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Abstract: The subcellular localization of long non-coding RNA (lncRNA) provides important insights
and opportunities for an in-depth understanding of cell biology, revealing disease mechanisms, drug
development, and innovation in the biomedical field. Although several computational methods have
been proposed to identify the subcellular localization of lncRNA, it is difficult to accurately predict the
subcellular localization of lncRNA effectively with these methods. In this study, a new deep-learning
predictor called PreSubLncR has been proposed for accurately predicting the subcellular localization
of lncRNA. This predictor firstly used the word embedding model word2vec to encode the RNA
sequences, and then combined multi-scale one-dimensional convolutional neural networks with
attention and bidirectional long short-term memory networks to capture the different characteristics
of various RNA sequences. This study used multiple RNA subcellular localization datasets for
experimental validation, and the results showed that our method has higher accuracy and robustness
compared with other state-of-the-art methods. It is expected to provide more in-depth insights into
cell function research.

Keywords: subcellular localization of lncRNAs; convolutional neural networks; attention mechanism;
bi-directional long short-term memory

1. Introduction

Long non-coding RNAs (lncRNAs) are a type of RNA molecule that typically exceeds
200 nucleotides in length [1–5]. Unlike protein-encoded RNA (mRNA), lncRNA does not
encode proteins but rather performs various functions in cells [6,7], including gene expression
regulation, chromatin conformation adjustment, signal transduction, and cell cycle regula-
tion [3,8–13]. Numerous studies have shown that lncRNA is involved in cellular mechanisms
ranging from gene expression to protein translation and maintaining protein stability, playing
an important role in development, homeostasis, and maintaining cell fate. The abnormal
expression of lncRNA is closely related to various diseases, including cancer and cardiovascu-
lar diseases [14–16], and can provide new biomarkers and drug targets [17–19]. Therefore,
in recent years, there has been increasing research on the function of lncRNA in the field
of biology. The diversity of the subcellular localization of lncRNAs indicates that they
perform diverse functions within cells [20–24]. The function of lncRNA is often closely
related to its subcellular localization within cells. The nucleus and cytoplasm are the most
common subcellular locations, but there are also lncRNAs localized in specific subcellular
organelles, such as ribosomes or exosomes [25–28]. Different subcellular localization may
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reflect the different functions of lncRNA in different cellular processes, from gene regulation
to cellular signaling. Therefore, studying the subcellular localization of lncRNA has become
a crucial step in deeply understanding its function and regulatory mechanisms [29,30].

At present, some predictors for calculating the subcellular localization of lncRNA
have been proposed. The first predictor is the four-mer feature and advanced feature
extracted by LncLocator using a stacked autoencoder [25], which is fed into two classifiers:
support vector machine and random forest. Then, different ensemble strategies are used to
combine the results of different classifiers to obtain the final prediction result. During the
training process, a supervised oversampling algorithm is used to balance the proportion of
different classes. Su et al. proposed that iLoc-lncRNA uses eight-mer features to encode
lncRNA sequences. Considering that the eight-mer feature dimension is too large, iLoc-
lncRNA adopts a feature selection method based on binomial distribution to select the
optimal feature. Then, the optimal features are input into the support vector machine
(SVM) to obtain the prediction results [26]. Zeng et al. developed DeepLncLoc [29], a deep
learning-based lncRNA subcellular localization predictor. It encodes lncRNA sequences
using a combination of subsequence embeddings. Firstly, a sequence is divided into
several consecutive subsequences, and the patterns of each subsequence are extracted
using an average pooling layer [30]. Finally, these patterns are combined to obtain a
complete representation of the lncRNA sequence. Then, textCNN is used to learn advanced
features and perform prediction tasks. Li et al. developed GraphLncLoc [26], a graph
neural network-based model that uses only lncRNA sequences to predict the subcellular
localization of lncRNA. GraphLncLoc converts lncRNA into a de Bruijn graph [31], where
the nodes are four-mer and the direction of the edges is determined by order. Then,
GraphLncLoc uses pre-trained four-mer word2vec embedding vectors as node features
and assigns weights to edges. GraphLncLoc uses graph convolutional networks (GCNs) to
learn potential representations and extract advanced features from de Bruijn graphs [31].

