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Abstract: The content of differentially abundant metabolites in the fermentation broth of grapefruit
peels fermented by Cordyceps militaris at different fermentation times was analyzed via LC–MS/MS.
Small molecule metabolites and differential metabolic pathways were analyzed via multivariate anal-
ysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. A total of 423 metabolites
were identified at 0, 2, 6, and 10 days after fermentation. Among them, 169 metabolites showed
differential abundance, with significant differences observed between the fermentation liquids of
every two experimental groups, and the metabolite composition in the fermentation liquid changed
over the fermentation time. In summary, the upregulation and downregulation of metabolites in
cancer metabolic pathways collectively promote the remodeling of cancer cell metabolism, facilitating
increased glycolysis, alterations in TCA cycle flux, and enhanced biosynthesis of the macromolecules
required for rapid proliferation and survival. This study provides new perspectives on the develop-
ment of high-value-added agricultural and forestry byproducts and the development and research of
functional foods.

Keywords: pomelo peel; Cordyceps militaris; fermentation; multivariate statistical analysis;
untargeted metabolomics

1. Introduction

Pomelo (Citrus maxima (Burm.) Merr.) is renowned as the largest citrus fruit [1]. Its peel
is rich in essential nutrients like water, vitamins, minerals, and various nonnutritive physi-
ologically active substances, including pectin, flavonoids, essential oils, natural pigments,
limonoids, and dietary fiber [1,2]. Demonstrating various physiological activities such as
antioxidant, antibacterial, anti-inflammatory, anticancer, antidiabetic, anti-Alzheimer’s,
insecticidal, hepatoprotective, and metabolic disorder regulatory effects [3], pomelo peel
has garnered significant attention. With a global production of 9.56 million tons in 2021,
pomelo peel accounts for approximately 30% of the total pomelo weight [2]. Various
products have been developed from pomelo peel, such as adsorbents, adsorption carriers,
nanomaterials, edible composite films, shale inhibitors, and fiber powder coatings [4].
However, comprehensive utilization methods of pomelo peel often involve high costs and
energy consumption, potentially leading to nutrient loss and secondary pollution.

Fermentation, a microbiologically driven biochemical process, presents a sustainable
solution for converting organic waste into valuable products with low costs and energy
consumption [5]. Several fungal strains, including Aspergillus [5,6], Saccharomyces [7],
Lacticasei bacillus [8], and Pleurotus ostreatus [9], are commonly used for fermenting pomelo
peel. Cordyceps sinensis, in particular, has been shown to enhance the main active in-
gredient cordycepin, thereby increasing its medicinal value when used as a fermentation
strain [10]. Cordyceps militaris, another fungal resource, contains active substances such as
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cordycepic acid, cordycepin [11], sterols, nucleosides, trace elements, and various amino
acids with pharmacological activities. These activities include immune regulation, antitu-
mor effects [12], antiviral properties, anti-inflammatory effects [13], antioxidant properties,
antifatigue, antiaging, lipid-lowering, blood sugar regulation [14], and protection of liver
and kidney functions [15], making it a versatile remedy for various diseases, including
tumors, compromised immune function, HIV infection, and atherosclerosis [16].

Metabolomic technology, coupled with molecular biology methods, facilitates the
quantitative and qualitative analysis of metabolites in biological tissues, enabling the iden-
tification of different metabolites and the analysis of differential metabolic pathways [17].
In this study, non-targeted metabolomics was employed to investigate the changes in
bioactive components and metabolites during fermentation after the addition of Cordyceps
militaris to pomelo peel substrate. The findings aim to elucidate the mechanism by which
Cordyceps militaris promotes biotransformation during the fermentation of pomelo peel
over time. Overall, this research contributes to exploring the potential of high-value uti-
lization methods for pomelo peel and provides a fresh perspective for the development
of valuable products from agricultural byproducts and the research and development of
functional foods.

2. Materials and Methods
2.1. Materials

Fresh pomelo peel was collected from a local market. After the peel was washed, it
was cut into strips (1 × 5 cm) and dried at 50 ◦C for 48 h. The dried peel was ground and
sieved through a 40-mesh sieve. The powder was stored at −20 ◦C until use.

Glucose, agar, peptone, potassium dihydrogen phosphate, magnesium sulfate
heptahydrate, and 2-chloro-L-phenylalanine (98%) were analytically pure and pur-
chased from Aladdin (Shanghai, China). Potato was purchased from a local market.
Chromatography-grade methanol and acetonitrile were purchased from Thermo Fisher
Scientific (Waltham, MA, USA); MS-grade formic acid was purchased from TCI Shanghai
(Shanghai, China); and ammonium formate was obtained from Merck (Shanghai, China).
Cordyceps militaris was obtained from the Zhejiang Provincial Key Lab for Chem & Bio
Processing Technology for Farm Products (Hangzhou, China).

