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Abstract: Elevated temperatures at the transformer bushing cylinder head can precipitate failures,
leading to significant power outages. In response, this study introduces a reversible temperature-
indicating patch for the nuanced detection of thermal anomalies in the transformer bushing’s cylinder
head. The patch, crafted through a melting process, utilizes a reversible discoloration material and is
developed in two variants via an adsorption substrate method. Comprehensive evaluations of the
patches’ color-changing characteristics, alongside their electrical and hydrophobic properties, were
conducted using an automatic contact angle measuring instrument and an AC flashover test platform.
The findings reveal that the temperature-indicating patch exhibits a discernible color transition
within the range of 49~55 ◦C, with a color reversion temperature span of 45~55 ◦C, denoting marked
sensitivity and robust reversibility. Additionally, it was observed that prolonged thermal aging
correlates with a decrease in both the water contact angle and the discharge voltage per unit length
across the surface of the patches, indicating a degradation in performance. Among the variants, the
binder-based temperature-indicating patch demonstrated superior stability in electrical performance
compared to its vacuum-based counterpart. The outcomes of this research offer valuable insights for
the development of advanced diagnostic tools for the identification of thermal defects in transformer
bushings, potentially enhancing reliability and safety in power distribution systems.

Keywords: transformer bushing cylinder head; temperature-indicating patch; color-changing properties;
thermal aging

1. Introduction

Transformer bushings are pivotal for introducing leads and providing insulation from
the ground, while also securing and stabilizing these leads. They must meet stringent
criteria for electrical and mechanical durability, thermal resilience, and maintenance accessi-
bility. The failure of a transformer bushing can precipitate disruptions in the power network
and raise significant safety concerns [1–4]. Consequently, the upkeep and comprehensive
inspection of transformer bushings are of paramount importance. Subject to variations in
seasonal demand, these bushings endure heightened stress, expediting wear and tear and
potentially catalyzing failures that result in grid outages [5–7]. The research shows that the
probability of heating failure at the top of the transformer bushing in practical applications
is large, and the main reasons are as follows: (1) loose joint: due to the looseness of the joint
connecting the transformer bushing and the guide wire, the contact area decreases, the
contact resistance increases, and a lot of heat is generated, resulting in a high temperature
at the wiring; (2) overload: when the transformer bushing bears too much load current, it
will cause the temperature at the wiring point to be too high; (3) uneven conductor surface:
an uneven conductor surface or foreign bodies on the conductor surface will also lead to
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poor contact, making the contact resistance increase, generating a lot of heat, resulting in
high temperature at the wiring; (4) environmental factors: the ambient temperature of the
transformer is too high; poor ventilation and other environmental factors will also lead
to overheating of the joint. Therefore, it is of great significance to study the temperature
detection of the top cylinder of transformer bushings.

Methods for monitoring the temperature of transformer bushings include direct mea-
surement methods and indirect calculation methods. The direct measurement methods
are mainly infrared, thermal resistance, thermocouple, and distributed optical fiber tech-
niques, as well as a temperature-measuring wax sheet [8–11]. The indirect measurement
methods mainly include the national standard calculation method and numerical calcu-
lation method [12]. Infrared methods, advantageous for their non-contact nature and
long-distance applicability, offer rapid response times yet are influenced by surface emis-
sivity and environmental conditions. Thermal resistance methods, while boasting high
accuracy and stability, necessitate regular calibration due to their slower response. Despite
its affordability and broad measurement range, thermal resistance is prone to degradation
from oxidation and corrosion. Distributed optical fiber technology, recognized for its preci-
sion and immunity to electromagnetic interference, remains cost-prohibitive for widespread
adoption. The temperature-indicating wax sheet can reflect the thermal fault defects of
power equipment in real time, and it is low in price and simple in structure. However, it
is not reversible and needs to be replaced frequently, which increases the operation and
maintenance cost. The national standard calculation method has the characteristics of being
a simple calculation and easy to implement, but its calculation accuracy is poor. The results
of the numerical calculation method are intuitive, and the temperature distribution inside
the transformer can be obtained, but the computer hardware requirements are high and the
cost is high.

