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Abstract: The subsea control system, a pivotal element of the subsea production system, plays
an essential role in collecting production data and real-time operational monitoring, crucial for
the consistent and stable output of offshore oil and gas fields. The increasing demand for secure
offshore oil and gas extraction underscores the necessity for advanced reliability modeling and
effective maintenance strategies for subsea control systems. Given the enhanced reliability of subsea
equipment due to technological advancements, resulting in scarce failure data, traditional reliability
modeling methods reliant on historical failure data are becoming inadequate. This paper proposes
an innovative reliability modeling technique for subsea control systems that integrates a Wiener
degradation model affected by random shocks and utilizes the Copula function to compute the joint
reliability of components and their backups. This approach considers the unique challenges of the
subsea environment and the complex interplay between components under variable loads, improving
model accuracy. This study also examines the effects of imperfect maintenance on degradation
paths and introduces a holistic lifecycle cost model for preventive maintenance (PM), optimized
against reliability and economic considerations. Numerical simulations on a Subsea Control Module
demonstrate the effectiveness of the developed models.

Keywords: subsea control system; preventive maintenance; reliability model; imperfect maintenance

1. Introduction

The reliability of subsea control systems is critical for the operational efficiency and
safety of offshore oil subsea production systems [1–3]. These systems regulate vital compo-
nents such as pipelines, Christmas trees (a kind of wellhead control device), and various
instruments, ensuring operations proceed safely and smoothly [4–6]. According to the Off-
shore Reliability Data Handbook (OREDA) by Det Norske Veritas (DNV), which includes
reliability and maintenance data for a wide range of equipment and conditions, the subsea
control system is divided into surface and subsea segments, connected by an umbilical
cable [7]. The structure of subsea control system is shown in Figure 1.

On the surface, the control segment includes the Uninterruptible Power Supply (UPS),
Main Control Station (MCS), Electrical Power Unit (EPU), Hydraulic Power Unit (HPU),
Chemical Injection Unit (CIU), and Modem. The MCS acts as the operational core, man-
aging data, human–machine interactions, and overall control, including monitoring and
emergency responses. The UPS ensures a steady power supply, with the Modem integrating
control signals into the power stream. The EPU and HPU provide electrical and hydraulic
power, respectively, while the CIU is responsible for chemical injections.

Beneath the surface, the Subsea Distribution Unit (SDU) directs signals to production
equipment, and the Subsea Control Module (SCM), comprising the Subsea Electronic Mod-
ule (SEM) and Directional Control Valve (DCV), handles signal processing for equipment
operation. Sensors (PT/TT) capture temperature and pressure data, relaying them back for
real-time monitoring and maintaining safety and reliability.
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Advancements in subsea production technology have significantly enhanced equip-
ment reliability, leading to a scarcity of historical failure data [8]. This lack of data, along-
side harsh operating conditions, complex maintenance needs, significant costs, and 
weather constraints, challenges maintenance management. Research indicates that con-
ventional monitoring techniques based on static p-f indicators are increasingly outdated, 
resulting in unnecessary energy inefficiency and loss of power [9]. There is a pressing de-
mand for updating traditional reliability models that rely on fault data to better suit com-
plex operations and include proactive maintenance strategies to minimize failures and 
losses [10]. 

In developing more reliable models for subsea control systems, researchers have ex-
plored various methodologies. Liu et al. [11] examined the effects of extreme shocks on 
equipment performance degradation, establishing a model that links sudden failures with 
degradation thresholds. Liu et al. [12] introduced a Bayesian network approach, perform-
ing a reliability analysis of the electrical control system of subsea BOP. Ali et al. [13] ex-
plored the risks and reliability of subsea production systems, particularly focusing on the 
“Xmas tree” system, offering risk mitigation and maintenance recommendations. Si et al. 
[14] combined life distribution and degradation models, using the Wiener model for better 
parameterization. Narayanaswamy et al. [15] utilized Reliability, Availability, and Main-
tainability (RAM) analysis for the ROSUB 6000 ROV, leading to an improved design with 
an MTBF of 4.9 and 6.2 years for ROV-TMS docking and manipulator system operations. 

These studies advance precision in reliability modeling but often overlook the effects 
of external environmental factors and the interplay between system components, creating 
a gap between theoretical models and actual operational scenarios. 

