognise that there are certain constraints that 
should be addressed in future studies.  
(1) A discrepancy exists in the quantity and distribution of the pillar stability dataset. 

The prediction performance of machine learning algorithms is greatly impacted by 
the volume and quality of the datasets that are accessible. In the majority of instances, 
the extent to which a predictive algorithm can be applied to different contexts, and 
its reliability, will be compromised when working with a dataset that is constrained 
in terms of size or scope. The potential for enhanced prediction outcomes may be 
observed with an expanded dataset, notwithstanding the effective performance of 
the GWO in conjunction with the KNN algorithm when applied to smaller datasets. 
This phenomenon can be attributed to the fact that larger databases tend to include a 
greater amount of practical data. The dataset exhibits numerous discrepancies, par-
ticularly in relation to the varying degrees of quality across the samples. This exem-
plifies the potential impact that might arise from the use of erroneous data in drawing 
conclusions. Hence, the acquisition of a comprehensive and diverse database for pil-
lar stability prediction is of utmost importance. 

(2) The predictive model’s outcome may be influenced by external influences. While this 
study employs five variables to enhance the identification of fundamental stability 
conditions of pillars, it is crucial to acknowledge that the inclusion of these measures 
does not necessarily indicate the exclusion of other variables that might potentially 
affect the predictability of pillar stability. Hence, it is crucial to thoroughly analyse 
the impact of additional influential variables on the projected outcomes. 
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7. Conclusions 
Pillar collapse is a significant and catastrophic risk in underground rock engineering 

processes. This practice poses a threat to the safety and wellbeing of workers, leading to 
substantial financial and material damages. The implementation of thorough assessment 
and periodic maintenance of pillar stability is crucial in mitigating potential risks and pro-
tecting the integrity of the surrounding environment. Therefore, the evaluation of pillar 
stability has significant importance in ensuring the effectiveness, safety, productivity, and 
profitability of underground hard rock mining engineering operations. The research strat-
egy is based on the KNN-GWO algorithm, showcasing the utilisation of innovative scien-
tific methodologies for addressing a practical problem. The suggested model has shown 
superior performance in predicting the stability of pillars in hard rock mining, surpassing 
other models previously reported in the literature. 

The assessment of pillar stability is a crucial factor that necessitates meticulous con-
sideration in the context of underground mining activities. Regular failure checks are of 
utmost importance in underground processes to guarantee the safety of employees en-
gaged in underground structures. Despite modest progress, the present initiatives under-
taken by mining enterprises to tackle pillar failure have proven to be insufficient. The ob-
jective of this study is to address the query, “Does the collapse of underground mining 
structures pose a risk to miners?” The suggested decision intelligence paradigm repre-
sents a notable progression in the field due to its capacity to provide greater flexibility in 
programming and centralised monitoring. The design strictly adheres to the notion of 
zero-occurrence. In order to guarantee the enduring viability of production and the safety 
of mining facilities, it is important to possess a thorough comprehension of the hazards 
that are inherent to mining operations. The methodology presented facilitates the timely 
detection of pillar failure, hence allowing the emergency response team additional re-
sponse time and enabling the implementation of environmentally friendly advancements 
in underground mining operations. 

The application of advanced decision intelligence methods has the potential to im-
prove the stability of hard rock pillars in underground engineering structures. Decision 
intelligence facilitates continual monitoring of mining circumstances, anticipation of pillar 
stability, and the effective distribution of resources through the utilization of optimization 
techniques, advanced machine learning algorithms, and methodologies for data analytics. 
The aforementioned features facilitate enhanced risk management, increased safety pro-
tocols, improved productivity, and reliable decision-making within underground rock en-
gineering processes. 
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