2.2. Preparation of Culture Medium

Potato dextrose agar (PDA): potatoes, 200 g; glucose, 20 g; agar, 20 g; K2HPO4·3H2O,
1.97 g; MgSO4·7H2O, 2 g; water, 1000 mL; and the pH was adjusted to natural levels.
Medium without agar was used to cultivate Cordyceps militaris seeds.

The fermentation medium contained pomelo peel powder 10 g, glucose 20 g,
peptone 5 g, K2HPO4·3H2O 1.97 g, MgSO4·7H2O 2 g, and water 1000 mL. All the media
were autoclaved (GI100TW, Zealway, DE, USA) at 121 ◦C for 20 min.

2.3. Preparation of Fermentation Liquid Samples

Cordyceps militaris seeds were inoculated into PDA culture media and cultivated at
25 ◦C in the dark until the surface of the plate was covered with mycelia. Then, a loop of
mycelia was transferred to an Erlenmeyer flask containing 100 mL of PDA liquid medium
and cultured in a shaker at 25 ◦C and 120 rpm in the dark for 7 days to obtain the seed
culture. After that, 10 mL of seed culture was transferred to 100 mL of fermentation medium
and cultivated at 25 ◦C and 120 rpm. Samples were collected at 0, 2, 6, and 10 days and
centrifuged at 4 ◦C and 10,000 r/min, and the supernatant was stored at −20 ◦C for further
analysis. The experiments were repeated 3 times.

3. Sample Analysis
3.1. Sample Pretreatment

The sample pretreatment procedure was performed according to Dunn et al. [18]. The
supernatant samples were thawed at 4 ◦C and vortexed (BE-2600, Kylin-bell, Nantong,
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China) for 1 min to ensure thorough mixing. Afterwards, 2 mL was transferred to a
centrifuge tube and vacuum dried (Eppendorf 5305, Shanghai, China). After the addition
of 500 µL of methanol and vortexing for 1 min, the sample was centrifuged at 12,000 rpm
(H1850-R, Xiangyi, Changsha, China) and 4 ◦C for 10 min, after which the supernatant
was transferred to a new 2 mL tube and vacuum dried. After dissolving in 150 µL of
2-chloro-L-phenylalanine 80% methanol solution (4 ppm) and filtering through a 0.22 µm
filter membrane, the filtered solution was analyzed via UPLC–MS–MS using an HPLC
Vanquish mass spectrometer (Q Exactive Focus) (San Jose, CA, USA).

3.2. Chromatographic Conditions

The method was described by Zelena et al. [19]. LC analysis was performed on a
Vanquish UHPLC System (Thermo Fisher Scientific, USA). Chromatography was carried
out with an ACQUITY UPLC® HSS T3 (2.1 × 100 mm, 1.8 µm) (Waters, Milford, MA,
USA). The column was maintained at 40 ◦C. The flow rate and injection volume were set at
0.3 mL/min and 2 µL, respectively, and the gradient elution method is shown in Table 1.

Table 1. Gradient elution program under positive and negative ion modes.

Model Mobile Phase
Gradient Elution Procedure/Min

0~1 1~8 8~10 10.0~10.1 10.1~12

Positive
A: 0.1% formic acid

8%B 8~98%B 98%B 98~8%B 8%BB: 0.1% formic acid acetonitrile

Negative C: 5 mM ammonium formate water
8%D 8~98%D 98%D 98~8%D 8%DD: acetonitrile

3.3. Mass Spectrum Conditions

Mass spectrometric detection of metabolites was performed on a Q Exactive Focus
instrument with an ESI ion source. Simultaneous MS1 and MS/MS (full MS-ddMS2
mode, data-dependent MS/MS) acquisition was used. The parameters were as follows:
sheath gas pressure, 40 arb; aux gas flow, 10 arb; spray voltage, 3.50 kV and −2.50 kV for
ESI(+) and ESI(−), respectively; capillary temperature, 325 ◦C; MS1 range, m/z 100–1000;
MS1 resolving power, resolution 70,000; number of data-dependent scans per cycle, 3;
MS/MS resolving power, resolution 17,500; normalized collision energy, 30 eV; and dynamic
exclusion time, automatic [20].

