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Abstract: Vat photopolymerization is renowned for its high flexibility, efficiency, and precision in
ceramic additive manufacturing. However, due to the impact of random defects during the recoating
process, ensuring the yield of finished products is challenging. At present, the industry mainly relies
on manual visual inspection to detect defects; this is an inefficient method. To address this limitation,
this paper presents a method for ceramic vat photopolymerization defect detection based on a deep
learning framework. The framework innovatively adopts a dual-branch object detection approach,
where one branch utilizes a fully convolution network to extract the features from fused images
and the other branch employs a differential Siamese network to extract the differential information
between two consecutive layer images. Through the design of the dual branches, the decoupling of
image feature layers and image spatial attention weights is achieved, thereby alleviating the impact of
a few abnormal points on training results and playing a crucial role in stabilizing the training process,
which is suitable for training on small-scale datasets. Comparative experiments are implemented and
the results show that using a Resnet50 backbone for feature extraction and a HED network for the
differential Siamese network module yields the best detection performance, with an obtained F1 score
of 0.89. Additionally, as a single-stage defect object detector, the model achieves a detection frame
rate of 54.01 frames per second, which meets the real-time detection requirements. By monitoring the
recoating process in real-time, the manufacturing fluency of industrial equipment can be effectively
enhanced, contributing to the improvement of the yield of ceramic additive manufacturing products.

Keywords: ceramic additive manufacturing; recoating defects detection; small-scale datasets;
differential Siamese network; spatial attention

1. Introduction

Ceramics play a crucial role in various high-tech fields due to their excellent physical
and chemical properties [1]. Traditional methods for ceramic component manufacturing
mainly rely on molds, resulting in complex processing steps and long production cycles.
Moreover, traditional ceramic manufacturing cannot produce parts with intricate internal
structures, which limits its applications in high-performance ceramics. Additive manufac-
turing (AM), as an emerging technology, can directly construct part prototypes layer by
layer based on three-dimensional (3D) digital models. This approach offers the advantages
of efficiently creating intricate internal structures [2], reducing part weight, and enhancing
material utilization, making it particularly advantageous in weight-sensitive applications.
Among all the vat photopolymerization-based ceramic AM processes, digital light process-
ing (DLP) and stereolithography (SLA) are more prominent. In comparison with the line
scanning based SLA, DLP is more efficient, since DLP can directly project specific-shaped
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light onto the manufacturing surface. A slurry consisting of fine ceramic powder mixed
with photosensitive resin is utilized as the raw material. Upon exposure to light at a specific
wavelength, the resin in the slurry undergoes a curing reaction, simultaneously solidifying
the embedded ceramic solid powder and accumulating layer by layer to manufacture
the part.

However, ceramic AM technologies, represented by DLP, face significant challenges in
quality control. During the layer-by-layer formation process, issues like agglomeration and
poor fluidity within the slurry may lead to defects such as bubbles, pits, or even material
shortage in the manufactured layers. These defects result in uneven material distribution
within the part and significantly affect the property and yield of finished products in
industrial applications. With the trend of upscaling for ceramic AM, the construction time of
the green body increases dramatically, while the tolerance for defects in large parts becomes
even more stringent because even minor defects may cause catastrophic damage. Currently,
the level of automation in ceramic AM equipment is inadequate and process monitoring
mainly relies on manual visual inspection, which heavily depends on personal experience
and lacks efficient defect detection methods for the entire manufacturing process.

To address this issue, this study employs machine vision (MV) for real-time monitor-
ing of the DLP recoating process. The optical images are captured using a high-resolution
industrial camera and are analyzed using a deep learning (DL) model. Through image
analysis, various potential defects during the recoating process can be recognized. Further-
more, detected defects are compensated and recorded. Considering the multi-image fusion
characteristic of the DLP process, the DL model is designed to decouple the feature maps
from the attention module. This model includes two independent branches: the first branch
focuses on feature extraction from the fusion images, while the second branch utilizes a
differential Siamese network to compute the difference between the current and previous
recoating images, which represent spatial attention weights of the fused image. Siamese
networks are commonly used in similarity calculation [3], topographic change [4], and
target tracking tasks [5], but this study pioneers the application of a differential Siamese
network in defect object detection to extract attention weights. The two branches of the
framework are uncoupled, and the image attention matrix can enhance the features of
the fused image. Furthermore, the design of dual branches can filter out the influence of
abnormal points in feature maps, ensuring the stability of the model training process. After
feature extraction, the feature maps from different scales are enhanced bidirectionally, and
multiple prediction heads are employed to achieve parallel defect predictions for various
prediction tasks. Finally, the prediction results from multiple heads are fused using non-
maximum suppression. Experimental results demonstrate that the prediction information
from different scales can effectively fill the gaps between each other and improve defect
detection accuracy. In terms of evaluating defect detection performance, commonly used
metrics include accuracy, recall, mean average precision (mAP), and F1 score. Among
these, mAP is prone to being influenced by class imbalance. When there are significant
differences in the number of defects in each class in multi-class problems, it is difficult
to objectively reflect the true situation. On the other hand, the F1 score can comprehen-
sively reflect both accuracy and recall, and it can also convert multi-class problems into
binary classification problems. Therefore, the F1 score is chosen as the final evaluation
metric for defect detection performance. In evaluating model efficiency, frame rate per
second (FPS), which represents the number of images the model can process per second, is
used. This metric intuitively demonstrates the computational speed of the model. After
defect detection, defect information is used to segment the manufactured model’s slice
images, and 3D reconstruction techniques are employed to perform reverse modeling of the
DLP process. The modeling results visually reflect internal defect information of ceramic
AM prototypes. Practical applications show that this method can assist manufacturing
equipment in making decisions and promptly rejecting the detected defects. As for the
defects which cannot be solved automatically, their information will be recorded for quality
traceability. This information provides significant guidance for subsequent processes.
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In summary, the main contributions of this study include the following:

• A dual-branch object detection model is proposed based on the characteristics of
multi-image fusion. In the first branch, two layers of recoating images are put into a
differential Siamese network to extract images differences. Two layers of recoating
images and one layer of slice image are fused as a three-channel image and put into
another branch. Through this operation, multiple feature extraction is achieved.

• By employing the approach of parallel prediction with multiple prediction heads in this
task, each prediction head is responsible for predicting defect targets of different scales.
Subsequently, duplicate results are filtered through the non-maximum suppression
principle. This method significantly improves the efficiency of the framework.

• Based on the detection results and 3D reconstruction technology, quality close-up
control of the DLP manufacturing process is achieved, which can be used to guide the
subsequent processes.

The organization of this paper is as follows: Section 2 provides a review of the relevant
latest technologies, Section 3 introduces the details of the dual-branch ceramic AM recoating
defect method, and Section 4 presents the experiment results and discussions. In the end,
Section 5 summarizes this study and outlines future directions.

2. Related Work

Currently, the primary methods used to improve the yield of additive manufacturing
products mainly include online monitoring, material modification, and process optimiza-
tion. Among them, process monitoring focuses on detecting and eliminating manufacturing
defects in real time. Both machine learning (ML) techniques and traditional defect detection
methods are applied in the monitoring of AM processes [6,7], and ML has demonstrated
significantly stronger performance compared to traditional methods [8,9]. Since ceramic
AM and metal AM share many similarities, research findings in metal AM can be regarded
as a reference for ceramic AM. Research related to process monitoring in metal AM began
earlier than those in ceramic. For example, Jacobsmühlen [10] collected surface images of
the manufacturing process and used various operators to extract image features, which
were then input into different models for defect classification. However, the slow calcula-
tion speed of these operators makes them unsuitable for real-time monitoring scenarios.
Zhang [11] proposed a method using structured light projection to reconstruct the 3D infor-
mation to determine whether the manufacturing process was abnormal. Yet, this method
requires high precision, resulting in a detection range of only 28 × 15 mm2, limiting its
efficiency for monitoring the production of large parts. Li [12] similarly utilized stripe
projection technology to measure the evenness of the powder bed and the manufacturing
platform after sintering. They presented measurement results in the form of height maps,
which provide defect information for both the powder bed and the sintered layer. Based on
a similar approach, Wang [13] integrated stereo vision technology with stripe projection to
measure the 3D information of the manufacturing surface in metal AM. Xiong [14] used
virtual stereo vision to measure the molten pool morphology during gas tungsten arc weld-
ing (GTAW), achieving stable AM process by real-time adjustment of control parameters.
While these methods involving MV for measuring the 3D morphology of the manufactur-
ing surface are effective, they are complex in terms of both system design and algorithm.
Moreover, the 3D information of the manufacturing surface does not always directly reflect
defects, thus limiting the applicability of such methods. Scrime [15] introduced an im-
proved MsCNN model based on AlexNet [16], which involved cropping large images of the
manufacturing surface into 900 × 900 pixel images, followed by segmenting these images
into multiple 25 × 25 sub-images. These sub-images were individually classified to achieve
defect recognition and coarse localization. This method directly utilizes information from
2D images, filtering out the influence of 3D manufacturing surface information. However,
this method transforms the defect detection task into an image classification task and relies
solely on image segmentation for localization, resulting in relatively coarse performance.
Gaikwad [17] used an optical camera to record images of each layer during the production
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of titanium alloy parts in different building orientations. Subsequently, they analyzed
the quality of parts using X-ray analysis and established a mapping relationship between
images and part quality using a deep leaning network. Similarly, Liu [18] employed a DL
model to predict 3D information from 2D images of the manufacturing surface, which
eliminating the need for complex 3D scanning measurements. However, this method may
not perform well on surfaces with significant fluctuations. Bevans [19] utilized various
types of optical sensors to capture images during the manufacturing process of Inconel
718 nickel alloy parts. By analyzing spectral images, they detected defects at part level,
medium scale, and micro scale. Nevertheless, the complexity of this method and the use
of thermal signals make it challenging to apply in non-heating manufacturing processes.
Nguyen [20] monitored the recoating process using an optical camera and employed a DL
model built by MATLAB (R2012a, MathWorks) to detect defects in each layer. Repossini [21]
used a high-speed camera mounted obliquely to capture real-time images of the molten
pool. By analyzing the stability of the model pool, the evenness of the powder bed could
be indirectly inferred. Similarly, Rodrigues [22] also employed this technique and found
that it could only indirectly reflected the evenness of the powder bed and lacked the ability
to compensate for defects promptly upon detections.