In the domain of production equipment safety, emphasizing preventive maintenance 
based on the reliability of equipment performance is crucial. This area has seen significant 
contributions from researchers. Liu et al. [16] utilized uncertain fault tree analysis and 
established two optimization models for systems with epistemic uncertainty, enhancing 
subsea system maintenance and extending service life. Zhou et al. [17] introduced a multi-
machine maintenance strategy focusing on equipment availability through Markov state 
analysis, applicable to multi-component systems. Zhen et al. [18] proposed an optimiza-
tion method for determining optimal preventive maintenance intervals based on risk and 
cost criteria. Sun et al. [19] applied the improved beluga whale optimization algorithm for 
estimating Weibull distribution parameters of bogie components. Wu et al. [20] combined 
the Markov process with general generating function techniques to evaluate system avail-
ability and develop a model for the optimal preventive maintenance interval. Pereira et al. 
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Advancements in subsea production technology have significantly enhanced equip-
ment reliability, leading to a scarcity of historical failure data [8]. This lack of data, alongside
harsh operating conditions, complex maintenance needs, significant costs, and weather
constraints, challenges maintenance management. Research indicates that conventional
monitoring techniques based on static p-f indicators are increasingly outdated, resulting in
unnecessary energy inefficiency and loss of power [9]. There is a pressing demand for up-
dating traditional reliability models that rely on fault data to better suit complex operations
and include proactive maintenance strategies to minimize failures and losses [10].

In developing more reliable models for subsea control systems, researchers have ex-
plored various methodologies. Liu et al. [11] examined the effects of extreme shocks on
equipment performance degradation, establishing a model that links sudden failures with
degradation thresholds. Liu et al. [12] introduced a Bayesian network approach, performing
a reliability analysis of the electrical control system of subsea BOP. Ali et al. [13] explored
the risks and reliability of subsea production systems, particularly focusing on the “Xmas
tree” system, offering risk mitigation and maintenance recommendations. Si et al. [14]
combined life distribution and degradation models, using the Wiener model for better
parameterization. Narayanaswamy et al. [15] utilized Reliability, Availability, and Main-
tainability (RAM) analysis for the ROSUB 6000 ROV, leading to an improved design with
an MTBF of 4.9 and 6.2 years for ROV-TMS docking and manipulator system operations.

These studies advance precision in reliability modeling but often overlook the effects
of external environmental factors and the interplay between system components, creating a
gap between theoretical models and actual operational scenarios.

In the domain of production equipment safety, emphasizing preventive maintenance
based on the reliability of equipment performance is crucial. This area has seen signifi-
cant contributions from researchers. Liu et al. [16] utilized uncertain fault tree analysis
and established two optimization models for systems with epistemic uncertainty, enhanc-
ing subsea system maintenance and extending service life. Zhou et al. [17] introduced a
multi-machine maintenance strategy focusing on equipment availability through Markov
state analysis, applicable to multi-component systems. Zhen et al. [18] proposed an op-
timization method for determining optimal preventive maintenance intervals based on
risk and cost criteria. Sun et al. [19] applied the improved beluga whale optimization algo-
rithm for estimating Weibull distribution parameters of bogie components. Wu et al. [20]
combined the Markov process with general generating function techniques to evaluate
system availability and develop a model for the optimal preventive maintenance inter-
val. Pereira et al. [21] presented a reliability model that included incomplete preventive
maintenance and a variable improvement factor based on age reduction. Zhao et al. [22]
analyzed the pros and cons of single-component versus multi-component maintenance
strategies, focusing on maintenance timing. Yonit et al. [23,24] explored periodic system
inspections and the impact of repair-extent-dependent maintenance costs, also considering
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an R-out-of-N system for optimizing group maintenance strategies. Abbou [25] created
a degradation model for systems with partially observable failure states, using dynamic
programming to identify an optimal maintenance strategy. Liang et al. [26] optimized
the predictive group maintenance policy for multi-system, multi-component networks
(MSMCNs) through analytical and numerical methods. Julie et al. [27] suggested a clus-
tering approach to maintenance that gained effectiveness in early development stages.
Eleonora et al. [28] explored roller bearing diagnostics, enhancing selection and mainte-
nance strategies. Borivoj et al. [29] demonstrated that laser alignment and vibro-diagnostics
on industrial fans can quadruple bearing life, contrasting sharply with the early failures of
misaligned systems. These studies collectively advance the field of preventive maintenance,
highlighting its importance in enhancing production equipment safety and efficiency. Imple-
menting modern maintenance and diagnostic methods optimizes industrial systems with
minimal downtime.

The described methods often rely on extensive degradation data and historical main-
tenance records for optimizing the maintenance model. Additionally, these strategies are
highly specific. However, applying these maintenance models to subsea control system
equipment in practice presents certain challenges. This paper addresses the complexity
and reliability challenges of subsea control systems in harsh seabed environments. It pro-
poses a novel reliability modeling approach that accounts for equipment redundancy and
operational shocks, alongside an optimized preventive maintenance (PM) model for the
system’s entire lifecycle, offering a valuable reference for maintenance strategies.

