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Abstract: Chemical process control relies on a tightly controlled, narrow range of margins for critical
variables, ensuring process stability and safeguarding equipment from potential accidents. The
availability of historical process data is limited to a specific setpoint of operation. This challenge
raises issues for process monitoring in predicting and adjusting to deviations outside of the range of
operational parameters. Therefore, this paper proposes simulation-assisted deep transfer learning
for predicting and optimizing the final purity and production capacity of the glycerin purification
process. The proposed network is trained by the simulation domain to generate a base feature
extractor, which is then fine-tuned using few-shot learning techniques on the target learner to extend
the working domain of the model beyond historical practice. The result shows that the proposed
model improved prediction performance by 24.22% in predicting water content and 79.72% in
glycerin prediction over the conventional deep learning model. Additionally, the implementation
of the proposed model identified production and product quality improvements for enhancing the
glycerin purification process.

Keywords: glycerin purification; few-shot learning; production optimization; simulation-assisted

1. Introduction

Biodiesel, a renewable energy source, is gaining prominence as the world seeks
sustainable alternatives to fossil fuels. Its production, derived from natural sources such
as vegetable oils, animal fats, and recycled greases, has grown significantly in recent
years [1]. This increase is primarily driven by global commitments against climate change
and the push towards greener energy sources. The production process of biodiesel involves
transesterification, where fats and oils are converted into fatty acid methyl esters. An
often-overlooked by-product of biodiesel production is glycerin. For every ten pounds of
biodiesel produced, approximately one pound of glycerin is generated [2]. Despite being a
by-product, glycerin holds immense value in various industries. However, the glycerin
produced typically contains impurities and contaminants, necessitating purification to meet
quality standards. This purification process, which removes unwanted substances such
as water and fatty acids, faces challenges due to a limited operating domain and a narrow
control range. These constraints hinder its ability to effectively and efficiently remove the
wide array of impurities found in glycerin by-products from biodiesel production, posing a
significant challenge in consistently producing high-quality glycerin [3].

Accurately predicting process efficiency is crucial, especially under operating condi-
tions that extend beyond the standard monitoring range. This complexity raises challenges
in determining controller actions to compensate for process disturbances while ensuring
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the desired product quality is maintained [4]. A prime example is observed in glycerin pu-
rification. Critical factors such as the composition of the feed stream, the water-to-glycerin
ratio, the performance of the evaporation unit, and adjustments to manipulated variables
in the distillation column must be meticulously managed. These adjustments are necessary
not only to maintain the quality of refined glycerin but also to ensure that the controller
actions are effective within the unit operation constraints.

Expert engineers frequently modify these conditions, relying on their specialized
knowledge and on-site experimental data [5]. However, the limited scope of most operating
variables can often hamper the efficiency of glycerin purification. The complexity of the
process increases due to the multitude of variables influencing operating conditions, which
can lead to process instability [6]. Consequently, this challenge has led researchers to turn
their focus toward utilizing artificial intelligence (AI) and data-driven techniques [7]. These
methods offer the ability to analyze large datasets, identify patterns, and make predictions
or real-time decisions using the information provided [8]. Even if the prediction skill of the
AI-based method is high, the result can be deviated by multiple characteristics of process
operation [9].

In chemical process optimization, data can be categorized by two criteria: vari-
ance/volume tradeoff and challenges from the data characteristics, as illustrated in Figure 1.
In the case of the variance/volume tradeoff, the ‘Large-scale operation data’ exemplify a
limited operating domain, with datapoints predominantly clustered around the setpoint,
indicating a narrow focus on operational conditions under normal circumstances with
high volume and low variance. Conversely, the ‘Limited data’ represent a limited amount
of data, with sparse datapoints reflecting rare yet significant operational states that are
critical to process stability and quality. The dearth of data in both cases—the limited
operating domain and the limited number of available datapoints—not only poses substan-
tial challenges for process monitoring and control, especially when it comes to adapting
to and managing deviations that fall outside the usual operational parameters, but also
makes the prediction model unreliable outside the experienced domain. On the other hand,
when considering challenges from data characteristics, four commonly found problems are
uncertainty, multi-rate information, cyclic operation, and limited data [10].
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Figure 1. Data characteristics and challenges commonly found in chemical operations. Figure 1. Data characteristics and challenges commonly found in chemical operations.
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Researchers have proposed multiple innovative techniques to resolve these challenges.
Regarding uncertainty, Panjapornpon et al. introduced a deep learning model constructed
using a compensation architecture for energy optimization that addresses measurement
uncertainties [11]. Similarly, Wiebe, Cecilo, and Misener integrated data-driven stochastic
degradation models with optimization strategies, using robust techniques to manage
uncertainties in equipment degradation. Lastly, Moghadasi et al. proposed a gradient-
boosting machine with the density-based spatial clustering of applications with noise to
optimize steam consumption in the gas sweetening process [12]. These contributions show
that the advancement of the data-driven method can be significantly useful in resolving the
challenges facing industrial processes. However, a common thread among these techniques
is their reliance on large datasets. The integration of data cleaning methods and network
architecture modification can remove the contribution made by process disturbances, but it
requires a lot of training information, as well as careful tuning of the network parameters, to
ensure that the resulting model accurately reflects the underlying system dynamics without
being overly influenced by noise or irrelevant data [13]. This approach typically involves
iterative refinement of both the data preprocessing steps and the network architecture to
strike a balance between the model complexity and generalization ability [14].