In terms of manipulation of material and process, the focus of research is on adjusting
raw materials and process parameters to acquire better performance of AM parts. Li [23]
conducted experiments and finite element simulations to delve into the effects of thickness
and powder size on the flow properties of slurry during the recoating process. They
proposed optimizing the print layer thickness to control the impact of the turbulent zone in
front of the scraper. This method, based on the manipulation of materials and processes,
partially addressed the recoating issues of ceramic slurry. Zhao [24] performed finite
element analysis on interlayer bonding during the DLP process and proposed a method
to optimize the interlayer bonding force of printed parts. However, this method’s control
over the recoating process is not intuitive and may not effectively address sudden or
random defects. Other research on defect detection in ceramic AM mainly focuses on
non-destructive testing of ceramic parts. Chen [25] used laser speckle photometry (LSP) to
observe stress concentration within ceramic parts. Coherence tomography (CT) technology
has been extensively applied in non-destructive testing for metal AM [26], but it is less
common in the ceramic manufacturing field. Su [27] studied internal defects in alumina
ceramics, while Saâdaoui [28] used X-ray coherence tomography (XCT) technology to
observe zirconia parts and establish the inherent relationship between predicted strength
and effective strength. Diener [29] utilized XCT technology to study the porous structure
of silicon nitride parts created through direct writing. Non-destructive testing methods
are convenient and visual for detecting internal defects in ceramic parts. However, these
methods cannot achieve in situ testing results. In summary, typical research achievements
in the field of AM process control are shown in Table 1.

In defect detection of metal AM, two primary methods were adopted. The first one is
the direct measurement of 3D powder bed information to reflect its evenness. The other
approach is to indirectly assess the uniformity of the powder by observing the stability of
the molten pool during the metal AM process. While ceramic AM shares significant process
similarities with metal AM, there are notable differences in their surface characteristics. In
metal AM, regular metal powders are utilized, which allows for a relatively flat powder
bed surface. This enables accurate representation of surface defects via 3D information.
Conversely, ceramic AM employs a kind of high-viscosity paste, which is a mixture of
solid ceramic powders, liquid resin, and photosensitive initiators. Due to the influence
of surface tension, this mixture can form significant bulges and deformations, sometimes
exceeding the manufacturing plane by 3 to 4 mm. As a result, the methods relying on 3D
morphology measurements are no longer applicable for monitoring the process of ceramic
AM. The dynamic and fluid nature of the ceramic slurry makes it challenging to assess
surface evenness using traditional 3D measurement techniques.
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Table 1. Some recent studies on AM process control.

Contributor Material Method Target

Jacobsmühlen [10] Inconel 625, Inconel 718 SVM, RF, SGD Structure defects
Zhang [11] Inconel 625 Topography analysis Flatness of powder bed
Wang [13] 30CrMnSiNi2A Topography analysis Flatness of powder bed
Xiong [14] / Visual binocular vision Thin-walled components
Scime [15] Inconel 718 MsCNN Flatness of powder bed

Li [12] Metal Topography analysis Flatness of powder bed
Gaikwrad [17] Ti-6Al-4V CNN Geometric integrity

Liu [18] Ti-6Al-4 V alloy CNN EBM powder bed
Bevans [19] Inconel 718 Multi-sensor fusion Part-level and micro defects

Repossini [21] Nickel alloy Statistics Melt pool
Rodriguez [22] Ti-6Al-4V Regression Melt pool

Li [23] ZrO2, SiO2 Finite element simulation Slurry flow
Zhao [24] Alumina ceramics Finite element simulation lamellar structure

Chen [25] ZrO2 LSP Internal defects of ceramic
parts

Su [27] Alumina ceramics OCT Morphology of ceramic parts
Saâdaoui [28] Zirconia XCT Strength of parts

Diener [29] silicon nitride XCT Residual pore
structure

Based on an investigation of existing research achievements, it is evident that there
are certain deficiencies in the quality control aspects of ceramic AM:

• Insufficient research: Currently, there is a lack of comprehensive research on defect
detection of ceramic AM. Most of the existing literature focuses primarily on material
modification or non-destructive testing of finished components, with limited emphasis
on direct monitoring of the DLP printing process.

• Inapplicability of techniques: Despite the similarity of metal AM and DLP, the majority
of techniques used for process monitoring in metal AM cannot be directly applied to
DLP. Considering the specific materials and process characteristics of ceramic AM, the
applicability of existing techniques to DLP process monitoring may be limited.

Therefore, further research and exploration are necessary to enhance the manufactur-
ing quality and efficiency of the ceramic DLP printing process.

3. Methodology

Addressing the aforementioned limitations, this paper proposes an MV-based defect
detection method for DLP recoating process. The method involves capturing images of
the recoating process with a high-resolution industrial camera and utilizing a DL model
to identify defects on the manufacturing surface. By directly analyzing 2D images for
defect recognition, this approach can mitigate the influence of height variations on the
manufacturing surface. Moreover, it enables real-time and in situ monitoring, enhances
equipment intelligence, and improves the data collection method for monitoring the ceramic
AM process.