Equipment failures arise from both internal causes, like wear and corrosion, and
external factors, such as stochastic shocks from natural events [30,31]. Electronic elements
are particularly sensitive to both internal degradation factors like thermal stress and external
stochastic shocks, which may not affect mechanical components in the same manner.
Since the majority of components in subsea control systems are electronic, distinguishing
their degradation process from that of mechanical components, this study employs the
Wiener process to simulate the degradation of subsea control system components. Utilizing
the Wiener process, it models the degradation of these components, acknowledging the
distinct effects on operational versus redundant equipment. The Wiener process, known
for capturing fluctuations in degradation [32], has been applied successfully in electronic
equipment degradation modeling, including life prediction and estimating remaining
service life.

The main innovations can be summarized as follows:
1. Combines the Wiener process with a stochastic shock model to addresses the impact

of harsh marine conditions on equipment performance alongside natural degradation.
2. Incorporates Copula functions for reliability modeling within subsea control systems

to realize inter-device coupling effects and operational load variability.
3. Introduces a preventive maintenance model based on reliability constraints through-

out the equipment’s lifecycle, with a focus on economic optimization.In summary, the
methodology proposed in this paper realizes a major innovation in subsea control system
reliability modeling and maintenance strategy development, and provides a new theoreti-
cal framework and practical way to improve the reliability and maintenance efficiency of
deep-sea exploration equipment.

The remainder of this manuscript is structured as follows:
Section 2 introduces the performance degradation analysis methods and reliability

analysis methods for considering random shocks in subsea control systems.
Section 3 expands on the mathematical redundant reliability model of subsea control

systems, as well as considering a full life cycle preventive maintenance cost model.
Section 4 presents the results of the simulation modeling and compares these results

with the data collected in previous studies.
Section 5 concludes the paper with a summary of the key findings and proposes

directions for future research.
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2. Methodology
2.1. Definition and Properties of Wiener Process

The Wiener process, also known as Brownian motion, is a type of continuous stochastic
process characterized by continuous paths and Markov properties. Initially proposed by
Norbert in the early 20th century, its mathematical definition and properties have wide
applications in the theory of stochastic processes.

The Wiener process is a continuous-time stochastic process whose sample paths
are continuous over any time interval and exhibit the Markov process’s independent
increments. The Wiener process satisfies the following properties:

1. X(0) = 0;
2. For any 0 < t1 < t2 < · · · tn, random variables, and the increments X(t1)− X(t0), . . . ,

X(t2)− X(t1), X(tn)− X(tn−1) are mutually independent random variables;
3. For any t ≥ 0, τ > 0, X(t + τ)− X(t) ∼ N

(
µ1τ, σ1

2τ
)
, where µ1 is the drift coefficient

and σ1 is the diffusion coefficient.

The evolution of the Wiener degradation state over time is described by the follow-
ing equation:

X(t) = µ1t + σ1W(t) (1)

where W(t) is the standard Brownian motion.
The literature [33] suggests that the failure threshold L can be established based

on equipment design manuals, industrial standards, and expert insights. The failure of
degraded products is determined by the failure criterion, which, in practical projects, may
be a fixed value or a random variable. This paper assumes a fixed value for the failure
threshold of the equipment. Therefore, the lifetime of the degraded failed product is
described by the following equation:

T = inf{t|X(t) ≥ L, t ≥ 0} (2)

From the above equation, it can be seen that the life of the device can be described
by the inverse Gaussian distribution, and because the inverse Gaussian distribution is
exactly used to describe the waiting time for the first time to reach a fixed level in Brownian
motion, it can be seen that the degradation of the device X(t) is a Wiener process, then the
distribution function of the life of the T and the probability density function are described
by the following equations:

F(t) = Φ
(

µ1t − L
σ1

)
+ exp

(
2µ1L
σ1

2

)
Φ
(
−L − µ1t

σ1
√

t

)
(3)

f (t) =
L√

2πσ1
2t3

exp

[
− (L − µ1t)2

2σ1
2t

]
(4)

Since W(t) is a standard Brownian motion with expectation 0, the growth of X(t) on
long time scales is mainly determined by the drift term µt, and the average path of the
degradation process is approximately a straight line with slope µ, the expectation and the
variance of the lifetime T are described by the following equation:

E(t) =
L
µ1

(5)

Var(T) =
Lσ1

2

µ1
3 (6)

2.2. Parameter Estimation of the Wiener Process

Assume that there are N devices of the same type for performance degradation testing.
For sample i, the amount of degradation at the initial moment Xi0 = 0, and the amount
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of performance degradation of the product is measured at the moments t1, t2, · · · , tr to
obtain its measured values, respectively. ∆Xi,j = Xi,j − Xi,j−1 is the amount of performance
degradation of the sample i between moments tj−1 and tj. According to the nature of the
Wiener process, ∆Xi,j is described by the following equation:

∆Xi,j ∼ N(µ1∆ti,j, σ1
2∆ti,j) (7)

where ∆ti,j = ti,j − ti,j−1; j = 1, 2, · · · , r.
From the performance degradation data, the likelihood function is described by the

following equation:

L(µ1, σ1) =
N

∏
i=1

r

∏
j=1

1√
2σ1

2π∆ti,j

exp

(
−
(
∆xi,j − µ1∆ti,j

)2

2σ1
2∆ti,j

)
(8)

The log-likelihood function is described by the following equation:

l(µ1, σ1) =
N

∏
i=1

ln

 r

∏
j=1

1√
2σ1

2π∆ti,j

exp

(
−
(
∆xi,j − µ1∆ti,j

)2

2σ1
2∆ti,j

) (9)

Take the partial derivatives of the parameters µ1 and σ1 respectively and make them
equal to zero.

∂l(µ1, σ1)

∂µ1
=

N

∑
i=1

r

∑
j=1

∆xi,j − µ1∆ti,j

σ1
2 = 0 (10)

∂l(µ1, σ1)

∂σ1
= − rN

σ1
+

N

∑
i=1

r

∑
j=1

(
∆xi,j − µ1∆ti,j

)2

σ1
3∆ti,j

= 0 (11)

From the above equation, the maximum likelihood estimation of the parameters can
be described by the following equations:

µ̂1 =

N
∑

i=1
xi,r

N
∑

i=1
ti,r

(12)

σ̂1 =

√√√√ 1
rN

N

∑
i=1

r

∑
j=1

(
∆xi,j − µ1∆ti,j

)2

∆ti,j
(13)

2.3. Reliability Modeling Method Based on Wiener Process

The degradation process of the subsea control system is assumed to be a drift Wiener
process X(t), which can be described by the following equation:

X(t) = µ1t + σ1W(t) (14)

When subsea control system equipment performance degradation satisfies Wiener, its
MTBF (mean time between failures) is described by the following equation:

MTBF = E(t) =
L
µ1

(15)

The reliability of equipment in a subsea control system R1(t) that complies with the
Wiener degradation process is described by the following equation:
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R1(t) = P{X(t) < L} = Φ
(

L − µ1t
σ1
√

t

)
(16)

where P indicates the probability that the device does not reach the failure threshold and
Φ(·) indicates that the function conforms to a standard normal distribution.

2.4. Reliability Modeling Method Considering the Impact of Random Shocks

Traditional reliability models for subsea control systems often overlook the impact
of sudden external random shocks, such as oceanic natural disasters and ship anchor
impacts, leading to significant performance degradation. To address this gap, this study
introduces a shock degradation model for assessing the influence of random shocks on
subsea control systems. This model characterizes the degradation process as a diffusion
process, triggered by random shocks occurring according to a chi-square Poisson process
with a rate of λ. For a system subjected to random shocks over time t, denoted by N(t), the
probability distribution for the system experiencing n shocks within time t is described by
the following equation:

P{N(t) = n} =

(
λt2)
n!

e−λt (17)

We assume that the degradation increments from random shocks are independent,
identically distributed standard normal variables without causing catastrophic losses, with
the equipment’s degradation rate remaining constant post-shock. The degradation process
is depicted in Figure 2.
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The instantaneous degradation caused by the j random shock is assumed to be Yj,
j = 1, 2, 3, . . .. The degradation of all random shocks S(t) is described by the following
equation:

S(t) =
N(t)

∑
j=1

Yj (18)

Therefore, the degradation over the lifecycle of the component equipment is described
by the following equation:
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D(t) = X(t) + S(t) = µ1t + σ1W(t) +
N(t)

∑
j=1

Yj (19)

The reliability considering random shocks R2(t) can be described by the follow-
ing equation:

R2(t) = P

(
µ1t + σ1W(t) +

N(t)

∑
j=1

Yj+ < L

)
(20)

Assume that the instantaneous degradations caused by random shocks are indepen-
dent of each other and follow a normal distribution at Yj ∼

(
µ2, σ2

2). The overall degrada-
tion of the device is obtained as D(t) ∼

(
µ1 + nµ2, σ1

2 + nσ2
2), so the reliability function

of the device considering random shocks R2(t) is described by the following equation:

R2(t) = P(D(t) < L) =
∞

∑
n=0

Φ

 L − µ1t − nµ2√
σ1

2t + nσ2
2

 e−λt(λt)n

n!
(21)

3. Modeling

This paper outlines assumptions based on the operational characteristics and preven-
tive maintenance (PM) features of subsea control systems to develop a comprehensive
reliability model:

1. The Wiener process, preferred over the Weibull and Gamma distributions for its
accuracy in representing the natural degradation of electronic components, is adopted
due to its compatibility with the redundancy and complex coupling in subsea control
systems. It aligns more closely with observed reliability trends.