3.4. Data Preprocessing

The raw data were first converted to mzXML format by MSConvert in the Prote-
oWizard software package (v3.0.8789) and processed using R XCMS (v3.12.0) for feature
detection [21,22], retention time correction, and alignment. The key parameter settings
were set as follows: ppm = 15, peak width =c (5, 30), mz diff = 0.01, and method = centWave.
The batch effect was then eliminated by correcting the data based on the quality control
(QC) samples. Metabolites with an RSD more than 30% in the QC samples were filtered
and subsequently subjected to data analysis [20].

The metabolites were identified by accuracy mass and MS/MS data, which were sub-
sequently matched with HMDB (http://www.hmdb.ca (accessed on 4 October 2023) [23],
MassBank (http://www.massbank.jp/ (accessed on 4 October 2023) [24], KEGG
(https://www.genome.jp/kegg/ (accessed on 4 October 2023) [25], LipidMaps (http://
www.lipidmaps.org (accessed on 4 October 2023) [26], mzcloud (https://www.mzcloud.org
(accessed on 4 October 2023) [27] and the metabolite database constructed by Panomix
Biomedical Tech Co., Ltd. (Shuzhou, China). The molecular weights of the metabolites
were determined according to the m/z of the parent ions in the MS data. The molecular for-
mula was predicted by ppm and adduct ions and subsequently matched with the database
to realize the MS identification of the metabolites. Moreover, the MS/MS data from the
quantitative table of the MS/MS data were matched with the fragment ions and other

http://www.hmdb.ca
http://www.massbank.jp/
https://www.genome.jp/kegg/
http://www.lipidmaps.org
http://www.lipidmaps.org
https://www.mzcloud.org
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information for each metabolite in the database to determine the importance of the MS/MS
identification of the metabolites. The differentially abundant metabolites were subjected
to pathway analysis via MetaboAnalyst 5.0, which combines the results from powerful
pathway enrichment analysis with pathway topology analysis. The metabolites identified
via metabolomics were subsequently mapped to the KEGG pathway for biological interpre-
tation of higher level systemic functions. The metabolites and corresponding pathways
were visualized using the KEGG Mapper tool v. 109.1.

3.5. Pathway Analysis

The differentially abundant metabolites were subjected to pathway analysis via
MetaboAnalyst, which combines the results from powerful pathway enrichment anal-
ysis with pathway topology analysis. The metabolites identified via metabolomics were
subsequently mapped to the KEGG pathway for biological interpretation of higher level
systemic functions. The metabolites and corresponding pathways were visualized using
the KEGG Mapper tool.

Due to the occurrence of LC-MS/MS data in nontargeted mode, default peak picking
and threshold peak filtering were performed using the threshold of the most intense ions
(above 0.001) to extract both negative ions and position ions. Following peak alignment,
retention time correction, and peak grouping, statistical analysis was performed on the
resulting peak intensity matrix using MetaboAnalyst 5.0. The data were normalized by sum
and logarithmically transformed before principal component analysis (PCA) was performed
to visualize the overall clustering patterns of the samples. Additionally, partial least squares
discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis
(OPLS-DA) were conducted to identify the metabolites that contributed most significantly
to the separation between sample groups. The significance of the differentially expressed
metabolites was determined through t tests and fold change analysis.

3.6. Data Analysis

After peak detection, filtering, and alignment processing, the R package Ropls was
used for statistical analysis of the resulting peak intensity matrix. The data were normalized
by sum, followed by logarithmic transformation before PCA was performed to visualize
the overall clustering patterns of the samples. Using the R XCMS package (Ropls, PCA, and
PLS-DA) models were applied to the sample data. The first principal component variable
importance in projection (VIP) values, combined with p values and univariate differential
multiples (FCs), were used for dimensionality reduction analysis [28]. Based on the VIP
values from the PLS-DA model, combined with a t test method for screening differentially
expressed metabolites (VIP > 1, p < 0.05), a volcano plot of the differentially expressed
metabolites was generated. A permutation test method was employed to assess model
overfitting. The MetaboAnalyst 5.0 software package was used for functional pathway
enrichment and topological analysis of the selected differentially expressed metabolites.
The enriched pathways were visualized using the KEGG Mapper visualization tool to
explore the differentially abundant metabolites and pathway maps.

4. Results and Discussion
4.1. Chromatogram of the Base Peak

The components underwent chromatographic separation and were continuously in-
troduced into the mass spectrometer, where mass spectrometry was utilized for continuous
scans and data acquisition. Each scan generated a mass spectrum, and the ion with the
highest intensity was consistently recorded for each mass spectrum. The resulting plot,
with ion intensity on the y-axis and time on the x-axis, is referred to as the base peak
chromatogram (BPC), as depicted in Figure 1. The x-axis denotes the retention time, the
y-axis represents the ion intensity, and the top right corner of the illustration indicates the
maximum ion intensity for each sample.
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Figure 1. Fermentation broth BPC plots in positive and negative ion modes over different time
periods. (a) Fermentation broth BPC plots in positive ion mode over different time periods (x-axis:
retention time, y-axis: ion intensity); the y-axis represents ion intensity. (b) Fermentation broth BPC
plots in negative ion mode over different time periods (x-axis: retention time, y-axis: ion intensity).