3.1. Model Overview

In this study, defects in the DLP recoating process were categorized into five types:
bubble, sunken, scratch, shortage, and collapse. These categories are illustrated in typical
images, as shown in Figure 1. Among them, bubble, sunken, and collapse are distinct
and directly recognizable in the images. However, scratch and shortage defects may be
misidentified as the edges of normally cured printing. To address this issue, the authors
employed a multi-image fusion approach. Here is a brief introduction to this method: By
merging the adjacent two layers of recoating images and their corresponding slice images,
the differences in traces as the same positions in the two layers of images can be compared.
This process enables the identification of recoating defects in the images. If a trace that
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is not present in the recoating image of the previous layer appears in the current layer’s
recoating image, then this trace is likely to be caused by recoating defect.
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In the field of AM process monitoring, DL has frequently been applied as an efficient
method for defect detection tasks. In recent research, the attention mechanism has emerged
as a highly useful module to enhance detection performance. Both traditional attention
mechanisms [30,31] and the more recent attention mechanisms based on the transformer
architecture [32,33] have been employed. Traditional attention mechanisms directly com-
pute attention weights from feature maps of images using a sigmoid function. The sigmoid
function, as shown in Equation (1), maps input feature values to the range of 0–1, which
represents the attention weights. However, this coupling of weights and feature maps can
lead to a significant impact from outliers, affecting the performance of the mechanism. On
the other hand, while transformer-based methods offer substantial advantages in terms of
image receptive fields, this structure disrupts the inherent spatial position information of
images. Consequently, it demands a large volume of training data and may not be suitable
for training with small-scale datasets.

Attentionweight =
1

1 + e−Featurevalue
(1)

In this study, to fully exploit the advantages of multi-image fusion and further enhance
detection performance, a hybrid Siamese network model with serial and parallel branches
is proposed. The framework of this model is illustrated in Figure 2. The model adopts a
dual-backbone structure. Serial backbone employs a fully convolutional architecture, with
input consisting of a three-channel image that fuses two layers of recoating image and
one layer of slicing image. This branch is responsible for extracting defect-related features.
Parallel backbone is a differential Siamese network, taking two layers of material images
as input and producing the probability of differences at corresponding positions on these
two layers. Different images are input into separate convolutional branches that share
convolutional weights to ensure consistent transformations, thereby extracting the disparity
information between the two material layers. The dual-backbone design decouples the
attention module from the feature maps, effectively mitigating the influence of outliers. This
approach alleviates the vulnerability of small datasets to the impact of individual outliers,
thereby enhancing the model’s adaptability and robustness. The main branches produce
feature maps of different scales, which are subsequently enhanced via a feature pyramid.
After feature enhancement, these layers are fed into multiple prediction heads using a
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multi-head prediction approach to improve detection efficiency. Finally, non-maximum
suppression is applied to eliminate redundant results from different prediction heads.
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3.2. Serial Branch

The serial backbone is responsible for extracting defect-related features, commonly
achieved through a series of operations including convolution, downsampling, and ac-
tivation. The network is constructed in a fully convolutional manner, where the size of
the output feature map after downsampling is calculated using Equation (2) [34]. In this
equation, W0 represents the size of the output feature map, Wi is the size of the input
feature map, F denotes the size of the convolution kernel, S is the stride of the convolution
operation, and P is the number of pixels used for padding the edges of the feature map. In
this study, downsampling is performed using a compensating size of 2, a convolutional
kernel size of 3, and padding of 1 pixel along the edges. As a result, the output feature
map is halved compared to the input. During the progressive compression of the feature
map, deeper feature maps correspond to larger image information under the convolutional
kernels, effectively expanding the receptive field of the convolutional kernel. The activation
function employed is the LeakyRelu function as shown in Equation (3), which helps to
alleviate the gradient vanishing phenomenon during training. As the network deepens,
the input image undergoes gradual compression, resulting in feature maps with varying
dimensions. Shallow feature maps have a smaller compression ratio, capturing rich image
details, while deeper feature maps have a larger compression ratio, containing richer se-
mantic information. In common object detection frameworks, prediction information for
the image is usually output from the last three feature maps, which are often compressed
by factors of 8, 16, and 32, respectively. In conventional object detection tasks, objects
with resolutions below 32 × 32 are considered as small targets [35]. In terms of DLP
recoating defect detection, a considerable proportion of defects fall within the category
of small objects. To address this issue, this study increases the resolution of the feature
map by using the outputs from the last four layers of the network, which supplements
a feature map compressed by a factor of 4. This strategy effectively mitigates the loss of
information during the downsampling process for small defects in the feature extraction
stage. The feature layers, after being weighted with the differential information output
by the Siamese network, are put into the feature enhancement section of the network for
multi-scale feature fusion.

W0 =

(
Wi − F + P

S

)
+ 1 (2)

LeakyRelu(x) =
{

x x > 0
αx x ≤ x

(3)
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3.3. Dual Branch

As for the defect detection in the DLP recoating process, defect information is mani-
fested in regions characterized by dense edge information and abrupt transitions between
different recoating images. Conversely, regions lacking edge information exhibit minimal
grayscale variation, which indicates relative flatness and limited significance. Therefore,
during the detection process, the model should focus on the regions with concentrated
edges. Siamese neural networks [36] offer significant advantages in capturing differences
between distinct images. They are commonly employed in tasks such as identifying changes
in topography in remote sensing images [4,37], object tracking [5,38], and defect classifica-
tion [39]. In this study, a Siamese neural network is utilized to extract differences in edge
information from different recoating images, thereby directing the model’s attention to the
desired regions.