Emerging research focuses on thermochromic materials for their sensitivity and versa-
tility, presenting novel approaches for bushing temperature assessment [13–15]. Innova-
tions include thermally reversible color-changing coatings developed by Dong Bingbing,
designed for identifying thermal anomalies in dry-type air-core reactors [16]; and Chen
Yuanyuan’s irreversible temperature-indicating coatings aimed at pinpointing lightning
fault locations, facilitating temperature distribution analysis, and monitoring equipment
for overheating [17]. Wang Peng used room temperature vulcanized silicone rubber mixed
with thermochromic microcapsules and nano-silica to prepare the superhydrophobic intel-
ligent color-changing coating, which realized the consideration of thermochromic, super-
hydrophobic, and surface discharge performance [18]. Zhou Ronghua used thermoplastic
acrylic resin as the base material to prepare thermochromic color-changing paint that can
be used for ABS plastic substrate, comprehensively discussed and analyzed the factors
affecting the color-changing temperature of the thermochromic paint, and optimized the
paint, finally preparing a one-component thermotemperature-reversible thermochromic
color-changing paint with good performance and convenient construction [19]. Rahul
Bhattacharya combined the gain and loss mechanisms of crystal water to detect the temper-
ature. (CHN2)CuCl4 absorbed water to form a green hydrate (CHN2)CuCl4·H2O, it then
lost crystal water to form (CHN2)2CuCl4 when the temperature rose to about 43 ◦C. The
color changed from green to yellow. When the temperature was lowered, green water and
(CHN2)CuCl4·H2O were formed again after water absorption [20]. The standard DL/T
664-2016 states that a transformer casing cylinder head temperature of 55 ◦C is a serious
defect [21], but there is no research on defect temperature detection in transformer casing
cylinder heads at present. In addition, the color-changing paint has the disadvantage of
poor aging performance, and the temperature-indicating patch has good stability and is
less affected by environmental factors. Based on this, research on a reversible temperature-
indicating patch on the cylinder head of the transformer bushing is carried out.
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This study presents the synthesis of reversible color-changing materials via a melt-
ing process, leading to the fabrication of two distinct types of temperature-indicating
patches. Utilizing a cellulose–polyester blend fabric as the absorptive base, we developed
both binder-based and vacuum-based temperature-indicating patches. These innovations
were rigorously evaluated for their chromatic transitions, electrical characteristics, and
water-repellent properties. The findings of this research offer valuable insights for the ad-
vancement of thermal defect detection methodologies in transformer bushings, potentially
setting new benchmarks for diagnostic accuracy and reliability.

2. Test Part
2.1. Test Reagents and Instruments

Test reagents: crystalline violet lactone (Nanjing Bermuda Biotechnology Co., Ltd.,
Nanjing, China); bisphenol A (Shandong Zhengxing New Materials Co., Ltd., Jinan, China);
octadecanol (Sinopharm Group Chemical Reagent Co., Ltd., Shanghai, China); Polyethylene
Terephthalate (PET) film (Shenzhen Zhenhua Adhesive Products Co., Ltd., Shenzhen,
China); sealed bag (Dongguan Yiguang Packaging Machinery Co., Ltd., Dongguan, China);
binder (Anhui Maoyuan Co., Ltd., Hefei, China).

Test instruments: constant-temperature heating magnetic stirrer (110 V; Shanghai Io-
hua Instrument Co., Ltd., Shanghai, China); constant-temperature heating table (Dongguan
Weitieke Automation Technology Co., Ltd., Dongguan, China).

2.2. Sample Preparation
2.2.1. Preparation of Color-Changing Materials

This study utilized the melting process to synthesize color-changing materials, em-
ploying crystalline violet lactone, bisphenol A, and octadecanol as primary raw materials.
The proportions of crystalline violet lactone, bisphenol A, and octadecanol were metic-
ulously calculated based on a mass ratio of 1:2:50. Initially, octadecanol was placed in a
beaker and subjected to heating using a constant temperature magnetic stirrer, with the
temperature precisely set to 80 ◦C. Upon complete melting of the octadecanol, crystalline
violet lactone and bisphenol A were sequentially introduced, ensuring thorough mixing
and homogenization at a stirring speed of 500 revolutions per minute (rpm). This mixture
was continuously heated and stirred for 60 min. Following a 24 h period of natural cooling,
the resultant solidified blue color-changing material was finely ground into a powder form.