4.2. PCA

To elucidate the variations in metabolites over the course of fermentation, mass spec-
trometry analysis was performed on the metabolites of 12 samples (3 replicates). Through
multivariate statistical analysis, the degree of dispersion for each sample in the PCA plot
offers insights into the similarity of metabolite compositions among samples. In the plot
depicted in Figure 2, the x-axis (PC1) and y-axis (PC2) represent the scores of the first and
second principal components, respectively. From the PCA score plot, the clustering and
dispersion of the samples can be observed. Samples that are closely grouped together
indicate a higher degree of similarity in their composition and concentration, whereas
samples that are farther apart exhibit greater differences. Parallel samples are clustered
on the plot, suggesting a high similarity in metabolite profiles among the three samples
within each group. In contrast, the control group and experimental group samples display
a scattered pattern, indicating significant differences between the four groups in terms
of metabolite compositions. This provides a basis for the subsequent identification of
differentially expressed metabolites.
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Figure 2. Fermentation broth PCA plot in positive and negative ion modes over different time periods.
(a) Fermentation broth PCA plots in positive ion mode over different time periods (x-axis: PC1; y-axis:
PC2); the y-axis represents ion intensity. (b) Fermentation broth PCA plots in negative ion mode over
different time periods (x-axis: PC1; y-axis: PC2).

4.3. PLS-DA Analysis

The PLS-DA model demonstrated effective separation between the two groups of
samples in both positive ion mode (Figure 3a) and negative ion mode (Figure 3b). In the
positive ion mode model, R2 = 0.549 and Q2 = 0.984; in the negative ion mode model,
R2 = 0.532 and Q2 = 0.969. The constructed PLS-DA model exhibited excellent perfor-
mance in terms of fitness, interpretability, and predictability. Permutation tests were also
conducted to assess the modeling effect, and the results indicated no overfitting in the
model [29]. This suggests that the model is robust in distinguishing between data of
different categories or modes. It performs well not only on the training data but also on
predicting and explaining unknown data effectively.
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Figure 3. PLS-DA plot of fermentation broths in positive and negative ion modes over different
time periods. (a) Fermentation broth PLS-DA plots in positive ion mode over different time periods
(x-axis: PC1; y-axis: PC2); the y-axis represents ion intensity. (b) Fermentation broth PLS-DA plots in
negative ion mode over different time periods (x-axis: PC1 accounts; y-axis: PC2 accounts).
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4.4. Metabolite Differential Analysis

The volcano plot depicted in Figure 4 illustrates the differential abundance of metabo-
lites in the fermentation broth. On the x-axis, the log2-transformed-fold change in metabo-
lite quantitative values between two samples is displayed, while the y-axis represents the
log10-transformed p value. Each point on the plot represents a specific metabolite. A larger
absolute value on the x-axis indicates a more significant fold change in expression levels
between the two samples, while a higher value on the y-axis indicates more pronounced
differential expression. The size of the points corresponds to the variable importance in
projection (VIP) value, with red points indicating upregulated metabolites, blue points
indicating downregulated metabolites, and gray points representing metabolites that did
not meet the criteria for differential expression.
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metabolites in the fermentation broth in positive ion mode between group YP-2d and the control
group YP-0d. (b) Volcano plots of the differentially abundant metabolites in the fermentation broth
in negative ion mode between group YP-2d and the control group YP-0d. (c) Volcano plots of the
differentially abundant metabolites in the fermentation broth in positive ion mode between the YP-6d
group and the control YP-2d group. (d) Volcano plots of the differentially abundant metabolites in
the fermentation broth in negative ion mode between the YP-6d group and the control YP-2d group.
(e) Volcano plots of the differentially abundant metabolites in the fermentation broth in positive ion
mode between the YP-10d group and the control YP-6d group. (f) Volcano plots of the differentially
abundant metabolites in the fermentation broth in negative ion mode between the YP-10d group and
the control YP-6d group.

In Figure 4a,b, the volcano plot illustrates the differential abundance of metabolites
between YP-2d and the control group (YP-0d) in both positive and negative ion modes. A
notable number of metabolites exhibited higher levels in YP-2d compared to YP-0d, indicat-
ing potential metabolic alterations induced by prolonged fermentation time. Additionally,
the directionality of changes remained consistent across both ion modes, suggesting a
consistent metabolic response to fermentation time.