The edge information in a recoating image can be categorized into two types: edges
produced by the solidification of the slurry and edges generated due to defects. Therefore,
the model should focus more on the regions with dense edge information. Edge detection is
a fundamental research area in digital image processing. Early edge detection algorithm [40]
focuses on the grayscale differences between target pixels and their neighboring pixels.
If the grayscale change exceeds a certain threshold, the pixel is considered as belonging
to an edge. However, these algorithms only consider neighboring pixels, making them
susceptible to uneven illumination and image noise. DL methods have the ability to increase
the receptive field of pixels during feature extraction, enabling a better understanding of
deep semantic information in images. In recent years, DL techniques have been widely
applied to image edge detection tasks [41]. In DL-based edge detection tasks, the goal is to
accurately classify each pixel in the image as belonging to an edge or not, making it a binary
semantic segmentation task. Compared to traditional edge detection methods, DL methods
can effectively mitigate the influence of lighting conditions and noise and can combine
semantic information to accurately identify real edges in images. In this study, transfer
learning [42] techniques are utilized to incorporate a DL-based edge detection network into
the Siamese network’s architecture. The proposed network structure is shown in Figure 3.
The input of the Siamese network is two layers of recoating images. It can extract edge
information from the input images and apply max-pooling and difference operations to
the output feature maps. This process enables the Siamese network to produce the edge
difference information. The extracted difference information from the Siamese network
reflects the degree of dissimilarity between corresponding positions on the manufacturing
surface at different time frames. Based on the characteristic behavior of material overlay
defects, the occurrence of the edge transition between two adjacent recoating images
indicates the presence of a defect. The Siamese network’s ability to extract regions in
significant differences enhances the feature maps in the main feature extraction network,
making the defect features more prominent.

3.4. Feature Pyramid

After the feature maps are extracted from the main backbone undergo spatial attention
weighting through the Siamese network, it is necessary to further integrate the extracted
effective feature maps in different layers. This process aims to propagate the semantic
information from deep feature maps to shallow ones and transfer the detailed information
from shallow feature maps to deep ones. This approach aligns with the common practice
of feature enhancement to conventional DL methods. In this study, the input feature
enhancement stage involves four effective feature maps, corresponding to feature maps
downsampled by factors of 4, 8, 16, and 32. To perform interlayer fusion, the deep feature
maps are upsampled and concatenated with shallow feature maps in the channel dimension.
Specifically, the shallow feature maps undergo convolutional downsampling with a stride
of 2 and are then stacked with deep feature maps. This fusion strategy serves to enhance
the information exchange between different layers, ensuring that both semantic richness
from deeper layers and fine-grained details from shallower layers are effectively integrated.
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This approach leverages the strengths of both shallow and deep feature maps to improve
the model’s ability to capture complex patterns and variations in the recoating images,
ultimately enhancing the accuracy of defect detection.
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3.5. Prediction Heads

In object detection tasks, prediction heads are responsible for generating predictions
for a set of feature points, where each feature point corresponds to a specific region of
interest within the image. Prediction heads can be categorized into two types: anchor based
and anchor free. In anchor-based heads, a predefined set of anchor boxes is used, and the
network predicts adjustments to these anchor boxes to determine the final bounding box
predictions. This method is advantageous for objects with well-defined shapes and sizes.
On the other hand, anchor-free prediction heads eliminate the need for predefined anchor
boxes. They directly predict the four degrees of freedom required to locate a bounding box,
such as center point offset and box width/height [43], distances from feature points to the
four boundaries [5], or the coordinates of the box’s top-left and bottom-right cornets [44].
Anchor-free prediction heads are particularly beneficial for predicting irregularly shaped
objects, as they are not constrained by predefined anchor box shapes and sizes.

In terms of defect detection in DLP, where defects often exhibit irregular shapes, an
anchor-free prediction head is more suitable. The prediction head design aims to predict
the center coordinates of the defect targets and directly forecast the width and height of
the object. Each prediction head output consists of a classification head, a center offset
head, and a bounding box prediction head. The classification head predicts whether
a defect target exists within the image block represented by each feature point in the
form of confidence scores. The center offset head predicts the offset of the actual center
coordinates of the target object relative to the feature point. The bounding box prediction
head directly forecasts the width and height of the target’s bounding box. Each point on the
feature map of this prediction head is responsible for predicting a target. However, some
objects may span multiple feature points, as illustrated in Figure 4. In the vicinity of the
ground truth (GT) bounding box, there is also a substantial amount of target information
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in the neighboring feature points. Therefore, when constructing the GT for the prediction
head, the confidence score around the GT feature points should not be set to zero. Each
value on a feature point represents the probability of the presence of a defect target in the
corresponding image region. The range of value is from 0 to 1. The degree of overlap
between the bounding boxes predicted by neighboring feature points and the GT bounding
box can effectively reflect the similarity between the corresponding regions in the image
and the GT defect target. The overlap between two bounding boxes can be quantified using
the intersection over union (IOU) value, as shown in Equation (4). Here, A and B represent
two adjacent bounding boxes, A∩B denotes the area of overlap between the two bounding
boxes, and A∪B represents the combined area of the two bounding boxes. The IOU value
is used as the confidence score GT for the neighboring feature point. The offset head and
bounding box prediction head directly input the values of the GT bounding box onto the
feature map.