When encountering complex scenarios such as in the chemical industry, the framework
of the AI-based model may change according to the challenges that the research focuses
on [15]. Han et al. proposed a feed-forward neural network (FNN) with data envelopment
analysis (DEA) for the optimization of ethylene production [16]. The integration of DEA
with a deep learning model can help in optimization, but based on its architecture, the
network might not effectively capture all nonlinear relationships. This can be resolved using
the recurrent neural network, such as long short-term memory (LSTM) [17]. The network
has a recurrent interval state that helps in handling the long-term dependency found in the
data [18]. The performance of the LSTM network can be enhanced by integrating with an
attention mechanism (AM). AM-LSTM is particularly useful in tasks where the sequence
is long and not equally important along the sequence, by allowing the network to weigh
diverse parts of the input differently [19]. However, despite these advancements, AM-
LSTM networks still face challenges in terms of adaptability and scalability, particularly
when dealing with limited data scenarios, both in terms of quantity and domain-specific
data. To resolve this issue, Han et al. proposed a hybrid approach using Monte Carlo (MC)
simulation to expand the working domain of the LSTM network [20]. By simulating a wide
range of possible scenarios, the MC-LSTM model can effectively deal with limited data
situations. Since it provided an improvement, it is important to note that MC simulation is
inherently probabilistic, relying solely on random sampling techniques. The integration of
digital twin technology offers a more holistic and accurate simulation [21]. Digital twins
create dynamic virtual representations of physical systems, allowing for more detailed and
realistic scenario modeling while perfectly eliminating limited data problems [22]. Based
on the aforementioned literature, an overview of research on AI applications in production
capacity analysis is presented in Table 1 where several research gaps can be identified:

• Adaptability to limited and sparse data: Existing models, including advanced neural
networks, often require large datasets for training. This necessity poses a challenge in sce-
narios where data are sparse or limited, as is common in chemical process optimization.

• Improvement beyond Monte Carlo simulations: While the MC-LSTM model represents
an advancement in dealing with limited data scenarios, the reliance on probabilistic,
random sampling techniques indicates a gap. Exploring alternatives or enhance-
ments to Monte Carlo simulations that offer deterministic modeling approaches could
provide more reliable and accurate predictions.

• Integration of digital twin technology: The introduction of digital twin technology
for more accurate scenario modeling is a promising direction. However, the seamless
integration of this technology with AI-based models, particularly in optimizing the
chemical process and production capacity, remains a gap.
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Table 1. Overview of research on production capacity optimization.

Reference Year Application Method
Focus

PO LD

Geng et al.
[23] 2018 Ethylene and PTA

production
Extreme learning machine with
interpretative structural modeling ✓

Han et al.
[24] 2019 PTA solvent

system
LSTM integrated with an
attention mechanism ✓

Han et al.
[25] 2019 Ethylene and PTA

production
Extreme learning machine with
affinity propagation ✓

Geng et al.
[26] 2020 Ethylene process Improved CNN based on

cross feature ✓

Han et al.
[20] 2023 Ethylene process LSTM with Monte Carlo

simulation ✓ ✓

PO refers to production optimization, while LD denotes limited data challenges.

Therefore, this study proposes a model development framework using LSTM with
simulation-assisted few-short learning (FSL-LSTM) for predicting and optimizing the
glycerin product purity of the glycerin purification process and water removal of the
evaporating unit under feed uncertainty and limited data. The model is trained to create
a support feature extractor and weight initializer using a simulated support set, which
is then used to fine-tune the prediction model in the limited data domain using a query
set obtained from the large-scale glycerin purification unit. The main contribution of the
proposed procedure is summarized as follows:

1. Develop a glycerin purification process simulation model to determine optimal oper-
ating conditions and generate data for the support set.

2. Formulate a robust predictive model based on deep learning constructed using LSTM
structure fine-tuning based on few-shot learning techniques for tracking the refined
glycerin production capacity and water content of refined glycerin under multiple
operating conditions.

3. Reveal the relationship between the input variables and the target variables of the
prediction model to enhance the production capacity and water content using the
proposed model.

The remainder of this work is divided into the following sections: Section 2 explains
the concept of modeling procedures in developing FLS-LSTM, which includes few-shot
learning, LSTM architecture, and Bayesian optimization. Section 3 presents the case study
utilized in this study, incorporating a system description and comparative analysis of
support and query data. Section 4 shows the performance of the proposed model in
predicting glycerin production and water content, the accuracy–iteration tradeoff, and the
production optimization results. Finally, conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Simulation-Assisted Few-Shot Learning

Few-shot learning stands as a technique enabling models to understand or infer
information from a very limited amount of data [27], which is the main focus of this study.
Figure 2 depicts the schematic of a simulation-assisted few-shot learning system designed to
enhance the learning process by integrating simulated support data. The system comprises
several key components:

1. Support and query data: The model operates on two datasets, including the support
data (xs), which are excess data used to pre-train the model obtained by simula-
tion, and the query data (xq), which refer to the limited data used to fine-tune and
evaluate the model’s generalization using actual data from the large-scale glycerin
purification process.