Figure 4c,d depict the volcano plot illustrating the differential abundance of metabo-
lites between YP-6d and YP-2d. Significant changes in metabolite abundance were observed
between these two groups, indicating substantial alterations in the metabolic profile over
the specified time period. The direction of metabolite changes varied between ion modes,
suggesting a dynamic metabolic response during fermentation.

Finally, Figure 4e,f illustrate the differential abundance of metabolites between
YP-10d and YP-6d. A considerable number of metabolites showed abundance variations
between these two time points, indicating dynamic metabolic changes during fermentation
progression. The directionality of changes varied between ion modes, suggesting a nuanced
response of metabolism to fermentation progression, possibly influenced by background
environmental factors.

These findings underscore the dynamic nature of metabolite abundance changes during
fermentation, emphasizing the complex metabolic response to fermentation progression.

The heatmap in Figure 5 visually represents the clustering of differentially regulated
metabolites among the four sample groups. The dendrogram on the left illustrates the
clustering of metabolites based on their abundance patterns, while the dendrogram at
the top indicates the clustering of samples. The color bars positioned at different points
in the heatmap indicate the relative expression levels of the corresponding metabolites,
with darker red shades representing higher relative abundance and darker blue shades
indicating lower relative abundance.

A comparison between YP-2d and YP-0d revealed that 143 metabolites were upregu-
lated and 74 were downregulated, totaling 217 differentially regulated metabolites. The
notable increase in organic acids in the fermentation broth may be attributed to Cordyceps
sinensis metabolizing grapefruit peel powder during the vigorous fermentation process,
leading to organic acid production. Additionally, the excess grapefruit peel powder during
fermentation could influence the metabolic pathways of Cordyceps sinensis, affecting the
generation and utilization of organic acids and amino acids. The significant decrease in
amino acids might be due to microorganisms utilizing them as energy sources or precursors
for synthesizing other biomolecules.

When comparing the YP-6d group with the YP-2d group, 93 metabolites were upregu-
lated and 60 were downregulated, totaling 153 differentially regulated metabolites. The
significant upregulation of ergosterol, a differential metabolite, can be converted via the
steroid biosynthesis pathway into a precursor of vitamin D and isomerized to form vitamin
D2, which can strengthen bones and prevent or treat osteoporosis. The notable decrease
in D-mannose content may partially inhibit the differentiation of typical T cell subsets
(Th1, Th2, and Th17 cells), affecting immune responses, inflammatory reactions, and tissue
repair in the body.
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A comparison between YP-10d and YP-6d revealed that 42 metabolites were upregu-
lated and 88 were downregulated, totaling 130 differentially regulated metabolites. The
significant upregulation of flavonoids such as Garbanzol, Genistein, and Apigenin high-
lights their importance as key secondary metabolites in plants. These compounds have
been demonstrated to possess antioxidative, anti-inflammatory, or antiviral activities. The
substances reduced in YP-10d compared to YP-6d are mainly secondary metabolites, in-
dicating a decrease in the metabolic efficiency of the fermentation system to some extent.
Overall, a total of 423 metabolites were identified, with 169 of them being differentially
regulated, as shown in Table 2.

Table 2. The differential metabolites with the top 40 p-values in the fermentation broth over different
periods.

NO. Name m/z Chemical
Formula p Value VIP NP Sperclass

1 Acetaminophen − 150.05 C8H9NO2 3.30344 × 10−11 1.3935 Amino acids

2 L-Prolinamide + 115.09 C5H10N2O 4.34062 × 10−11 1.4141 Alkaloids

3 Garbanzol + 273.08 C15H12O5 3.48078 × 10−10 1.3799 Flavonoids

4 Apiole + 223.10 C12H14O4 5.64748 × 10−10 1.5400 Organic compounds

5 4-Pyridoxic acid − 182.04 C8H9NO4 5.73305 × 10−10 1.2957 Organic acids

6 Glucose 6-phosphate + 261.04 C6H13O9P 7.44640 × 10−10 1.4828 Organic compounds

7 9-Riburonosyladenine * 281.10 C10H11N5O5 2.77269 × 10−9 1.5659 Purine nucleoside

8 Nicotinate D-ribonucleoside + 256.08 C11H14NO6 5.35013 × 10−9 1.5638 Glycosylamines

9 Fustin + 289.07 C15H12O6 7.47890 × 10−9 1.1605 Flavonoids



Processes 2024, 12, 687 10 of 16

Table 2. Cont.