2.2.2. Preparation of Reversible Thermochromic Patches

This research delineates the fabrication of two variants of oscillometric patches, binder-
type and vacuum-based, with the preparation process shown in Figure 1. Initially, a
specified quantity of the previously synthesized color-changing powder was heated until
molten in a beaker. A cellulose–polyester blend fabric, serving as the adsorption substrate,
was then thoroughly saturated in the molten mixture, subsequently extracted, and placed
into custom pressing molds. For the binder-type oscillometric patches, a uniform layer of
binder was applied to one side of a PET film, which, upon pressure molding, ensured a
secure adhesion to the aluminum substrate plate. This process eliminated air pockets, result-
ing in the formation of binder-type temperature-responsive patch samples. Conversely, the
vacuum-based patches were produced by enclosing the cooled and pressed material within
a high-temperature sealing bag and subjecting it to vacuum sealing. A binder was then
applied to facilitate adherence to the aluminum substrate plate, culminating in the creation
of vacuum-based temperature-responsive patch samples. These samples were specifically
designed for the detection of thermal anomalies in the bushing columns of transformers.
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Figure 1. Preparation process of temperature indicator patch.

2.3. Test Methods
2.3.1. Color-Changing Performance of Temperature-Indicating Patch

The temperature indicator patch prepared in this test for thermal defect detection in
transformer bushing cylinder heads tests the following parameters [22,23]:

(1) Discoloration temperature: The experiment commenced with the placement of
the temperature-sensitive patch, adhered to a substrate, on a precision-controlled heating
platform. The platform’s initial temperature was meticulously set to 30 ◦C. Employing a
graduated heating approach, the temperature was incrementally increased by 1 ◦C every
three minutes. Throughout this process, the chromatic transition of the patch was systemat-
ically documented, establishing a detailed profile of its temperature responsiveness.

(2) Fading time: For this analysis, the heating platform upon which the test specimen
was positioned was stabilized at 70 ◦C. Utilizing high-resolution videography, the chromatic
evolution of the specimen was captured in real time. The onset of the color transformation
was marked at zero seconds, and the interval required for the patch to undergo complete
discoloration was precisely measured, defining the fading time.

(3) Recoloring time: Following the complete discoloration, the specimen was immedi-
ately subjected to ambient conditions to facilitate natural cooling. The recoloration process
was recorded in real time using high-definition video capture. The recoloring time was
calculated from the moment local color restoration commenced (marked as zero seconds)
to the point of full chromatic recovery.

(4) Color representation: According to CIE 1976 L*a*b* uniform color space, a lab color
space model was used to represent the color change of the temperature patch, namely,
the brightness index (L), red–green axis chromaticity index (a), and yellow–blue axis
chromaticity index (b). The colorimetric parameters of the complex state (L1, a1, b1) and
faded state (L2, a2, b2) were extracted, and the color difference ∆E was calculated.

∆E =
√

∆L2 + ∆a2 + ∆b2 =

√
(L1 − L2)

2 + (a1 − a2)
2 + (b1 − b2)

2

In the formula, ∆L, ∆a, ∆b are the differences between the colorimetric parameters
before and after the discoloration of the discoloration material.
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2.3.2. Thermal Patch Aging Test

(1) Thermal aging protocol: The study implemented a thermal aging assessment based
on the guidelines set forth in GB 11026.1-1989 [24], which provides a framework for deter-
mining the heat resistance of electrical insulation materials, including the formulation of
aging test methods and the interpretation of test results. The temperature-indicating patches
were subjected to an accelerated aging process within a constant temperature chamber, set
to maintain an aging temperature of 80 ◦C. The evaluation was conducted by averaging
the results across three distinct test batches to ensure reliability and statistical significance.