2. Deep neural network: A deep neural network, in this case, variational autoencoder
(VAE), functions as a feature extractor. The VAE typically consists of two parts: an
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encoder that reduces the input data to a lower-dimensional space and a decoder that
attempts to reconstruct the input data from this latent space [28]. The loss function
of VAE can be split into two components. The first component is the reconstruction
loss (Lrec). For a given datapoint Xi, the reconstruction loss is computed as the mean
squared difference between Xi and its reconstructed counterpart (X̂i), formulated as
Equation (1). The particular component provides an incentive for the reconstructed
output to closely replicate the original input.

Lrec(θs, xi) =
∥∥Xi − X̂i

∥∥2 (1)

Next, the Kullback–Leibler divergence (LKL) is calculated as Equation (2), quantifying
the discrepancy between the approximate posterior distribution and the assumed
prior distribution [29]. The encoder is tasked with outputting the means (µ) and the
logarithm of the variance (σ) of the latent dimensions, ensuring numerical stability.

LKL(ϕs, Xi) =
1
2∑J

j=1 (σj(X)2 + µj(X)2 − 1 − log σj(X)2) (2)

Through the aggregation of these losses across the datapoints within the dataset, the
overall loss function can be calculated as Equation (3).

Lvae(θs, ϕs; X) =
1
N ∑N

i=1 (Lrec(θs, Xi) + LKL(ϕs, Xi)) (3)

where θs and ϕs refer to the learnable parameters of the decoder and encoder networks,
respectively.

3. Normalization block: Within the neural network, a normalization procedure is applied
to regulate the feature scaling. This can significantly help the model maintain and
stabilize the training dynamics. Both input and output variables are rescaled into zero
to one (a = 0, b = 1) using Equation (4).

Xrescaled = a +
[

X − minx

maxx − minx

]
(b − a) (4)

4. Support initializer and extender predictor: The initializer is used to create the initial
predictor weights (Ws) based on the support data, embedding the gained knowl-
edge into the model. This part of the model was constructed using the LSTM layer
(discussed in Section 2.2) for both domains. Subsequently, the extended predictor
undergoes a few-shot learning phase using the limited query data to predict the
final output (yq). In this step, partial layer freezing is applied to the initial weights
to prevent overfitting and preserve previous knowledge gained from the support
data while adapting to the specific query data. Only the modifying weights (Wq)
are adjusted during fine-tuning using the loss gradient from the query data, where
the loss is a half-mean-squared error (HMSE) calculated by Equation (5). The local
learning rate of the initial weight is set to zero during the fine-tuning step.

LHMSE =
1

2N

M

∑
i=1

(yi − ŷi)
2 (5)

where yi is the prediction value, ŷi is the target value, M is the total number of
responses in yi, and N is the total number of observations in yi. The learnable pa-
rameters of FSL-LSTM are updated using adaptive moment estimation (ADAM)
algorithms [30], as shown in Equation (6).

wt+1 = wt − ηgηl
m̂t√
v̂t + ε

(6)
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where ηg and ηI are the global (hyperparameter of the model) and local learn-
ing rates of the model, ε is a small constant for numerical stability, and m̂t and
v̂t are the bias-corrected estimates of the first and second moments calculated by
Equations (7) and (8).

m̂t =
β1 · mt−1 + (1 − β1) · ∇wL

(1 − β1)
(7)

v̂t =
β2 · vt−1 + (1 − β2) · (∇wL)2

(1 − β2)
(8)

Finally, the gradient of the loss function with respect to the model parameters for the
fine-tuning step is calculated using Equation (9). The use of the local learning rate as
a binary switch in this context controls whether the specific parameters within the
network are updated or not during the fine-tuning phase [31]. When the weight vector
is the learnable parameter related to the support initializer and the local learning rate
is 0, it implies that the gradients do not contribute to the weight update, effectively
enabling selective training where certain parts of the model are kept static to retain
pre-trained knowledge [32]. In contrast, for the extended predictor, local learning
equal to 1 signifies that the weights are actively being fine-tuned.

∇wL =
∂L
∂w

{
w = ws, ηl = 0
w = wq, ηl = 1

(9)
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The proposed framework begins with using the information from the query set to set
up the simulation boundary. This is followed by the development of the simulation-assisted
model using the UniSim Design Suite to generate a support set (simulation data). The
process continues with data normalization performed on both domains. Next, the model
uses the information from xs to train the support feature extractor and initializer, preparing
the model with initial parameters that can be further refined. Bayesian optimization is
applied in this step to find the best combination of hyperparameters such as the hidden
node, learning rate, and regularization factor.

Once the support data training is completed and the optimal hyperparameters for the
support set are identified, the fine-tuning of the FSL-LSTM model using xq is performed.
Again, Bayesian optimization is applied to find the hyperparameters for the query set.
Finally, the process concludes with the final FSL-LSTM model, which is then evaluated
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for its performance using metrics such as the coefficient of determination (R2), mean
squared error (MSE), and mean absolute error (MAE), calculated by Equations (10)–(12),
respectively. These metrics provide a quantitative measure of how well the model is
performing, indicating its accuracy and precision in predicting glycerin production and
water content based on the limited query data. The overall framework for developing the
FSL-LSTM framework is summarized in Figure 3.