2. It is presumed that all components are new at commissioning and receive timely
maintenance to avert potential operational failures, where “timely” implies immediate
action upon detecting degradation or reaching a maintenance interval.

3. The model accounts for external shocks such as natural disasters or sudden operational
changes, considering their discrete, sudden nature and independence. It aims to
quantify their impact in terms of frequency and intensity.

4. Replacement is anticipated during the Nth PM cycle, triggered when reliability dips
below a pre-determined threshold, which is informed by historical data analysis
and equipment performance criteria, to ensure maintenance precedes significant
deterioration.

These assumptions support the establishment of a reliability model that encapsulates
both internal degradation and external shocks’ effects on subsea control systems. Further
content will explore these assumptions’ application in case studies and their influence
on model accuracy and predictive performance, underlining the model’s applicability
and effectiveness.

The model notations used in this paper are described in Table 1.

Table 1. Model notations.

Notation Description Notation Description

X(t) Degradation process W(t) Standard Brownian motion
µ1 Drift parameter of Wiener process σ1 Diffusion parameter of Wiener process
L Failure threshold T Lifetime

R1(t) Reliability of equipment Φ(·) Standard normal distribution
N(t) Number of shocks λ Incidence rate of random shock

Yj Degradation of each random shock S(t) Degradation of all random shock
D(t) Degradation over lifecycle R2(t) Reliability considering random shock
µ2 Expectation of normal distribution σ2 Standard deviation of normal distribution
C Copula function θ Critical parameter
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Table 1. Cont.

Notation Description Notation Description

K Number of parameters in the model LE Maximum likelihood estimate
R3(t) Joint reliability k Number of imperfect maintenance rounds

Dk Initial degradation after repair γk Residual degradation factor
Lk

′ Relative failure threshold ω Degradation rate influence factor
Ti Interval between PM Tm Time required for PM
Rt Reliability threshold N Number of PM times
Cd Average daily maintenance cost Cc Cost of repairing the fault
Cp Cost of the preparatory work Cm Cost of PM
Ct Loss of shutdown Cr Cost of equipment replacement

3.1. Redundant System Reliability Modeling

In the quest to enhance the reliability of subsea control systems, fault-tolerant tech-
nologies are widely employed. A prime example of these technologies is redundancy
design. This approach typically involves the integration of additional spare components
to bolster system reliability. The failure of certain components within the subsea control
system can precipitate critical malfunctions in the production system and pose significant
replacement challenges. Consequently, the implementation of a redundant configuration
for these components is of paramount importance.

Traditional reliability analysis of parallel dual redundancy often assumes indepen-
dence between the two units. However, in actual working conditions, the interdependence
between the main equipment and its redundancy is uncertain, with notable disparities in
the loads they bear. Treating the main equipment and its redundancy as identical com-
ponents in conventional reliability models is overly simplistic and fails to capture the
nuanced coupling relationships and load variations within the system. To overcome these
limitations, this paper employs the Copula function to develop a joint reliability function
for the components of the subsea control system. This approach offers a more precise repre-
sentation of the system’s internal dynamics and the differing load distributions, enhancing
the accuracy of reliability assessments.

Copula is a function used to describe the relationship between the marginal distri-
butions among multi-dimensional random variables and their joint distribution [34]. It
serves as an effective method for modeling and quantifying dependencies among com-
ponents within complex systems, particularly when these components have correlated
inter-dependencies or failure modes. By employing a Copula, the precision in estimat-
ing the overall system’s reliability is significantly enhanced, offering a more nuanced
understanding of the intricate relationships within the system.

Suppose there are two random variables X and Y, and the marginal distribution
functions of these variables are FX(x) and FY(y). In this context, the Copula function C
is used to construct the joint distribution function H(x, y); H(x, y) is described by the
following equation:

H(x, y) = C(FX(x), FY(y)) (22)

where θ is the critical parameter of the Copula function, which is used to quantify and
adjust the dependencies between different components. The maximum likelihood method
is chosen to obtain an estimate of θ̂, which can be described by the following equation:

θ̂ = argmax
∞

∑
n=1

ln C(un, vn; θ) (23)

where u and v represent the cumulative probabilities of the two marginal distributions,
respectively, and n is the number of samples.