While these existing predictors have made significant progress in different aspects,
there are still some potential challenges and limitations. Some of the existing predictors
employ the k-mer method to extract features from lncRNA sequences. The k-mer method
does not take into account the sequential information of the sequences, which can be
crucial for understanding the biological function of lncRNA sequences. While some other
predictors leverage TextCNN or graph convolutional networks for extracting advanced
features and model construction, they fall short in capturing the multi-scale characteristics
of sequences. By considering features at various scales, multi-scale features provide a more
comprehensive representation of the sequence. This approach captures both local and
global patterns, which can be crucial for understanding complex biological sequences. To
overcome these limitations [32–37], we developed a new deep learning-based subcellular lo-
calization predictor of lncRNAs, named PreSubLncR. We firstly use the k-mer and word2vec
model to encode the lncRNA sequence. We secondly employ multi-scale one-dimensional
convolutional neural networks with attention to extract multi-scale local discriminative
features, and then concatenate these local features. We then extract long-range-dependent
information from these combined multi-scale local features by using the bidirectional LSTM
model and finally utilize the fully connected network to make predictions. The PreSubLncR
predictor has two advantages: (1) Multi-scale convolution can capture feature information
at different scales, and the combination of an attention mechanism can further improve the
model’s ability to extract important features, which is helpful to improve the prediction ac-
curacy of the model. (2) Bidirectional LSTM can effectively capture long-term dependencies
in sequences, which is helpful for better modeling the characteristics of lncRNA sequences.
Through the bidirectional information transfer of bidirectional LSTM, the characteristics of
the sequence can be understood more comprehensively.
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2. Materials and Methods
2.1. Datasets

Creating a robust benchmark dataset is essential for developing a reliable machine
learning model. For this study, we utilize the same dataset as GraphLncLoc [26], sourced
from the RNALocate v1.0 database [38]. This database encompasses 2383 entries for
lncRNA subcellular localization. Given that the majority of lncRNAs are annotated with
a single localization in the database, the lncRNAs that are located in single subcellular
localization are selected in the work. To minimize redundancy, the CD-HIT-EST tool [39]
is employed to eliminate duplicate sequences with a similarity threshold of 80%. The
resulting dataset spans seven distinct subcellular localizations. Categories with fewer
than ten lncRNAs are excluded, leading to the removal of those in the two subcellular
localizations. Considering the ambiguous annotation of the cytoplasm and the cytosol
localization, our analysis is concentrated solely on the cytoplasmic compartment, and
then, those lncRNAs located in the cytosol are excluded. Consequently, a benchmark
dataset is compiled which is composed of 769 lncRNAs across four subcellular localizations:
cytoplasm, nucleus, ribosome, and exosome. Formula (1) divides the data into four different
subcellular localizations.

S = S1 ∪ S2 ∪ S3 ∪ S4 (1)

Table 1 shows the distribution of the benchmark dataset, where S1 represents
328 lncRNAs from the cytoplasm, S2 represents 325 lncRNAs from the nucleus, S3 repre-
sents 88 lncRNAs from the ribosome, and S4 represents 28 lncRNAs from the exosome.

Table 1. Distribution of benchmark data sets.