MSE =
1
n

n

∑
i=1

(yi −
⌢
y i)

2
(10)

MAE =
1
n

n

∑
i=1

∣∣∣yi −
⌢
y i

∣∣∣ (11)

R2 = 1 − ∑i (yi − ŷ)2

∑i (yi − y)2 (12)
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In summary, each step in the framework of FSL-LSTM plays a vital role in ensuring
that the model is not only pre-trained on a broad range of simulated data but also finely
tuned to real-world scenarios. This modeling approach allows for a more robust and
adaptable model capable of handling complexities and limited data problems without
raising concerns about domain differences.

2.2. LSTM Network Architecture

Handling complex relationships, such as the information from industrial processes,
requires a network that can capture temporal dynamics and long-term dependency [28].
In recent years, LSTM has emerged as a fundamental component in the field of deep
learning, especially for tasks that require processing sequential and time-series data. An
LSTM network consists of a sequence of recurrent modules called LSTM cells. Every cell
comes with gates, which are systems that control the flow of information inside the LSTM
structure. These gates—the forget gate, input gate, and output gate—allow LSTMs to
selectively remember and forget patterns over long sequences of data, as visualized in
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Figure 4. Inside the LSTM layer, the long-term memory is updated at the forget gate using
the cell state of the previous timestep using Equation (13).

ft = sigmoid(Wx f Xt + Wc f ht−1 + b f ) (13)
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Then, the input gate filters out unnecessary information, and only a significant part of
the input will perform point-wise multiplication with the old state variable to create a cell
candidate using Equations (14)–(16).

it = sigmoid(WxiXt + Wciht−1 + bi) (14)

gt = tanh(WCXt + WCht−1 + bc) (15)

Ct = Ct−1 × ft + it × gt (16)

At the output gate, the updated cell state is used to determine the final values of the
hidden state for the next layers using Equations (17) and (18).

ot = sigmoid(WXOXt + WCOht−1 + bo) (17)

ht = ot × tanh(Ct) (18)

A state Ct contains a unit of LSTM at the time t, and it is controlled through the forget
gate ft, input gate it, candidate cell gt, and output gate ot; xt is the vector of input variables
at the time t, and ht−1 is the previous value of the hidden state.

2.3. Bayesian Optimization for Hyperparameter Tuning

Bayesian optimization acts as a strategic tool in this process, seeking to fine-tune the
hyperparameters by iteratively minimizing the objective function, which is used in this
study for validating the MSE. Figure 5 illustrates the utilization of Bayesian optimization
for tuning the hyperparameters in a glycerine purification process model. The process
begins with the training model acting as an observer to evaluate the initial combination
of hyperparameters for fitting the surrogate model (Gaussian process regression). The
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expected improvement (EI) acquisition function, calculated using Equation (19), then
guides the selection of subsequent hyperparameters, aiming to maximize the expected
improvement over the best current validation MSE. This is particularly useful in a few-shot
learning scenario, where the model needs to generalize well from a limited amount of
data. By carefully choosing where to sample next, EI helps to efficiently navigate the
hyperparameter space specified in Table 2, reducing the number of iterations needed to find
an optimal set of hyperparameters compared to optimization techniques such as grid search.
The process is performed iteratively until the specified iteration is reached (50 iterations),
indicating that the model has potentially reached an optimum. The outcome of this process
is a set of hyperparameters finely tuned to the few-shot learning task, which will be used
as a final model for glycerine production and water content optimization.

EI(x, Q) = EQ[max(0, µQ(xbest)− f (x))] (19)

where xbest is the location of the lowest posterior mean and µQ(xbest) is the lowest value of
the posterior mean.
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Table 2. The search domain for hyperparameter tuning using Bayesian optimization.

Hyperparameters Value

Number of FNN hidden layers [1–100]
Number of LSTM hidden node [1–5]
Number of LSTM hidden layers [1–100]
Number of LSTM hidden node [1–5]

Number of NARX hidden layers [1–100]
Delay of NARX network [1–5]

Number of RNN hidden layers [1–100]
Delay of RNN network [1–5]

Initial learning rate [1 × 10−1–1 × 10−5]
L2 Regularization [1 × 10−1–1 × 10−4]

Max training iteration 500
Optimizer [ADAM, RMSProp, SDG]

3. Glycerin Purification Case Study
3.1. Process Description

Figure 6 illustrates the process flow diagram of the glycerin purification process
under study. The process comprises three main units: neutralization, evaporation, and
glycerin distillation. Initially, the crude glycerine feed, containing glycerin, water, fatty
acids, and other impurities, is preheated in a heat exchanger. This pre-treatment step is
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crucial before sending the mixture to the neutralization unit. In the neutralization unit, a
sodium hydroxide solution (at a ratio of 0.5 mol/mol and room temperature) is used to
adjust the pH to a range of 7.0 to 9.0.
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Since the water content significantly affects the purity of glycerin during production,
the neutralized mixture is then forwarded to the evaporation unit. Here, the mixture
undergoes drying through a water evaporation process. Since water has a much lower
boiling point than glycerin, this step effectively reduces the water content. The evaporator’s
temperature must be carefully adjusted according to the feed compositions to achieve the
desired water content, making evaporation a critical stage in the process. The target is to
reduce the water content of the mixture to below 2% before proceeding to the next stage.
Subsequently, the glycerin, now with reduced water content, is sent to a distillation column
for further purification. The distillation process aims to achieve a glycerin purity of 98–99%.
The column used for this purpose is a five-stage structurally packed column equipped
with a two-stage rectifier and a total condenser. The primary role of each unit operation
included in glycerin purification is given in Table 3.