NO. Name m/z Chemical
Formula p Value VIP NP Sperclass

10 L-Proline + 116.07 C5H9NO2 7.95349 × 10−9 1.3897 Amino acid

11 Diaminopimelic acid * 190.11 C7H14N2O4 9.32928 × 10−9 1.6918 Amino acids

12 Azelaic acid − 187.02 C9H16O4 1.06839 × 10−8 1.5798 fatty acids

13 N-Acetylneuraminate * 292.10 C11H19NO9 1.32682 × 10−8 1.6977 Sialic acid

14 L-Tyrosine + 182.08 C9H11NO3 1.33875 × 10−8 1.2957 Amino acids

15 2-Pyrocatechuic acid − 153.02 C7H6O4 1.72199 × 10−8 1.6427 Organic acids

16 Epinephrine * 164.07 C9H13NO3 1.95453 × 10−8 1.3977 Hormones

17 7-Aminomethyl-7-carbaguanine * 179.07 C7H9N5O 2.93473 × 10−8 1.4334 Purine nucleoside

18 Bufotenin + 205.13 C12H16N2O 3.05451 × 10−8 1.6156 Alkaloids

19 Hydroxylaminobenzene − 108.04 C6H7NO 3.69881 × 10−8 1.5646 Alkaloids

20 2′,6′-Dihydroxy-4′-
methoxyacetophenone * 165.05 C9H10O4 3.95480 × 10−8 1.2605 Flavonoids

21 Indolelactic acid + 206.08 C11H11NO3 4.45419 × 10−8 1.1724 Organic acids

22 5-Acetamidovalerate − 160.10 C7H13NO3 5.85765 × 10−8 1.5652 Organic acids

23 Diosmin − 609.19 C28H32O15 7.64596 × 10−8 1.3322 Organic compounds

24 Isoelemicin − 209.12 C12H16O3 8.07480 × 10−8 1.5188 Organic compounds

25 Galactonolactone * 178.05 C6H10O6 8.40480 × 10−8 1.6253 Organic compounds

26 Kyotorphin * 337.17 C15H23N5O4 1.74520 × 10−7 1.1112 Organic acids

27 L-Tryptophan + 205.10 C11H12N2O2 1.78887 × 10−7 1.1847 Amino acid

28 L-Galactono-1,5-lactone + 178.05 C6H10O6 1.80560 × 10−7 1.6007 Organic compounds

29 Hydantoin-5-propionic acid 171.04 C6H8N2O4 1.88976 × 10−7 1.3415 Organic acids

30 Pipecolic acid + 130.09 C6H11NO2 2.05303 × 10−7 1.6678 Organic acids

31 Oxalureate + 133.03 C3H4N2O4 2.85196 × 10−7 1.4726 Organic acids

32 Naringenin 7-O-beta-D-glucoside − 435.13 C21H22O10 3.10162 × 10−7 1.5056 Flavonoids

33 L-Arginine + 175.12 C6H14N4O2 3.88464 × 10−7 1.5385 Amino acid

34 N-Acetyl-L-aspartic acid − 174.04 C6H9NO5 3.98517 × 10−7 1.6104 Amino acid

35 N-Acetyl-a-neuraminic acid * 290.09 C11H19NO9 5.70871 × 10−7 1.1892 Organic compounds

36 5-Aminopentanoic acid + 118.09 C5H11NO2 5.92656 × 10−7 1.2658 Amino acid

37 Butyryl-L-carnitine + 232.15 C11H21NO4 6.40823 × 10−7 1.2392 Alkaloids

38 Cinnamaldehyde + 133.07 C9H8O 8.23226 × 10−7 1.6345 Flavonoids

39 Leucodopachrome + 196.06 C9H9NO4 1.24550 × 10−6 1.6427 Alkaloids

40 N-Acetylmuramate * 276.11 C11H19NO8 1.34769 × 10−6 1.6425 Organic compounds

Note: m/z: mass-to-charge ratio; +: positive ions; −: negative ion; *: unidentified substances.