IOU =
A ∩ B
A ∪ B

(4)
Processes 2024, 12, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 4. IOU in neighboring feature points. Positive point represented in green, a neighboring 
point of positive point is represented in blue and negative samples represented in orange. 

IOU = A ∩ BA ∪ B (4)

The feature maps extracted by the backbone network are enhanced and then ex-
ported to three prediction heads. These prediction heads consist of a low-resolution fea-
ture map after 16× downsampling, a medium-resolution feature map after 8× downsam-
pling, and a high-resolution feature map after 4× downsampling. In traditional object de-
tection methods, these prediction heads are typically used for detecting large, medium, 
and small objects, respectively. However, in this study, there is no restriction on using 
these prediction heads exclusively for specific object sizes. Instead, all three prediction 
heads are employed simultaneously to predict objects of any size. Subsequently, the out-
put results from these three prediction heads are stacked together and subjected to non-
maximum suppression to obtain the final predictions. The purpose of this approach is to 
fully utilize the output information from all prediction heads, thereby enhancing the over-
all detection efficiency of the network. 

3.6. Loss Function 
In the classification head, each feature point represents a sample. However, due to 

the scarcity of target objects in the image, a significant portion of feature points in the 
prediction head correspond to negative samples. In the presence of highly imbalanced 
positive and negative samples, the focal loss function is utilized to magnify the loss of 
challenging samples and suppress the loss of easy samples. This approach significantly 
alleviates the impact of class imbalance and has been widely applied to single-stage object 
detection tasks, which has greatly improved the accuracy of such algorithms. In this pa-
per, the focal loss function is employed for the sample classification task. The expression 
of the function is shown Equation (5), where α  and γ are two hyperparameters. Values 2 
and 4 are adopted according to the reference [38]. The center offset and bounding box 
width–height prediction head both directly output the differences between predicted val-
ues and GT. The distinction lies in the range of loss values, where the loss value for the 
center offset head is confined to the range of 0 to 1, while for the weight–height prediction 
head, it spans from 0 to infinity. Therefore, the loss function can provide appropriate gra-
dients for both large and small differences between predicted and true values to ensure 

Figure 4. IOU in neighboring feature points. Positive point represented in green, a neighboring point
of positive point is represented in blue and negative samples represented in orange.

The feature maps extracted by the backbone network are enhanced and then exported
to three prediction heads. These prediction heads consist of a low-resolution feature map
after 16× downsampling, a medium-resolution feature map after 8× downsampling, and
a high-resolution feature map after 4× downsampling. In traditional object detection
methods, these prediction heads are typically used for detecting large, medium, and small
objects, respectively. However, in this study, there is no restriction on using these prediction
heads exclusively for specific object sizes. Instead, all three prediction heads are employed
simultaneously to predict objects of any size. Subsequently, the output results from these
three prediction heads are stacked together and subjected to non-maximum suppression
to obtain the final predictions. The purpose of this approach is to fully utilize the output
information from all prediction heads, thereby enhancing the overall detection efficiency of
the network.

3.6. Loss Function

In the classification head, each feature point represents a sample. However, due to
the scarcity of target objects in the image, a significant portion of feature points in the
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prediction head correspond to negative samples. In the presence of highly imbalanced
positive and negative samples, the focal loss function is utilized to magnify the loss of
challenging samples and suppress the loss of easy samples. This approach significantly
alleviates the impact of class imbalance and has been widely applied to single-stage object
detection tasks, which has greatly improved the accuracy of such algorithms. In this paper,
the focal loss function is employed for the sample classification task. The expression of
the function is shown Equation (5), where αt and γ are two hyperparameters. Values 2
and 4 are adopted according to the reference [38]. The center offset and bounding box
width–height prediction head both directly output the differences between predicted values
and GT. The distinction lies in the range of loss values, where the loss value for the center
offset head is confined to the range of 0 to 1, while for the weight–height prediction head,
it spans from 0 to infinity. Therefore, the loss function can provide appropriate gradients
for both large and small differences between predicted and true values to ensure stable
training. As is shown in Equation (6), the smooth L1 loss is used, since it combines the
advantages of L1 and L2 losses, offering favorable gradient information for differences
between predictions and GT. The final loss is the sum of three components. To balance the
contribution of each loss component and mitigate the impact of the larger loss generated by
the width–height prediction head, a small coefficient is multiplied. Additionally, to address
the difficulty of detecting small targets, the final loss is combined with the target’s scale,
assigning a greater weight to small targets to enhance their prominence in the final loss
function. The expression of the ultimate loss function is presented in Equation (7), where
α is the balancing coefficient for the bounding box width–height loss (set as 0.1) and β

represents the target scale factor:

Lcls = −αt(1 − pt)
γlog(pt) (5)

Lhw(x, y) = Loffset(x, y) =
1
n

n

∑
i=1

{
0.5 × (yi − f(xi))

2, if|yi − f(xi)| < 1
|yi − f(xi)| − 0.5, otherwise

(6)

Ltotal = (Lcls + Loffset + α ×Lhw)× β (7)