(2) Insulation performance analysis: Insulation integrity was assessed utilizing the
surface flashover test principle, as depicted in Figure 2. The test circuit consisted of a console,
protection resistor, test transformer, and capacitor divider. The oscilloscope was connected to a
high-voltage probe to detect the output voltage in real time. This examination was conducted
under controlled environmental conditions, maintained at (25 ± 1) ◦C. Adhering to the
standards outlined in GB/T 1408.1-2016 [25], a gradual-voltage-increase test was employed,
with a voltage ramp rate meticulously set to 0.5 kV/s. This method ensures a comprehensive
evaluation of the insulation’s performance under electrical stress.
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Figure 2. Test platform of AC discharge along the surface.

(3) Water contact angle test: The water contact angle test platform is shown in Figure 3.
The temperature indicator patch sample to be measured was placed on the sample table of
the water contact angle measuring instrument, the position of the sample was adjusted so
that the acquisition system could obtain a clear image, and the injection unit was triggered
to make the liquid drop fall on the surface of the sample. The water contact angle data were
obtained by using the automatic ellipse fitting method. Ten locations were measured for
each group of samples, and the average water contact angle was obtained after removing
the maximum and minimum values.
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3. Results and Discussion
3.1. Color-Changing Property
3.1.1. Color-Changing Effect

Figure 4 is the color change diagram of the reversible temperature indicator patch at
different temperatures. The results show that the temperature range of the color change of
the temperature indicator patch with a mass ratio of 1:2:50 is 49~55 ◦C, and the color changes
from dark blue to gray, with an obvious color change effect. According to the standard DL/T
664-2016 infrared diagnostic application specification for live equipment, the temperature
variation interval has a high matching degree with the thermal defect temperature at the lap
surface of the transformer bushing head, and can better meet the requirements of abnormal
temperature detection at the lap surface of the transformer bushing head.
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Figure 5 illustrates the variation in the color difference (∆E) of the reversible temperature-
indicating patch across different thermal conditions, employing ∆E as a metric to delineate
the fading-color range. A significant shift in ∆E from its baseline at a specific temperature
denotes the onset of color transformation. As can be seen from Figure 5a, the color difference
values of the brightness index difference ∆L, red and green axis color index difference ∆a,
and yellow and blue axis color index difference ∆b increase with the increase in temperature,
and the value changes little before 49 ◦C, when the corresponding patch color does not fade
significantly. When the heating temperature reaches 49 ◦C, the change rates of ∆L, ∆a, and
∆b increase significantly, and the surface color of the patch gradually disappears. When the
temperature reaches 55 ◦C, ∆L, ∆a, and ∆b tend to be stable. After cooling, ∆L, ∆a, and ∆b
continue to decrease, but their rate of decrease is slower than that of heating up. It can be
seen from Figure 5b that the variation trend in the color difference ∆E is basically consistent
with that of ∆L, ∆a, and ∆b, and there are obvious differences in the heating and cooling
processes, indicating that the patch has a thermal hysteresis effect in the cooling process.
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Figure 5. Colorimetric parameters of a thermographic patch at different temperatures.

The reversible patch exhibits a fading-temperature range of 49~55 ◦C and a color
transition interval of 45~55 ◦C, shifting distinctly from dark blue to gray. This behavior
aligns closely with the thermal defect temperatures on transformer bushing lap surfaces, as
specified by the DL/T 664-2016 standard for infrared diagnostic applications on live equip-
ment. Such compatibility underscores the patch’s potential for enhancing the detection of
abnormal thermal conditions on transformer bushing lap surfaces.

3.1.2. Color-Changing Time

The sensitivity of color change of the temperature-indicating patch is an indicator of
its responsiveness to external thermal stimuli; it is quantified by two key metrics: fading
time and recovery time. These durations inversely correlate with color sensitivity: shorter
fading and recovery periods signify a heightened sensitivity, denoting a quicker response to
thermal changes. The test samples were heated at 70 ◦C and cooled at 25 ◦C, and the color
difference ∆E changed with time to determine the color change time. Figure 6 delineates
the temporal dynamics of color transformation for the reversible temperature-indicating
patch, illustrating its efficiency in reacting to thermal variations.
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Figure 6 reveals that the temperature-indicating patch has a rapid discoloration rate,
with a fading time of 15 s, demonstrating high sensitivity and swift responsiveness to tem-
perature fluctuations, particularly in the context of thermal defects on transformer bushing
lap surfaces. Conversely, the patch’s recovery time is significantly longer, at 69 s, indicating
a slower recoloration process. This discrepancy can be attributed to several factors:

(1) The patch’s composition, primarily octadecanol and a sealing layer film, exhibits
low thermal conductivity and heat transfer rates, coupled with inefficient heat storage and
release capabilities. These characteristics impede rapid heat dissipation, causing heat to
linger within the patch after removal from the heat source, thus slowing the cooling process.