Subcellular Localization Number of Samples

Cytoplasm 328
Nucleus 325
Ribosome 88
Exosome 28
Total 769

2.2. Network Framework of PreSubLncR

In this study, we proposed a new deep-learning prediction method for lncRNA subcel-
lular localization. The predictor in this study, called PreSubLncR, uses a multi-layer deep
neural network structure that combines one-dimensional convolutional neural networks
(1D-CNNs), attention mechanisms, and bidirectional long short-term memory networks
(BiLSTM). Figure 1 shows the entire network framework of PreSubLncR, which consists
of three modules of Feature Encoding, Model Construction. and Prediction. The Feature
Encoding module is designed to efficiently characterize lncRNA sequences. This module
combines two different feature encoding methods, k-mer and word2vec, to represent the
sequence as the feature vector. The Model Construction module is a combination of the
1D-CNN, attention, and BiLSTM models. The 1D-CNNs use three convolutional kernels
of sizes 1, 3, and 5, so that each convolutional kernel considers embedding 1, 3, and 5 ad-
jacent words to identify sequence features at different scales. By calculating the attention
weights, the attention layer is applied to weight the output of the CNN layer. The use of an
attention layer can further improve the model’s ability to extract important features. Then,
the combined features are fed into the BiLSTM layer for further extraction of temporal–
sequential features. The Prediction module adopts a fully connected network with two
hidden layers, which map the features extracted from the BiLSTM layer to the final lncRNA
subcellular localization label. The final output layer consists of four nodes corresponding
to the cytoplasm, nucleus, ribosome, and exosome. The values of these nodes represent the
predicted probability distribution, that is, the probability that a long non-coding RNA is
likely to exist in each subcellular location. Suppose our neural network makes a prediction
for a long non-coding RNA and the output is [0.6, 0.1, 0.2, 0.1]. This means that the model
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believes that the RNA has a 60% probability of being in the cytoplasm, a 10% probability of
being in the nucleus, a 20% probability of being in the ribosome, and a 10% probability of
being in the exosome. That is, the model prefers to classify the RNA as being located in the
cytoplasm. It is worth noting that the output layer uses the softmax function to convert the
raw output into a probability value. The range of the output probability value is [0–1], and
the sum of the output probability value is 1.
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Figure 1. Overview of PreSubLncR. PreSubLncR consists of three modules of Feature Encoding,
Model Construction, and Prediction. The Feature Encoding module combines two different feature
encoding methods, k-mer and word2vec, to represent the sequence as the feature vector. The Model
Construction module is a combination of the 1D-CNN, attention and BiLSTM models. The 1D-CNNs
extract sequence features at different scales using different kernels. The attention layer is applied to
weight the output of the CNN layer. The combined features are fed into the BiLSTM layer for the
further extraction of temporal–sequential features. The Prediction module adopts a fully connected
network with two hidden layers to make the final prediction.

2.3. Feature Encoding

This study uses the word embedding technology word2vec to encode lncRNA se-
quences, which is an important technique in natural language processing (NLP). Word2vec
is a technique that maps discrete vocabulary to continuous vector spaces. The word2vec
model maps vocabulary with similar contexts to similar vector spaces by learning the
distributed representation of vocabulary in a corpus. RNA sequences are strings composed
of four bases (adenine A, guanine G, cytosine C, and uracil U). To convert RNA sequences
into vocabulary sequences, we chose k-mer [33] as the basic vocabulary unit. K-mer refers
to a continuous subsequence with a length of k, and by selecting the appropriate parameter
k value, an appropriate segmentation method can be found. Using k-mer as a vocabulary
to capture local features in lncRNA sequences, each lncRNA sequence is divided into seg-
ments of length k; that is, each lncRNA sequence is divided into k-mer subsequences, where
k is the length of the predetermined subsequence k-mer. Assuming k = 4, ‘AUCGGCAUAG’
will be divided into [AUCG, UCGG, CGGC, GGCA, GCAU, CAUA, AUAG]. These k-mers
will be used to build a vocabulary. The word2vec pre-training model is used to encode
k-mer into a vector with dimension D. Each sequence has a length of L and is encoded with
a length of D × (L − k + 1). Since the length of each sequence is not fixed, average pooling
is used to fix the dimension to D.
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2.4. Multi-Scale One-Dimensional Convolutional Neural Network with Attention

Traditional convolutional neural networks (CNNs) are usually used to process image
data, and their basic structure is two-dimensional [40,41]. However, text can be regarded
as one-dimensional sequence data, so the idea of a one-dimensional CNN can be borrowed
and applied to text data to extract text features, which is the basic concept of TextCNN. The
attention mechanism has been widely used in the processing of sequential data, allowing
models to assign different weights to inputs at different positions, thereby strengthening or
suppressing the importance of different words or markers, to better capture key information
in text. The 1D-CNN with an attention model combines the advantages of the CNN and
the attention mechanism to process text data more comprehensively. Specifically, the
1D-CNN with attention first captures local features in input data through convolution
operations. The convolutional kernel slides on the input data, enabling the recognition
of sequence features at different scales, which helps the model understand the structure
and patterns of the text. At the same time, the attention mechanism is used to enhance
the output of CNN convolutional layers. It allows the model to focus on specific parts of
the input sequence and focus more on information that is important for solving the task.
Through convolutional layers, the model can capture features at different scales in the text,
and through attention mechanisms, the model can assign different weights to features at
different positions, allowing the model to consider both local and global information, thus
better understanding the entire sequence. This enables the 1D-CNN with the attention
model to have stronger expressive power and performance in text-processing tasks.