Common types of Copulas include the following:
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1. Clayton Copula;

CClayton
θ (u, v) = max(u−θ + v−θ − 1, 0)

−1/θ
θ > 0 (24)

2. Gumbel Copula.

CGumbel
θ (u, v) = exp(−

[
(− ln(u))θ + (− ln(v))θ

]1/θ
) θ ≥ 1 (25)

The Akaike Information Criterion (AIC) was used to select the appropriate Copula
model. A lower value of AIC indicates that the model is more effective in fitting the data,
and the AIC was calculated using the following equation:

AIC = 2K − 2 ln(LE) (26)

where K is the number of parameters in the model and LE is the maximum likelihood
estimate of the model.

The joint reliability function of the subsea control system equipment R3(t) is described
by the following equation:

R3(3) = C(R1(t), R2(t)) (27)

3.2. Imperfect PM Modeling

The equipment in actual operation will undergo irreversible changes and breaks, and
it is impossible to achieve the state of the equipment when it was just put into production
through maintenance, a situation known as imperfect maintenance. In addition, the increase
in the number of repairs and the age of the equipment in service lead to a rise in the rate of
degradation of the equipment and a certain degree of initial degradation of the equipment
after each maintenance; its basic process is shown in Figure 3.
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As can be seen from Figure 3, imperfect PM was carried out at t1, t2 and t3. T1 = t1,
T2 = t2 − t1 and T3 = t3 − t2 show the PM interval during the first three repair cycles,
t1 > t2 − t1 > t3 − t2.
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According to the literature [35,36], PM is considered an imperfect activity, implying
that the repaired equipment’s degraded state falls between its initial degraded state and
the PM threshold. This paper defines the residual degradation caused after k maintenance
activities as Dk, and it is a random number conforming to a normal distribution with a
range of values; k is the number of times imperfect maintenance has been carried out. Dk is
described by the following equation:

Dk = γkL (28)

where γk is the residual degradation amount coefficient after k rounds of maintenance, and
γk ∼ N(1 − exp(−ak), b).

We introduce the degradation rate influence factor ω, with a range of values ω ∈
(
0, +∞

)
,

define the expression for the drift rate of the device after imperfect maintenance as the
following equation:

µk = µk−1(1 + ωDk) (29)

Therefore, the degradation process after k repairs is described by the following equation:

X(t) = Dk + µkt + σ1W(t) (30)

At this point, the relative failure threshold L′
k of the constituent equipment is described

by the following equation:
L′

k = L − Dk (31)

Markou et al. [37] used reliability theory and empirical data to enhance hydraulic sys-
tems’ efficiency, demonstrating improvements through simulation and statistical modeling.
This indicates that reliability theory can help improve efficiency, so this paper constructs
a preventive maintenance model based on reliability theory. The malfunction of critical
equipment within subsea control systems can result in significant losses, necessitating the
minimization of unplanned shutdowns. This paper introduces a preventive maintenance
strategy aimed at minimizing the average daily maintenance cost rate while optimizing
maintenance intervals within reliability constraints to prevent equipment failures. The
proposed optimization model presumes equipment replacement after k times preventive
maintenance and mandates maintenance when equipment reliability dips below a prede-
fined threshold. The repair process, constrained by this reliability threshold, is illustrated
in Figure 4.
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Assuming a PM is carried out when the reliability reaches the set threshold Rt, Ti
which is the interval between PM, and Tm is the time required for PM. Ti is described by
the following equation:

Ti = {t|R(t) = Rt } (32)

Supposing that the maintenance cost over the subsea control system’s lifecycle com-
prises several components, N represents the number of PM times, Cc indicates the cost
of repairing the faults, Cp represents the cost of the preparatory work for maintenance,
including the cost of mobilizing the vessel and summoning the maintenance personnel, Cm
means the cost of PM, Ct denotes the loss caused by the shutdown of oil and gas fields,
and Cr is the cost of equipment replacement. Define the average daily maintenance cost of
equipment over its entire lifecycle Cd as the following equation:

Cd =
N
[
Cc(− ln Rt) + Cp + Cm + CTTm

]
+ Cr

N
∑

i=1
Ti + NTm

(33)

We introduce the degradation rate influence factor to represent the influence of imper-
fect maintenance, taking the time when the equipment reaches the set reliability threshold
as the PM interval and taking the set reliability threshold value and the number of PM
times as the decision-making indexes. The basic process of the SCM reliability and PM
model is shown in Figure 5.
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This preventive maintenance map first analyzes the performance degradation char-
acteristics of subsea control equipment, combines the Wiener process and the stochastic
process to simulate its degradation process, and selects appropriate physical quantities to
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quantify the degree of degradation. Next, the monitoring data are processed using the great
likelihood estimation method, so as to accurately obtain the parameters of the degradation
process and derive the reliability function of the device accordingly. Next, the most suitable
Copula model is selected by applying the AIC information criterion in order to calculate
the joint reliability function of the equipment. Finally, the reliability model is reconstructed
considering the effect of imperfect maintenance on equipment degradation, and based
on this, a maintenance strategy model with the objective of minimizing the average daily
maintenance cost over the whole lifecycle is developed. The optimal maintenance relia-
bility threshold and maintenance frequency are determined through an iterative method
of optimization.