Table 3. Role of each simulation unit operation in the glycerin purification process.

Operation Equipment Unit Duty

Neuralization process Gibbs reactor S-100 A vessel that occurs in a transesterification reaction to obtain an
outlet glycerin stream.

Evaporation process

Heater H-101 Heat the mixed glycerin stream to 120 ◦C
Evaporator 1 S-101 Evaporate vapor stream and liquid glycerin stream
Cooling C-100 Condense glycerin in the vapor stream
Evaporator 2 S-102 Evaporate condensed glycerin and vapor of impurity
Pump P-101 Boost pressure

Purification process
Distillation column D-100 Purify glycerin to the desired purity
Condenser C-101 Condense an alloy glycerin to distillate
Reboiler H-103 Heat glycerin returns to distillation and to the bottom product

In this study on glycerin purification, a series of input variables are identified to
influence the output characteristics of the process. The glycerin and water content in the
feed (X1 and X2) directly affect the quality of the output, as they determine the starting
composition of the purification process. The mass flow rate of the feed (X3) and the
distillation column feed rate (X5) are crucial for the throughput of the system, influencing
both the production capacity (Y1) and the efficiency of the water removal (Y2). The inlet
temperature of the first heat exchanger (S-101) and the bottom temperature of the distillation
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column (X6) are key thermal inputs that drive the separation process, while the top and
bottom pressures of the distillation column (X7 and X9) and the top temperature of the side
stream (X10) are indicative of the energy and material balances within the system. The
relationship between these inputs and the outputs—namely, the production capacity and
the remaining water content in the purified glycerin—illustrates the complex interplay of
thermal and material transfer within the purification process, where the list of input and
output variables used in this study is given in Table 4.

Table 4. List of input and output variables used in this study.

No. Variable Name No. Variable Name

X1 Glycerin content in feed, wt.% X7 D-100 bottom pressure, bar
X2 Water content in a feed, wt.% X8 D-100 top temperature, ◦C
X3 Feed mass flow rate, kg/h X9 D-100 top pressure, bar
X4 S-101 inlet temperature, ◦C X10 Top temperature of side steam D-100, ◦C
X5 Distillation column feed rate, kg/h Y1 Remaining water at evaporator outlet, wt.%
X6 D-100 bottom temperature, ◦C Y2 Production capacity, kg/h

3.2. Process Simulation Modeling

The simulation of the glycerin purification process was developed in the UniSim
Design Suite R460.1 software using the nonrandom two-liquid thermodynamic and fluid
model. To create comprehensive datasets, we utilized a co-simulation environment, inte-
grating MATLAB R2023b with the UniSim Design Suite process simulator. This approach
enabled us to simulate various process conditions, generating a substantial amount of data
with 1000 sample points. Such a method ensures that our simulated data (support data)
adequately represent the actual operational conditions (query data).

To verify that the data obtained from digital twins can represent the real system, this
study carried out the Wilcoxon rank sum test [33]. The heatmaps provided in Figure 7a,b
offer a comprehensive visual assessment of the Wilcoxon rank sum test results applied to
the virtual data generated by the digital twins. The p-values shown in Figure 7a, which are
uniformly above the 0.05 significance threshold at 1000 generated samples, suggest that the
differences observed in the median values of the digital twin data and the real system data
across 1000 samples are not statistically significant. The rank sum test compares the median
of the two samples by considering the ranks of all observations. A higher p-value implies
that the probability of observing the data under the null hypothesis (the hypothesis that
there is no difference between the distributions) is high. Consistently accepted hypotheses
in Figure 7b, indicated by zeros (null hypothesis), reinforce the p-value findings. This
binary heatmap indicates that for every instance, the null hypothesis posits that the data
from the digital twin and the real system are from the same distribution. The alignment
between high p-values and the acceptance of the null hypothesis across all tested instances
provides robust evidence that the digital twin is capable of producing data that statistically
reflects the real behavior of the system.

During the simulation, the crude glycerin feed compositions varied. The adjustments
included a range of 10–20% water content, 80–90% glycerin content, 1–2% Matter Organic
Non-Glycerol (MONG) content, and an acidity content between 0.06 and 0.1%. Addition-
ally, the feed rate of the crude glycerin was altered between 3700 kg/h and 4500 kg/h. To
replicate varying operational conditions, the top temperature of the distillation column, op-
erating at atmospheric pressure, was modified between 120 ◦C and 125 ◦C. The simulation
domain is summarized in Table 5.