2.5. Bidirectional Long Short-Term Memory

To more effectively capture sequence dependencies in RNA sequences, this study in-
troduced the bidirectional long short-term memory network (BiLSTM) as a key component.
The number of hidden states for each BiLSTM unit is set to 6, and a bidirectional structure
that includes two layers of BiLSTM is constructed. Bidirectional LSTM not only considers
the contextual information before each moment but also considers the contextual informa-
tion after each moment, providing more comprehensive sequence information for RNA
subcellular localization tasks. By introducing BiLSTM, the model can better understand the
relationships between different parts of RNA sequences, including temporal and contextual
dependencies. This helps the model to more accurately capture features and patterns in
RNA sequences, thereby improving the performance of RNA subcellular localization.

2.6. Performance Evaluation Metrics

To evaluate the classification performance of the PreSubLncR predictor, we chose
to calculate four metrics: accuracy, precision, recall, and F1-score values, as shown in
Equations (2)–(5):

Accuracy =
Num(Pred = Label)

Num(samples)
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score =
2 × precision × recall

precision + recall
(5)

where TP represents the number of true positives, FP represents the number of false
positives, TN represents the number of true negatives, and FN represents the number of
false negatives. True positives occur when the model correctly identifies an instance as
positive. False positives are instances where the model incorrectly identifies an instance as
positive when it is actually negative. True negatives are cases where the model correctly
identifies an instance as negative. False negatives occur when the model incorrectly
identifies an instance as negative when it is actually positive. These metrics provide
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insights into different aspects of the classifier’s performance. Accuracy measures the
overall correctness of the classifier’s predictions, Precision quantifies the proportion of true
positive predictions among all positive predictions made by the classifier, recall measures
the proportion of actual positive instances that are correctly identified by the model, and F1-
score is the harmonic mean of precision and recall, providing a single metric that balances
the two. Considering these metrics together can help us evaluate the performance of the
classifier more comprehensively and provide a direction for improving the classifier.

2.7. Hyperparameter Optimization

In the training process of PreSubLncR, AdamW is used as an optimizer to update the
weight parameters of PreSubLncR with an initial learning rate of 0.01. ReLU is used as a
transfer function. The reason why we chose the ReLU function as a transfer function is that
it is simple and easy to calculate, and it can effectively alleviate the gradient disappearance
problem and speed up the training of the model. To avoid overfitting, dropouts with rates
of 0.2 and 0.3 were applied in the embedded and fully connected layers, respectively. Focal
loss is used as a loss function to solve the class imbalance problem.

During the experimental process, 5-fold cross-validation was used, and hyperparame-
ter tuning was performed in conjunction with F1-scores [42–45]. Multiple hyperparameters
have a significant impact on model performance, including the k-value in k-mer, the dimen-
sion of pre-trained word2vec embedding vectors, the initial learning rate, and the packet
loss rate. It should be noted that the sequence encoding method has a significant impact on
the experimental results. Therefore, we adopted a grid search strategy to find the optimal
combination of hyperparameters [46–48]. When selecting hyperparameters, we filtered
from the following candidate values: a k value selected from {1, 2, 3, 4, 5, 6}, the dimension
of pre-training vector selected from {32, 64, 128}, the dimension of the bidirectional LSTM
hidden layer selected from {2, 4, 6, 8, 16, 32}, and the dimension of two hidden layers of
the final fully connected network selected from {32, 64, 128, 256}. Through grid searching,
the optimal hyperparameter combination was found, and it was ultimately determined
that in the experiment, when the k-value was 3, the dimension of the pre-training vector
was 64, the dimension of the bidirectional LSTM hidden layer was 6, and the dimensions
of the two hidden layers of the final fully connected network were 128 and 64, the model
performance reached its optimal state.