4. Experiments and Discussion
4.1. Environment and Datasets

All the image data were collected from the product CeraStation 160 by QuickDemos
company. The detection model is built using PyTorch (1.13.0). The model training and
testing are conducted on a DL workstation with the Windows 11 professional operating
system. The workstation is equipped with a 13th Gen Inter(R) Core (TM) i9-13900KF 3.0
GHz CPU and an Nvidia 4070 Ti graphics card with 12 GB of VRAM. The dataset used in
the experiment consists of grayscale images captured during the printing process of silicon
carbide (SiC). After dividing the images into blocks, the dataset’s image resolution is set as
320 × 320. Due to the high cost of obtaining the dataset images, data augmentation [35]
techniques such as changing color space and introducing random noise were applied to a
small portion, resulting in a total of 6498 defect images. During the training process, the
dataset is randomly divided into training, validation, and test sets in the ratio of 7:1:2. For
model performance evaluation, commonly used metrics include accuracy, recall, and F1
score. In this paper, the evaluation criterion employed is the F1 score, calculated using
Equation (8):

F1 =
2 × Percision × Recall

Percision + Recall
(8)

where precision is the ratio of true positive predictions to the total number of positive
predictions and recall is the ratio of true positive predictions to the total number of actual
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positive instances, as shown in Equations (9) and (10), meanings of each parameter are
displayed in Table 2.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Table 2. Definitions of the indicators.

Indicator Definition

TP The target is identified as a defect, and the true value is the defect target.
FP The target is identified as a defect, but the true value is the background.
TN Target recognition is the background, and the true value is the background.
FN Target recognition is background, but the true value is the defect target.

4.2. Analysis of the Model

To validate the effectiveness of the proposed framework, resnet50 [45], darknet [46],
and mobilenet [47] are chosen as serial backbone and HED [48], pidinet [49], and BDCN [50]
are chosen as edge detection backbone. Edge detection module networks are selected in
the Siamese network module, and their pre-trained weights are loaded to make them more
sensitive to image edge information. All networks undergo 100 rounds of training. To
ensure training stability, the weights of the feature extraction module are frozen during
the first 50 rounds of training, focusing on training the feature enhancement network and
prediction heads. After 50 rounds, the weights of the main feature network are unfrozen.
The training process is displayed in Figure 5. The results reveal that in the early stages
of training, the resnet50-based network exhibited the most stable and effective training
performance, followed by mobilenet. The darknet’s training results show the highest loss
in the validation set and an unstable process, experiencing significant oscillations in the
early stages of training. After unfreezing the main network weights, mobilenet experiences
some oscillations, while darknet training gradually stabilized. Resnet50 consistently exhib-
ited stable training performance throughout the whole process and ultimately produced
superior results. The adoption of the differential Siamese network has a moderating effect
on the training process, reducing oscillations to some extent. Among the variations, the
network trained with the HED edge detection module showed the least oscillation during
training, particularly evident in darknet architecture.

The final experimental results are summarized in Table 3. It can be observed that
the combination of resnet50 and HED achieved the best results. The average F1 score
for five types of defects reaches 0.885. Among them, the scratch, shortage, and collapse
defects, belonging to medium to large-sized defects, achieve F1 scores above 0.97. This
indicates that the detection of these three defects is highly accurate. On the other hand, the
bubble and sunken defects are in smaller scale, and their losses in the loss function are still
relatively minor. The F1 scores for these defects are 0.65 and 0.67, respectively. The detailed
data is shown in Table 4, it can be observed that the accuracy for both bubble and sunken
defects is relatively high, while the recall rate if low, resulting in a low F1 score. This is
because these two types of defects are small-target defects, with fewer effective pixels in
the image, resulting in significant information loss during feature extraction compression.
The poor accuracy of small-target detection is a common problem in the field of object
detection [35], which needs to be addressed in the next stage of research. Although the
detection accuracy is lower compared with medium to large-sized defects, the performance
is still relatively favorable compared to other networks.
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Table 3. Results of different networks. Best detection effect displayed in bold.

Serial Siamese Bubble Sunken Scratch Shortage Collapse Mean FPS

darknet

/ 0.4842 0.4546 0.8318 0.7680 0.9647 0.7293 115.95
HED 0.5000 0.4686 0.8372 0.8300 0.9765 0.7558 64.33

pidinet 0.4946 0.4571 0.8357 0.7296 0.9704 0.7225 69.65
BDCN 0.4946 0.4546 0.8318 0.7935 0.9647 0.7378 67.22

mobilenet

/ 0.4090 0.4081 0.8407 0.9281 0.9586 0.7775 104.42
HED 0.5208 0.4605 0.8800 0.9319 0.9647 0.8047 62.15

pidinet 0.3838 0.4161 0.8348 0.8351 0.9586 0.7422 65.22
BDCN 0.4509 0.4026 0.8778 0.9291 0.9643 0.7378 63.11

resnet50

/ 0.5000 0.5294 0.9322 0.9315 0.9823 0.8252 91.51
HED 0.6538 0.6742 0.9705 0.9722 0.9823 0.8853 54.01

pidinet 0.6200 0.5749 0.9231 0.9614 0.9823 0.8524 63.25
BDCN 0.5631 0.6067 0.9250 0.9517 0.9823 0.8469 60.12

Table 4. Detection results of resnet50 and HED.