(2) Heat dissipation in the patch is predominantly through air convection and radiation,
both of which are limited by the patch’s small surface area and the inherent inefficiency of
these mechanisms, further restricting heat exchange with the environment.

(3) The high heat capacity and latent heat of phase change of octadecanol, alongside
significant heat absorption during the heating phase, necessitates extended durations for
heat transfer during cooling. These findings underscore the complex interplay between
material properties and thermal dynamics, influencing the patch’s operational efficiency in
real-world applications.

3.1.3. Reversibility of Discoloration

The reversible temperature indicator patch was subjected to cold- and hot-cycle tests
at 25 ◦C and 70 ◦C. In order to ensure the complete discoloration of fading/recoloring, it
was left for 3 min at each temperature. Figure 7 presents the variation in color difference
(∆E) of a reversible temperature-indicating patch subjected to 20 thermal cycles.
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The analysis reveals that ∆E fluctuates between 0.90 and 3.78 throughout these cycles,
indicating a modest increasing trend with the progression of thermal cycling. However,
when juxtaposed with the ∆E of 71.86 observed following complete discoloration, these
values represent merely 1.25 to 5.26% of the total change, categorizing them within a minor
color difference scope. This outcome attests to the exemplary reversibility of the devised
temperature-indicating patch, confirming its efficacy for the in situ detection of thermal
anomalies on the lap surface of transformer bushing head outlets.

3.2. Aging Performance of Temperature-Indicating Patch
3.2.1. Hydrophobicity

Figure 8 presents the variation in water contact angle for binder-based and vacuum-
based temperature-sensitive patches subjected to thermal aging at 80 ◦C. As the aging
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duration increases, a consistent decrease in the water contact angles of both patch types
is observed. Specifically, the water contact angle for the binder-based patch diminishes
from 89◦ to 80◦, whereas for the vacuum-based patch it declines from 87◦ to 79◦. Initially,
the binder-based patch exhibits a higher water contact angle compared to the vacuum-
based patch, indicating differences in their surface hydrophilicity due to their material
compositions and structural characteristics. The reasons are as follows:
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(1) The differential hydrophilic characteristics of binder-based and vacuum-based
temperature-sensitive patches, initially, can be attributed to their distinct material composi-
tions. The binder-based patch employs a polyethylene terephthalate (PET) film coating,
characterized by a molecular structure with fewer polar groups, yielding relatively poor
hydrophilicity and, consequently, a higher water contact angle. Conversely, the vacuum-
based patch utilizes a sealing bag composed of a polyamide fiber (PA) and polyethylene
(PE) blend, which, due to a higher concentration of polar groups in its molecular structure,
exhibits better hydrophilicity and a lower initial water contact angle.

(2) During the thermal aging process, prolonged exposure to heat accelerates molecular
motion on the material’s surface, altering the arrangement and polarity distribution of
surface molecules. This may lead to thermal cracking, degrading the surface microstructure
and creating microgrooves or cracks aligned perpendicular to the direction of stress. These
changes enhance the material’s hydrophilicity, reducing the water contact angle over time.
The intensification of chemical reactions and increased likelihood of thermal cracking with
extended aging further contribute to the decreasing water contact angles observed in both
types of temperature-sensitive patches.