Upon obtaining the 1000 data samples, the whole dataset was partitioned into distinct
sets for training, validation, and testing. The distribution was as follows: 80% for training,
10% for validation, and the remaining 10% for the test set. The 80% in the training set
was used to train the model, while the 10% in the validation set was used to evaluate the
objective performance during hyperparameter optimization. Finally, the last 10% of the
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testing dataset was applied to assess the performance of the final model after finishing the
training and hyperparameter tuning.
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Table 5. The parameter range on the glycerin purification process.

Name of Variable Units Setpoint Range

Feed crude glycerin
Feed mass flow rate kg/h 3000 [2500–4000]
Component
Glycerin wt.% 88 [80–90]
Water wt.% 10 [10–20]

Evaporator
Inlet temperature ◦C 120 [120–134]

Distillation column
Feed rate kg/h 2700 [2300–3000]
Top temperature ◦C 125 [125–130]
Top pressure bar 0.0025 [0.001–0.005]
Bottom temperature ◦C 160 [155–165]
Bottom temperature bar 0.0045 [0.002–0.007]
Return top temperature ◦C 134 [130–137]

The histograms in Figure 8 display a comparison of simulated and actual operational
data, providing insight into the potential to broaden the operating range of the process.
Areas of strong overlap between support and query data indicate close alignment, suggest-
ing the simulation reflects the validated operational range accurately, suggesting a high
degree of correlation between the simulated environment and real-world operations. The
proximity of the mean values across various parameters implies that the simulation can
effectively mirror the actual process, making it a valuable tool for exploring extensions
to the operating domain. Densities in the histograms suggest the frequency of certain
conditions in both sets of data; when simulation data are denser at the extremes, it may
indicate the potential for stable operation beyond currently observed limits.
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4. Result and Discussion
4.1. Water Content and Production Capacity Prediction Result

The hyperparameter optimization applied to the FSL-LSTM using nine selected
hyperparameters is shown in Figure 9. These optimized hyperparameters, chosen for
observation, include the number of hidden layers, the number of hidden nodes, the
initial learning rate, the L2 regularization, and the optimizer. As the number of iterations
increases, the prediction error steadily decreases. This ongoing reduction indicates that
the optimization process is effectively identifying better hyperparameter combinations.
Notably, the FSL-LSTM model, after hyperparameter optimization, exhibits a significant
decrease in the minimum prediction error. This error drops from 0.1 to 0.02 as early
as iteration 2 and remains stable until reaching its lowest point, 0.0149, at iteration 22.
This minimum error value lies close to the estimated objective minimum line, further
validating the effectiveness of the optimization approach. The best set of hyperparameters
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is located at 22 iterations. One essential point is that the optimal value for the learning
rate is 0.0095. Furthermore, the remarkably low learning rate of 0.0095 highlights the
importance of carefully adjusting the model’s pre-trained knowledge during fine-tuning.
This minimal step size helps safeguard the valuable information encoded in the initial
model, allowing it to serve as a strong foundation for learning task-specific details without
causing a catastrophic forgetting of its general capabilities. This reflects that the pre-
trained knowledge gained from the support data significantly helps the model during the
training phase.
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The comparative results of water content prediction focusing on the testing perfor-
mance of the model are presented in Table 6: the performance accuracy of the testing model
of water content. The FSL-LSTM model demonstrates a notable R2 value of 0.995, thereby
evidencing its superior predictive accuracy compared to other traditional models: 0.793 for
FNN, 0.204 for RNN, 0.149 for NARX, and 0.801 for LSTM. The result demonstrates that
the FSL-LSTM provided a 24.2% improvement in R2 values in the case of the LSTM with
custom few-shot learning. When comparing the performance of advanced LSTM models,
the AM-LSTM and MC-LSTM also show substantial predictive accuracy, with R2 values of
0.918 and 0.849, respectively. The FSL-LSTM, however, surpasses the AM-LSTM with an R2

value improvement of 8.3%, underscoring the significant impact of the few-shot learning
approach in refining predictive performance. The FSL-LSTM model, which employs a
digital twin to generate data, shows a 17.2% improvement in R2 value over the MC-LSTM.
This suggests that the synthetic data generated from the digital twin, when combined with
real-world fine-tuning, result in a model that is not only robust but also highly precise in
its predictions.
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Table 6. The performance evaluation results of water content prediction using a testing set.

Method MSE MAE R2

FNN 0.009 0.038 0.793
RNN 0.067 0.099 0.204

NARX 0.075 0.105 0.149
LSTM 0.009 0.043 0.801

AM-LSTM 0.004 0.051 0.918
MC-LSTM 0.004 0.037 0.849
FSL-LSTM 0.001 0.017 0.995

The effectiveness of the proposed model is further revealed by MAE values of 0.017,
thereby surpassing the MAE values of FNN, RNN, NARX, LSTM, AM-LSTM, and MC-
LSTM, which have MAE values of 0.038, 0.099, 0.105, 0.043, 0.0051, and 0.037, respectively.
In comparison to traditional LSTM, incorporating few-shot learning fine-tuning with a
simulation-assisted model reduced errors by 60% up to 83% when compared to other
models in the study. Additionally, in the case of MSE values, the FSL-LSTM model records
a minimal MSE value of 0.001, markedly lower than those recorded by FNN (0.009), RNN
(0.067), NARX (0.075), LSTM (0.009), AM-LSTM (0.004), and MC-LSTM (0.004) with an
error reduction of up to 98%.