Chemical formula: a representation of a chemical compound using symbols for the
elements present in the compound and numerical subscripts to indicate the ratio of atoms.
p value: The probability of obtaining results as extreme as the observed sample data when
the null hypothesis is true. The smaller the p value is, the less likely the occurrence of the
null hypothesis. VIP: The variable weight values of the OPLS-DA model can be used to
assess the strength and explanatory power of the differences in metabolite accumulation for
discriminating between sample groups. A VIP value greater than or equal to 1 is commonly
considered a threshold for selecting differentially expressed metabolites.
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4.5. Differential Pathway Enrichment Analysis

Using the KEGG database, which facilitates the understanding of signaling pathways
and metabolic pathways associated with metabolites, we conducted pathway enrichment
analysis to explore the pathways related to the identified metabolites. A search and enrich-
ment analysis of the corresponding pathway database were performed. The differential
metabolites are mainly distributed across 169 metabolic pathways. Using a screening
criterion of p < 0.05, 41 KEGG pathways were enriched in differentially expressed genes.
The enrichment analysis results were filtered based on the impact factor and p-value, with
the top 20 pathways selected according to ascending p-values. The results were visualized
in a bubble plot, as shown in Figure 6. The x-axis represents the enrichment impact factor,
the size of the dots represents the number of metabolites corresponding to each pathway,
and the color is associated with the p-value, where red indicates smaller p-values and blue
indicates larger p-values. According to the metabolic pathway impact factor bubble plot, it
can be observed that the central carbon metabolism in the cancer pathway has the largest
enrichment impact factor, the highest enrichment level, and the maximum reference value.

Processes 2024, 12, 687 11 of 16 
 

Chemical formula: a representation of a chemical compound using symbols for the 
elements present in the compound and numerical subscripts to indicate the ratio of atoms. 
p value: The probability of obtaining results as extreme as the observed sample data when 
the null hypothesis is true. The smaller the p value is, the less likely the occurrence of the 
null hypothesis. VIP: The variable weight values of the OPLS-DA model can be used to 
assess the strength and explanatory power of the differences in metabolite accumulation 
for discriminating between sample groups. A VIP value greater than or equal to 1 is com-
monly considered a threshold for selecting differentially expressed metabolites. 

4.5. Differential Pathway Enrichment Analysis 
Using the KEGG database, which facilitates the understanding of signaling pathways 

and metabolic pathways associated with metabolites, we conducted pathway enrichment 
analysis to explore the pathways related to the identified metabolites. A search and enrich-
ment analysis of the corresponding pathway database were performed. The differential me-
tabolites are mainly distributed across 169 metabolic pathways. Using a screening criterion 
of p < 0.05, 41 KEGG pathways were enriched in differentially expressed genes. The enrich-
ment analysis results were filtered based on the impact factor and p-value, with the top 20 
pathways selected according to ascending p-values. The results were visualized in a bubble 
plot, as shown in Figure 6. The x-axis represents the enrichment impact factor, the size of 
the dots represents the number of metabolites corresponding to each pathway, and the color 
is associated with the p-value, where red indicates smaller p-values and blue indicates larger 
p-values. According to the metabolic pathway impact factor bubble plot, it can be observed 
that the central carbon metabolism in the cancer pathway has the largest enrichment impact 
factor, the highest enrichment level, and the maximum reference value. 

 
Figure 6. Bubble chart of the top 20 KEGG pathways in fermentation broth over different periods. 

From Figure 7 depicting the Central carbon metabolism in cancer pathway, it is evi-
dent that glucose in the fermentation broth is consumed due to the metabolic require-
ments for growth, facilitated by the glucose transporter CLUT1/2, leading to a reduction 

Figure 6. Bubble chart of the top 20 KEGG pathways in fermentation broth over different periods.