3. Results and Discussion
3.1. Comparison of Different k-mer Features

In this paper, we used a 5-fold cross-validation method to reliably estimate the perfor-
mance of our PreSubLncR predictor. Specifically, the benchmark dataset was divided into
five equally sized subsets, four of which were used for model training and the remaining
one was used as test data for model performance evaluation. The process was repeated five
times, with each repeat selecting a different subset. In the experiment, it was found that the
k value of k-mer had a significant impact on the results. To determine the most suitable
k-mer value, a series of experiments was conducted using different k-mer lengths of k = 1,
2, 3, 4, 5, and 6 for encoding. The experimental results indicate that different k-mer values
have different effects on the predictive performance of RNA subcellular localization. In
Figure 2, the experimental results are shown, and the predictive performance of the model
is relatively poor when using smaller k values, such as k = 1 and k = 2. This may be because
these shorter k-mers are unable to fully capture key information in RNA sequences, result-
ing in the lower accuracy of the model. However, the optimal predictive performance was
observed at k = 3. This indicates that a k-mer length of k = 3 can better capture contextual
information of RNA sequences, thereby improving the accuracy of the model. Therefore,
k = 3 was selected as the optimal k-mer value for further analysis. It is worth noting that
using longer k-mer values, such as k = 4, 5, and 6, does not further improve the predictive
performance of the model. This may be because longer k-mer values may introduce noise
or excessive features, reducing the model’s generalization ability. Therefore, in this study,
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a k-mer length value of k = 3 was ultimately determined as the optimal choice for RNA
subcellular localization prediction based on word2vec encoding. This result indicates that
the k-mer length with k = 3 performs best in balancing information capture and feature
dimension control.
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3.2. Ablation Experiment

To verify the effectiveness of the model and its components, we performed a five-fold
cross-validation experiment on a benchmark dataset, including a benchmark model and differ-
ent ablation models. Firstly, one-dimensional convolution was used as the benchmark model.
Subsequently, attention mechanisms and bidirectional LSTM were gradually added to form
different ablation models, namely, CNN, CNN + attention, and CNN + attention + BiLSTM.
The experimental results are listed in Table 2, and it is observed that the model incorporating
the attention mechanism outperforms the baseline model in terms of overall performance.
The precision reached 0.736, indicating that the introduction of the attention mechanism sig-
nificantly improved the performance of RNA subcellular localization models. Subsequently,
a bidirectional LSTM was added to form a CNN + attention + BiLSTM ablation model,
which further improved its performance and achieved the highest accuracy and F1 score. This
once again proves that the introduction of a bidirectional LSTM layer is crucial for capturing
sequence context information in this task. Therefore, the experimental results clearly show
that the introduction of the attention mechanism and bidirectional LSTM layer had a positive
impact on the performance of the model, making it perform well in RNA subcellular local-
ization tasks. We analyzed the performance enhancements, which can be attributed to the
following two factors. The first factor is that the PreSubLncR predictor combines the features
of a CNN and BiLSTM, allowing it to efficiently capture local features and bidirectional
dependencies in lncRNA sequence data. The second factor is related to the introduction of the
attention mechanism to focus on key information, so CNN + attention + BiLSTM can improve
prediction performance.



Processes 2024, 12, 666 8 of 12

Table 2. Results of ablation experiments.

Accuracy Precision Recall F1-score

CNN 0.579 0.627 0.532 0.557
CNN + attention 0.614 0.736 0.557 0.589
CNN + attention + BiLSTM 0.667 0.754 0.620 0.654

3.3. Comparison with Other Predictors

To highlight the superior performance of the PreSubLncR method, this study conducted
a comprehensive comparison with the lncLocator, iLoc-lncRNA, Locate-R, DeepLncLoc,
and GraphLncLoc methods on an independent test set. The independent test set was
obtained from the lncSLdb database. A wide range of performance metrics were used to
evaluate its performance, including accuracy, precision, recall, and F1 score. These metrics
were used to evaluate the model’s classification performance, prediction accuracy, and
performance in multi-class problems. In Table 3, the PreSubLncR method performs well
on these performance metrics, achieving the highest accuracy and F1 scores. Figure 3 is
a confusion matrix plot showing the classification results of the PreSubLncR method on
different classes relative to other methods. The confusion matrix diagram clearly shows the
classification accuracy and error of the PreSubLncR method relative to other methods in
each category. This further highlights the excellent performance of the PreSubLncR method
in RNA subcellular localization problems. Therefore, the PreSubLncR method performs
well in the subcellular localization of lncRNAs, indicating that it has excellent performance
in prediction accuracy and multi-class problem handling.
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Table 3. Performance comparison results of the PreSubLncR predictor based on the independent test
set with other methods.