Table 7 shows the comparative analysis for the glycerin production prediction using a
testing dataset of glycerin production predictions. The FSL-LSTM model attains an R2 value
of 0.895, outstripping FNN (0.541), RNN (0.309), NARX (0.397), LSTM (0.498), AM-LSTM
(0.562), and MC-LSTM (0.572), which is a 79.7% improvement in R2 values compared to
the traditional LSTM. Additionally, the R2 performance improvement for the glycerine
production prediction is higher than the improvement in water content.

Table 7. The performance evaluation result of glycerin production prediction using a testing set.

Method MSE MAE R2

FNN 0.011 0.054 0.541
RNN 0.028 0.056 0.309

NARX 0.036 0.055 0.397
LSTM 0.012 0.057 0.498

AM-LSTM 0.025 0.138 0.562
MC-LSTM 0.009 0.052 0.572
FSL-LSTM 0.006 0.050 0.895

In evaluating the MAE loss variable within this context, the FSL-LSTM model records
an MAE of 0.050, a value that is demonstrably lower than those recorded by FNN (0.054),
RNN (0.056), NARX (0.055), LSTM (0.057), AM-LSTM (0.138), and MC-LSTM (0.052).
Despite the marginal disparities among the training models, the FSL-LSTM model exhibits
a significantly reduced MAE value, exhibiting a 12.2% error reduction. Conclusively, the
MSE evaluation of the model for production capacity further corroborates the superiority
of the FSL-LSTM model. With an MSE value of 0.006, it presents a notable error reduction
of 50% compared to the LSTM model.

Figure 10a shows the predicted glycerin production capacity values from three dif-
ferent training models: the LSTM model, the FNN model, and the FSL-LSTM model,
compared with the actual values (represented by a black line). Among these, the FSL-LSTM
model (indicated by a red line) most accurately simulates changes in production capacity,
closely aligning with the actual values. In contrast, the predictions from the LSTM model
(shown in dark red) and the FNN model (depicted in orange) are less accurate, as evidenced
by the divergence of their respective lines from the actual values, where the FSL-LSTM can
track the abrupt process transition in changing production capacity.
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Figure 10b focuses on the prediction performance of water content using FSL-LSTM.
Here, the FSL-LSTM model is again notable for its accuracy, with its predictions (red
line) closely mirroring the actual values. The LSTM model, while capable of capturing
some characteristics of the actual data, falls short of the performance demonstrated by the
FSL-LSTM model. Even in the water content prediction, where the noise in the process
is relatively larger than the glycerin production prediction, the FSL-LSTM can accurately
predict the water content under this scenario.

4.2. Domain-Specific Testing Result Using Unseen Data

Table 8 provides an overview of the robustness of the FSL-LSTM model when assessing
its performance on data that extends beyond the training domain. The ‘simulated’ category
denotes scenarios that have never been operated before in real operational data. In this
case, the model exhibits an outstanding predictive accuracy for water content, with an R2

of 0.992 and a minimal MSE of 0.0004. For glycerin production under the same conditions,
the predictive strength of the proposed model is further underscored by an even higher R2

of 0.994 and a low MSE value of 0.0003.

Table 8. Robustness testing result of FSL-LSTM on extended data beyond training domain.

Output Type MSE MAE R2

Water content
Simulated 0.0004 0.012 0.992

Actual 0.005 0.033 0.910

Glycerin
production

Simulated 0.0003 0.007 0.994
Actual 0.014 0.069 0.790

When the ‘actual’ operational data, which are not fundamental simulation knowledge
from the digital twin and lie outside the training domain, are considered, the performance
of FSL-LSTM is slightly decreased in the water content prediction task. The impact is more
pronounced in the case of glycerin production prediction, where the R2 value decreases to
0.790. This reduction is not extreme when considering the high benchmark set by the model
in normal testing scenarios, where an R2 of 0.895 was achieved. The decrease in R2 can be
attributed to the model grappling with unique operational scenarios presented by the actual
data that extend beyond its trained and simulated experience. Despite this, it is important
to note that the performance of the FSL-LSTM model, even with these limitations, remains
higher than other methods evaluated under normal testing conditions. This suggests that
while the reduction in performance is discernible, it is relatively slight, and the model
maintains a degree of predictive resilience that surpasses conventional approaches.
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4.3. Accuracy–Iteration Tradeoff in Few-Shot Learning LSTM

Figure 11 shows the result of decreasing and increasing the number of iterations
in few-shot learning techniques. The model selection of FSL-LSTM is determined by
the tradeoff between accuracy improvement among two outputs. The best number of
iterations is obtained at two locations on this plot, 100 (maximum testing R2 of glycerin
production is located) and 440 iterations (maximum testing R2 of water content is located).
At 100 iterations, the testing R2 values of Y1 and Y2 are 0.995 and 0.895, respectively,
while the traditional LSTM performances without fine-tuning using few-shot learning are
0.801 for Y1 and 0.498 for Y2. The decision on accuracy–iteration in few-shot learning
is determined by the percentage of relative improvement (RI), which is calculated using
Equation (20).

RI =

[
BFSL−LSTM − BLSTM

BLSTM

]
× 100% (20)
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Figure 11. The tradeoff between accuracy improvement and the number of iterations used in few-
shot learning.