4. SCM Maintenance Case Simulation

In this paper, the important functional equipment SCM in the subsea control system is
selected as the simulation object, and in order to ensure the high reliability of the system in
the actual project, the SCM is redundantly configured. The components are not independent
of each other, and there are complex dependencies between them. The structure of the
subsea control system is shown in Figure 6.
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As the core component of the subsea control system, the SCM is responsible for pro-
cessing signals from the surface of the water to drive the solenoid valve (DCV) and actuator
operations. This process places high demands on signal clarity and real-time processing
to ensure accuracy and reliability in subsea operations. However, the performance of the
SCM may degrade over time and with continued use of the equipment. This degradation
process is mainly reflected in signal attenuation, which is a key factor affecting SCM per-
formance. When the signal strength is reduced to a certain degree, the SCM may not be
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able to accurately parse the received signal, resulting in delayed or incorrect transmission
of commands to the DCV, and the reliability of the entire subsea control system will be
affected, increasing the risk of subsea operations.

In the study of subsea control systems, signal acquisition is conducted through various
sensors installed within the system, capable of converting physical quantities (such as
pressure and temperature) into electrical signals. The collected signals are pre-processed by
signal-processing modules, involving filtering, amplification, and digitalization, primarily
relying on Analog-to-Digital Converters (ADCs) and Digital Signal Processors (DSPs).
To analyze signal attenuation or strength, signals are converted into decibels (dB). The
calculation formula for the decibel value of a signal is the following equation:

dB = 10 × log10

(
P
P0

)
(34)

where P is the power of the measured signal, and P0 is the reference power.

4.1. SCM Performance Degradation Data Simulation

In this section, firstly, the degradation data of the SCM are simulated based on the mean
time between failures according to the relationship between performance degradation and
lifetime distribution. Based on the degradation data, the maximum likelihood estimation
method is used for the estimation of the degradation model parameters.

According to the content introduced in the summary of Section 2.3, it can be learned
that when the degradation law of the device can be described by the Wiener process, the
MTBF is related to the parameters of the Wiener process as well as the failure threshold.
According to the reliability parameters of SCM obtained from the actual data collected in
an oil field project, the MTBF is about 8424 h, equivalent to 351 days. Based on the actual
engineering requirements, the maximum signal attenuation threshold of the SCM is set to
29 dB, which is used as the threshold L for maintenance, and it can be calculated according
to Equation (15) that the drift parameter µ1 = 0.0826. We set σ1 = 0.025 to generate 100 sets
of SCM natural performance degradation data, as shown in Figure 7. The colored lines in
Figure 7 indicate different degradation processes.
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Figure 7. Simulation of SCM degradation process.

The generated 100 sets of SCM degradation data were substituted into Equations (12) and (13)
for calculation. The 95% confidence intervals were selected and the values of the parameters
µ1 and σ1 are estimated in Table 2.
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Table 2. Parameter estimation.

Parameter Estimated Value Lower Limit Upper Limit

µ1 0.0824 0.0809 0.0837
σ1 0.1569 0.1558 0.1581

4.2. SCM Reliability Modeling Simulation

According to the literature [38], the amount of instantaneous degradation caused
by random shocks obeys a normal distribution. Assuming µ2 = 5.2, σ2 = 0.1, and
λ = 0.001 based on the experience of the experts. Substituting the relevant parameters into
Equations (16) and (21), the reliability function considering the effect of random shocks
and the reliability function under natural degradation is obtained as shown in Figure 8.
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Figure 8. Reliability of SCM.

To establish the joint reliability distribution function of the redundant system, Gumbel
Copula and Clayton Copula functions are used to fit the reliability of the SCM, and the
AIC values of the two types of Copula functions calculated according to Equation (26) are
shown in Table 3.

Table 3. AIC values of different Copula functions.

Functional Model AIC Value

Gumbel Copula −4970.2815
Clayton Copula −4191.3035

In Table 3, the Gumbel Copula function has a lower AIC check value, so this function
is chosen to model the redundancy system reliability.