From Figure 7 depicting the Central carbon metabolism in cancer pathway, it is evident
that glucose in the fermentation broth is consumed due to the metabolic requirements for
growth, facilitated by the glucose transporter CLUT1/2, leading to a reduction in intra-
cellular glucose levels. P53 has immense potential in inhibiting tumors by controlling cell
senescence, apoptosis, and DNA repair, and is a common tumor suppressor gene in human
tumors, regarded as a “star molecule” in oncology [30]. P53 indirectly inhibits glucose
conversion to G6P, thereby suppressing the glycolytic pathway [31]. As a substrate for
fatty acid synthesis, Acetyl-CoA generated by ACL catalysis leads to fatty acid synthesis
through the action of fatty acid synthase [32]. The main source of Acetyl-CoA in fatty
acid synthesis is glycolysis, and the inhibition of glycolysis by P53, along with the down-
regulation of Citrate, disrupts fatty acid synthesis. Additionally, the downregulation of
Citrate and Fumarate obstructs the TCA cycle. Meanwhile, the reduction in Glutamine
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leads to a decrease in Glutamate, affecting the synthesis of Arginine through amino acid
transporter SLC1A5, thereby reducing the synthesis of spermidine. RTKs hyperactivate
RAS protein through a series of reactions, leading to the overactivation of RAF, MEK,
ERK, and ultimately c-Myc. SIRT6, a histone deacetylase with NAD (+) dependence, has
been proven to be a tumor suppressor, partially inhibiting c-Myc expression and directly
suppressing c-Myc upregulation [33]. The upregulation of c-Myc enhances the expression
of SLC1A5, promoting tumor cell uptake of glutamine. Glutamine, as a non-essential
amino acid with an amino group, participates in every biosynthetic pathway of prolif-
erating cells [34,35]. The “glutamine addiction” of tumor cells increases the demand for
glutamine, which is hydrolyzed to glutamate by GLS, and the downregulation of glutamine
directly leads to the downregulation of glutamate [36,37]. The oncogenic transcription
factor c-Myc may affect SIRT6 gene transcription directly or indirectly, thereby increasing
the level of SIRT6 protein. Intermediates of the TCA cycle, such as 2-HG, AmberAcid, and
Fumarate, serve as substrates, mediating epigenetic modifications that drive tumorigenesis
and malignant transformation. SIRT3 catalyzes the oxidative stress pathway of fumarate,
reducing ROS and intermediates, thereby inhibiting multiple signaling pathways, reducing
tumor occurrence, and slowing malignant progression [38]. Vinayak [39] et al. found that
curcumin can induce p53 upregulation and decrease energy metabolism by inhibiting the
PI3K-AKT signaling pathway, reversing the growth of Dalton’s lymphoma, suggesting that
the downregulation of PI3K and AKT in metabolic pathways may be due to the conver-
sion of polyphenols into other substances during biotransformation. In summary, these
molecular changes collectively promote the remodeling of cancer cell metabolism, favoring
increased glycolysis, altered TCA cycle flux, and enhanced biosynthesis of macromolecules
required for rapid proliferation and survival.
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5. Conclusions

In conclusion, this study employed LC–MS/MS to analyze the dynamic changes
in metabolites within the fermentation broth of grapefruit peel fermented by Cordyceps
militaris at different time points (0 d, 2 d, 6 d, and 10 d). The PCA model indicates highly
similar metabolite spectra among the three samples within each group, while significant
differences exist in the metabolite composition between samples from different groups. The
PLS-DA model demonstrates excellent performance not only on the training data but also
in effectively predicting and explaining unknown data. The volcano plot illustrates that
the abundance of metabolites varies between any two components and follows the same
changes as the ion mode.

Overall, a total of 423 metabolites were identified, 169 of which were differentially
regulated. A comparison of YP-2d and YP-0d revealed a significant increase in organic acids
in the fermentation broth, possibly attributed to Cordyceps sinensis metabolizing grapefruit
peel powder during vigorous fermentation, leading to the production of organic acids.
Additionally, the surplus of grapefruit peel powder during fermentation may influence
the metabolic pathways of Cordyceps sinensis, affecting the generation and utilization
of organic acids and amino acids. The substantial decrease in amino acids could be
due to microorganisms utilizing them as energy sources or precursors for synthesizing
other biomolecules.

When the YP-6d group was compared with the YP-2d group, the significant upregula-
tion of ergosterol, a differential metabolite, and the notable decrease in D-mannose content
were observed. Furthermore, a comparison of YP-10d with YP-6d revealed a significant
upregulation of flavonoids and a reduction in secondary metabolites, indicating a decrease
in the metabolic efficiency of the fermentation system.

In summary, the integrated approach of metabolomics analysis, including LC–MS/MS,
multivariate analysis, and pathway enrichment, provided a comprehensive understand-
ing of the metabolic dynamics during Cordyceps militaris fermentation of grapefruit peel.
The identified differentially regulated metabolites and enriched pathways offer valuable
insights for the utilization of agricultural byproducts and the development of functional
foods with potential health benefits.

Using the KEGG database, which aids in understanding the signaling pathways and
metabolic pathways associated with metabolites, pathway enrichment analysis revealed
the central carbon metabolism in the cancer pathway as having the largest enrichment
impact factor, highest enrichment level, and maximum reference value. These molecular
changes collectively promote the remodeling of cancer cell metabolism, favoring increased
glycolysis, altered TCA cycle flux, and enhanced biosynthesis of macromolecules required
for rapid proliferation and survival. Integrated research on non-targeted metabolomics
of fermentation liquids of Cordyceps militaris biotransforming Citrus grandis peel revealed
that the differential metabolites are significantly enriched in the central carbon metabolism
pathways of cancer. This finding provides reference value for the dual-purpose medicinal
and edible fungal biotransformation, provide new perspectives for the development of
high value-added agricultural and forestry byproducts and the development and research
of functional foods, potentially aiding in understanding the energy metabolism of cancer
cells and its impact on treatment, and it holds further exploration significance.
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