Denoted by the BFSL−LSTM is the testing R2 value of Y1 or Y2 from the few-shot
learning, and BLSTM is the testing R2 value of Y1 or Y2 from the traditional LSTM baseline.
Calculating the RI value is an essential step in assessing the performance gains achieved by
the FSL-LSTM model over the traditional LSTM baseline, which provides a quantifiable
measure of improvement in predictive accuracy.

At maximum testing R2 of glycerin production, this point provided a 24.22% improve-
ment in water content prediction and a 79.72% improvement in glycerin production over
the LSTM baseline. Furthermore, at 440 iterations, the R2 value of testing data for Y1 is
0.999, while for Y2 it is 0.547. At this point, the few-shot learning significantly improved
the performance in water content prediction by up to 24.72%. However, the large improve-
ment in Y2 results in an overfitting problem in Y1, where the testing performance drops
substantially with only a 9.84% improvement. Thus, the justification of iteration count
should be made with a primary focus on glycerin production prediction performance, and
in this context, 100 iterations (one datapoint per iteration) prove to be the optimal selection
for few-shot learning with FSL-LSTM.
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4.4. Production Optimization Results

After the FSL-LSTM is finally tested for its ability to track water content and glycerin
production, an operating condition adjustment is performed on the model to find the
optimal condition for the glycerine purification process based on the prediction sensitivity.
For example, Figure 12a shows the operational adjustment result for optimizing water
content without changing glycerine production capacity. It can be seen that if X1 and X3 are
increased by 0.46 and 0.7 while X9 is reduced by 0.07, the water content of the final glycerin
product can be reduced by 0.35. The system manipulation of the feed composition and
operational pressure enhances the separation efficiency, minimizing the need for excessive
heat and mitigating the thermal stress on the distillation equipment. Operating the column
under conditions that avoid extremes in temperature and pressure variations fosters process
stability, lowering the risk of overpressure incidents.
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In Figure 12b, there are optimization results for production maximization while the
final water content remains constant. This can be performed by reducing X1, X3, X6,
X9, and X10 by 0.83, 0.69, 0.4, 0.23, and 0.09, respectively, and increasing X5 by 3. The
production of glycerin will be improved by 0.34. The significant gap in X5 indicates a
potential underutilization of the existing distillation unit due to unused capacity within
the column internals. Overall, these results illustrate the effectiveness of the FSL-LSTM
model in guiding targeted operational adjustments for the glycerin purification process
under limited operating data and working domains. Lowering the bottom temperature of
the column implies that the energy supplied to vaporize the feed is minimized, which can
both reduce the thermal degradation of heat-sensitive components such as glycerin and
decrease the energy consumption of the separation process.

In aiming to optimize both glycerin production and water content, an increase in
the distillation column feed rate and adjustments in temperature at strategic points of the
process highlight the ability to enhance both productivity and product purity, as shown
in Figure 12c. However, adjusting X1 and X3 has counteracting effects on Y1 and Y2.
Increasing X1 and X3 actually leads to a reduction in Y1, as a richer glycerin feed and
increased feed mass flow effectively decrease the remaining water content in the final
product. Conversely, reducing X1 and X3 can lead to an increase in Y2, facilitating a more
manageable load on the distillation system. Considering these counteracting effects, other
operational variables become a strategic approach. According to Figure 12c, increasing
X5 (by 1.1), X6 (by 0.4), and X9 (by 0.329) while reducing X10 (by 0.194) offers a path to
optimize the distillation conditions for both separation efficiency (by 0.64) and production
capacity (by 0.35). By boosting X5, the throughput of the distillation column is increased,
directly contributing to a higher production capacity, while the precise increase in X6 and X9
enhances the vaporization dynamics and condensation dynamics, improving the separation
of glycerine from water. Simultaneously, the reduction in X10 aims to optimize energy
efficiency and further refine the separation process by carefully managing the thermal
conditions. The adjustment ensures that the process not only meets its production goal but
also improves product purity, illustrating a sophisticated balance between process efficiency,
energy consumption, and product quality in the face of complex operational tradeoffs.

5. Conclusions

This study focuses on predicting and optimizing water removal in products and glyc-
erin production capacity, under conditions of feed uncertainty and limited data. Utilizing
the FSL-LSTM training model, coupled with Bayesian optimization for hyperparameter
optimization, significant advancements are achieved over existing monitoring techniques.
The model was trained using support data to generate a base learner, which is then applied
to limited industrial data. This approach holds potential for application in other similar
processes. The key contributions of this study include the following:

(1) Through the utilization of a digital-assisted few-shot learning approach, the proposed
model achieved 0.995 and 0.895 in prediction R2 of glycerin production and water
content, respectively. The incorporated few-shot learning provides a 24.22% improve-
ment in water content prediction and a 79.72% improvement in glycerin production
over the LSTM baseline.

(2) A simulation model for the glycerin purification process, capable of generating data
for model use and determining optimal operating conditions. Through the Bayesian
optimization, the updates with a low learning rate are more cautious, leading to a
smoother convergence towards the optimal parameters and true function of output
variables. This can be crucial for avoiding unstable training and achieving better
generalization.
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