The traditional redundancy reliability calculation method assumes that the SCMs are
independent of each other; the redundancy reliability is described by the following equation:

Rindependent = 1 − (1 − R1)(1 − R2) (35)

The method proposed in this paper is based on Equation (27). The different reliability
functions are shown in Figure 9.

As can be seen from the figure, if the operating and redundant modules are assumed
to be independent of each other according to the traditional parallel system reliability
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calculation method, the joint reliability of the modules will be overestimated, which is not
conducive to grasping the evolutionary pattern of their performance.
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Figure 9. Reliability of redundancy system.

4.3. Imperfect PM strategies of SCM

Based on information from an oil field project, the basic parameters for the PM of the
SCM are shown in Table 4 below.

Table 4. PM cost parameters of SCM.

Parameter Value

Cm USD 1 million
Cr USD 12.5 million
Cc USD 3 million
Cp USD 0.5 million
Ct USD 3.5 million
Tm 1 day

The degradation process modeling method under the influence of imperfect mainte-
nance proposed in this chapter is used to model the degradation process of the SCM after
imperfect maintenance, and the values of model parameter settings are shown in Table 5.

Table 5. SCM imperfect maintenance process parameters.

Parameter Value

a 0.1
b 0.001
ω 0.1

Substituting the given reliability thresholds with the joint reliability into Equation (32)
solves for the operating time within a single preventive maintenance cycle for different
numbers of repairs and uses it as the preventive maintenance interval. The reliability
function curves of the SCM after different numbers of repairs were obtained as shown in
Figure 10.
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As can be seen from Figure 10, the decay rate of the reliability of the SCM after many
repairs is constantly accelerating. If the preventive maintenance work continues to be
carried out according to a fixed cycle, failures may occur before the arrival of maintenance
personnel, causing unplanned downtime and significant economic losses, so it is necessary
to re-plan the preventive maintenance cycle according to the change rule of reliability.

We substitute preventive maintenance intervals into Equation (33), set the preventive
maintenance reliability threshold to vary between 0.8 and 0.9, and increase the number of
preventive maintenance times in the whole lifecycle from 1 to 6 times. The iterative method
is used to optimize the SCM with the goal of minimizing the maintenance cost rate in the
whole lifecycle, and the maintenance cost rate in the whole lifecycle of the SCM is shown in
Figure 11.
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It is observed that the maintenance cost rate initially decreases with an increase in
PM frequency, but subsequently rises as the number of maintenance procedures increases.
The minimum point in the graph indicates that, over the SCM’s entire lifecycle, the daily
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average maintenance cost is lowest—at USD 68,485 per day—when the reliability threshold
is set at 0.82 and after two rounds of PM, and the preventive maintenance intervals are
213 days and 132 days.

Based on the reliability analysis conducted in this paper, utilizing traditional scheduled
maintenance for the SCM would result in equipment failure before the commencement of
the second maintenance activity. In contrast, the preventive maintenance (PM) approach
proposed in this article, which timely adjusts the maintenance intervals based on the
degradation pattern of equipment reliability, effectively prevents unplanned downtimes.
This significantly enhances the economic efficiency and reliability of oil and gas production
activities, showcasing the distinct advantages of this method over traditional approaches
in avoiding production halts and improving operational reliability.

5. Conclusions

This paper develops a PM strategy for subsea control systems, focusing on reliabil-
ity and cost-effectiveness, in light of internal natural degradation, random shocks, and
imperfect maintenance of the system’s components. The key findings are as follows:

Firstly, the use of the Wiener process and random shock models for modeling the
performance degradation of subsea control system equipment allows for a more accurate
depiction of reliability variations under different operating conditions. Additionally, this
paper examines the overall reliability of redundant systems, acknowledging their use in
practical applications to reduce system failure risk.

Secondly, the impact of imperfect maintenance on PM strategies is analyzed. With
increasing instances of imperfect maintenance and equipment age, the degradation rate
accelerates. Therefore, a degradation rate influence factor is introduced to characterize this
change, optimizing the PM strategy to balance cost and reliability.

Lastly, the maintenance strategy proposed in this paper not only supports the sustain-
ability goals of long-term stable operation of equipment but also aligns with the energy-
based maintenance requirements of reducing energy wastage and environmental impacts.

This article still has some limitations. Primarily, the research falls short in provid-
ing a comprehensive analysis of the impact of different decision criteria on maintenance
strategies. Additionally, this investigation does not extend to the examination of group
maintenance strategies for multi-component systems, which is critical to the holistic appli-
cation of these strategies within intricate engineering settings.

Future research directions should focus on evaluating the influence of diverse decision-
making criteria on maintenance strategies and exploring group maintenance approaches for
multi-component systems, incorporating fault diagnosis techniques to enhance predictive
maintenance capabilities and system reliability.
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