Prediction Accuracy Precision Recall F1-score

lncLocator 0.421 0.374 0.325 0.289
iLoc-lncRNA 0.509 0.524 0.470 0.474
Locate-R 0.368 0.362 0.321 0.321
GraphLncLoc 0.579 0.736 0.557 0.584
PreSubLncR 0.667 0.754 0.620 0.654

To evaluate the performance of the method proposed in this study on each category, a
series of comparisons were conducted on an independent test set, including the PreSubLncR
method, iLoc-lncRNA, and DeepLncLoc. Tables 4 and 5, respectively, show the comparison
results of the PreSubLncR method with the iLoc-lncRNA and DeepLncLoc methods in
terms of accuracy, recall, and F1 scores for each category. It is evident that the F1 values of
the PreSubLncR model are higher than those of iLoc-lncRNA in the cytoplasm, nucleus,
ribosome, and exosome categories. Still, in the exosome category, the F1 values of the
DeepLncLoc model are slightly higher than those of the PreSubLncR model. This indicates
that the PreSubLncR model is competitive overall, especially in multiple categories.

Table 4. Comparison of PreSubLncR and iLoc-lncRNA methods on an independent test set.

iLoc-lncRNA PreSubLncR

Precision Recall F1-score Precision Recall F1-score

Cytoplasm 0.553 0.700 0.618 0.680 0.750 0.710
Nucleus 0.467 0.350 0.400 0.580 0.700 0.640
Ribosome 0.333 0.300 0.316 0.750 0.600 0.670
Exosome 0.600 0.429 0.500 1.000 0.430 0.600

Table 5. Comparison of PreSubLncR and DeepLncLoc methods on an independent test set.

DeepLncLoc PreSubLncR

Precision Recall F1-score Precision Recall F1-score

Cytoplasm 0.800 0.400 0.533 0.680 0.750 0.71
Nucleus 0.400 0.800 0.533 0.580 0.700 0.64
Ribosome 0.500 0.400 0.444 0.750 0.600 0.67
Exosome 1.000 0.571 0.727 1.000 0.430 0.60

4. Conclusions

In this study, we introduce PreSubLncR, a novel predictor for predicting the subcellu-
lar localization of lncRNAs. Our results show the superiority of PreSubLncR over other
competing methodologies. This remarkable performance stems from three pivotal factors:
(1) The fusion of k-mer and word2vec technologies enables a more exhaustive exploration
of the feature landscape within lncRNA sequences, thereby enhancing the richness and
diversity of feature representations. This integrative approach facilitates a comprehensive
understanding of sequence characteristics, augmenting the predictive power of our model.
(2) The incorporation of multi-scale convolution and attention mechanisms empowers
PreSubLncR to efficiently extract and assimilate crucial features embedded within the se-
quences. By adaptively focusing on salient regions of the input, these mechanisms facilitate
enhanced feature learning, thereby improving the discriminative capacity of the model.
(3) The utilization of bidirectional LSTM architecture allows for the effective capture of
long-term dependencies inherent in lncRNA sequences. Through bidirectional informa-
tion transfer, our model gains a more holistic understanding of sequence characteristics,
thereby refining its predictive accuracy. Furthermore, when subjected to evaluation on an
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independent test set, PreSubLncR consistently outperformed existing methods, showcasing
exceptional accuracy and robustness. These findings not only underscore the efficacy of our
proposed model but also highlight its potential for accurately predicting the subcellular
localization of lncRNAs in diverse biological contexts. PreSubLncR represents a significant
advancement in the field of lncRNA localization prediction, offering a potent combination
of advanced techniques and superior performance. We anticipate that our model will
catalyze further research endeavors aimed at elucidating the functional roles of lncRNAs
and their implications in various biological processes and disease contexts.
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