3.2.2. Electrical Properties

Figure 9 demonstrates the effect of thermal aging duration on the flashover voltage
per unit length across the surface of thermal patches. Compared to vacuum-based thermal
patches, those of the adhesive type exhibit superior flashover voltage performance per unit
length. As the aging period extends, a downward trend in flashover voltage per unit length
is observed for both adhesive and vacuum types. After a 30-day aging period, the flashover
voltage per unit length for adhesive-type thermal patches declines from 9.30 kV/cm to
8.93 kV/cm, a 3.98% decrease, while for vacuum-based, it reduces from 9.13 kV/cm to
8.59 kV/cm, representing a 5.91% decrease. The electrical performance of an adhesive
temperature indicator patch is more stable than that of a vacuum-based. These results can
be explained by the following reasons:
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(1) The surface flashover voltage per unit length of temperature-sensitive patches is
significantly influenced by their surface coatings. The binder-based patches, utilizing PET
film, and the vacuum-based patches, employing a PA/PE mixed film, undergo physical and
chemical aging during thermal exposure, leading to a decrease in their surface electrical
strength. This decline can be explained by the theory of electronically triggered polarization
relaxation, which posits that surface flashover initiates with the generation of primary
electrons in areas of weak insulation. These electrons, propelled by the electric field towards
the anode, collide with the material surface, spawning secondary electrons and leading
to an electron avalanche that culminates in surface flashover discharge. Thermal aging
exacerbates the situation by inducing thermal cracking and molecular chain segment rear-
rangement, thereby degrading the surface microstructure and promoting uneven electric
field distribution due to surface irregularities. This results in enhanced local field strength
distortion, initiating electron emission from weak insulation areas. As the aging process
progresses, the surface deterioration intensifies. The contact between the surface of the
temperature indicator patch and the electrode is poor, and there is a small gap. Electrical
discharge occurs first inside the air gap, resulting in the generation of charged particles.
The generated charged ions move along the surface of the solid medium, and the voltage
distribution along the surface is not uniform, and it is easy for arc discharge to occur at
high electric field intensities. On the other hand, the surface of the temperature-indicating
patch is rough and uneven, resulting in uneven resistance distribution, distortion of the
surface electric field, and a decrease in the flashover voltage along the surface.

(2) Furthermore, the differing compositions of the surface coatings play a critical
role in their flashover voltages. The PET film, characterized by high corona resistance
and insulation properties, exhibits a higher surface flashover voltage due to its ability to
dissipate accumulated charge efficiently, attributed to its elevated conductivity and lower
surface tension. In contrast, the PA/PE film, with its non-polar polymer composition and
low surface energy, is more prone to electrostatic adsorption and charge accumulation,
leading to a lower surface flashover voltage. Its high dielectric constant and low conductiv-
ity further hinder charge transfer, increasing susceptibility to flashover under equivalent
voltage conditions.

4. Conclusions

The conclusions drawn are as follows.
(1) A temperature-sensitive display patch was fabricated using the melt processing

technique, characterized by a transitional phase with a fading interval of 49~55 ◦C and a
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reversible coloration span of 45~55 ◦C. This patch exhibits a pronounced chromatic tran-
sition, with the disappearance of color occurring within 15 s and color restoration taking
approximately 69 s. Repeated thermal cycling tests, conducted 20 times, revealed a minimal
variation in color difference (∆E), ranging from 0.90 to 3.78. This represents a negligible
proportion (1.25~5.26%) relative to the baseline color difference value of 71.86 observed
upon complete color change. These findings underscore the patch’s robust reversible func-
tionality, affirming its potential for applications requiring precise temperature monitoring.

(2) With increasing thermal aging duration, the water contact angles of both binder-
based and vacuum-based temperature-indicating patches exhibit a consistent decline.
Specifically, the contact angle for binder-based patches decreases from 89◦ to 80◦, whereas
for vacuum-based patches, it falls from 87◦ to 79◦. Notably, the binder-based patches
demonstrate superior flashover voltage per unit length compared to their vacuum-based
counterparts, indicating enhanced electrical insulation properties. However, as aging
progresses, both types of patches show a diminishing trend in flashover voltage per unit
length, with reductions of 3.98% for binder-based and 5.91% for vacuum-based patches,
respectively. This suggests that, despite a general decline in electrical performance over
time, binder-based patches maintain relative stability in their electrical properties when
compared to vacuum-based patches.
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