Defect Precision Recall F1

Bubble 0.9444 0.5000 0.6538
Sunken 0.9678 0.5172 0.6742
Scratch 0.9746 0.9664 0.9705

Shortage 0.9859 0.9589 0.9722
Collapse 0.9881 0.9765 0.9822

In terms of detection speed, the detection model we designed is a single-stage detection
model, unlike two-stage detection models that first extract possible regions of defect
targets from images and then classify the defect targets within those regions. Single-stage
object detection models directly classify and locate defect targets in images, making them
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much faster than two-stage detection models. Although the detection model composed
of resnet50 and HED is slightly slower than the other models due to its higher parameter
count. However, as a single-stage detection model, the detection frame rate still reaches
54.01 frames, which meets the requirements for real-time industrial inspection.

In terms of comparative effectiveness with other object detection methods, the Faster-
RCNN [51] and YOLOv7 [46] algorithms are used for comparison, and the results are
shown in Table 5. From the table, it can be concluded that the method proposed in this
paper exhibits significantly higher accuracy, even surpassing the two-stage Faster RCNN
algorithm. This is because the algorithm designed in this paper can selectively extract the
differences between the two layers of recoating images through the Siamese network, there
by achieving higher sensitivity to recoating defects.

Table 5. Comparison with classical methods.

Algorithm Bubble Sunken Scratch Shortage Collapse Mean

Faster RCNN 0.5859 0.6171 0.8559 0.9178 0.8293 0.7796
YOLOv7 0.5941 0.6012 0.8507 0.9010 0.8313 0.7735

Ous
(resnet50+HED) 0.6538 0.6742 0.9705 0.9722 0.9823 0.8853

The visualization of the model’s performance is depicted in Figure 6. The spatial
attention weights output from the Siamese network are visualized as heatmaps in the fifth
column. It can be observed that the network highlights the differences between two layers
of recoating image through the attention weights, which enhances the image features and
produces superior detection results. The detection images in the figure are captured from
various positions on the manufacturing platform, exhibiting varying degrees of brightness,
darkness, and noise levels due to different lighting conditions. However, the detection
results indicate that the proposed model demonstrates strong adaptability, effectively
detecting defects on the manufacturing surface across diverse lighting environments.

4.3. Analysis of Multiple Heads

The DL-based object detection networks utilize multiple prior boxes, which are com-
monly obtained through clustering within the dataset. These prior boxes are then cate-
gorized into three groups based on their sizes: small, medium, and large. Consequently,
corresponding prediction heads are employed to forecast targets of varying scales. How-
ever, this approach may exhibit limitations, particularly in cases where clustered prior boxes
fail to align seamlessly with the resulting feature map. For instance, in datasets primarily
featured with small objects, the clustered prior boxes might predominantly encompass
small sizes, disregarding the need to incorporate larger prior boxes for predicting relatively
large small-scale objects within low-resolution feature maps. This scenario can potentially
hinder detection efficiency. In this study, an alternative approach is embraced, involving
the abandonment of the anchor box mechanism. Moreover, no artificial constraints are
imposed on the dimensions of the targets predicted by the feature map. Instead, a multi-
prediction head strategy is adopted, which allows the network to concurrently produce
predictions across multiple scales. Subsequently, a non-maximum suppression is employed
to consolidate and refine the array of predictions. This novel strategy endows the model
with heightened flexibility to adapt to diverse target scales and configurations, thereby
augmenting both the efficiency and accuracy of the detection results.
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The test dataset in this study consists of ceramic AM tile defect images with dimensions
of 320 × 320 pixels. The resulting prediction heads have width and height dimensions of
20 × 20, 40 × 40, and 80 × 80 pixels, corresponding to three distinct scales of low, medium,
and high-resolution feature maps. Defect targets with resolutions less than one-tenth of the
entire image are classified as small-scale objectives, while those with resolutions ranging
from one-tenth to half of the full image are categorized as medium-scale objectives. Targets
larger than half of the image are designated as large-scale objectives. In the evaluation
phase of the test set, the model predicts and localizes defect targets while identifying the
originating prediction head. The outcomes are presented in Figure 7. It reveals that feature
maps of varying scales contribute meaningfully to predicting targets of different sizes. The
adoption of multiple parallel prediction heads significantly enhances the precision of the
detection results. This approach demonstrates the effectiveness of utilizing diverse-scale
feature maps to achieve more accurate and reliable defect detection.
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4.4. Analysis of a Build

By utilizing the visualization toolkit (VTK) 3D reconstruction technique, serialized
binary images can be rapidly transformed into visual models. After the completion of
a single printing process, leveraging the detected defect information on the ceramic tile
surface allows the segmentation of a slice image into regions representing normal print
and defective sections. This forms the basis for constructing a 3D model to depict the
detection information, as illustrated in Figure 8. The tangible printed object is shown in
Figure 9. During a printing task, a 3D reconstructed SiC mirror model is generated based on
defect detection outcomes. The normally printed portions are visualized in green and are
rendered transparent to enhance the visibility of internal defects. Shortage defects indicated
by brown, tend to result in an insufficient interlayer bond. Furthermore, a collapse defect
is shown in cyan, and a scratch defect is depicted in blue. It is evident that a shortage
defect occurs midway through the part’s printing process, affecting the interlayer bonding
and ultimately causing delamination of the mirror blank. The 3D reconstruction of defects
provides an intuitive visualization of their occurrence locations and types, facilitating rapid
quality assessment for the printed component.
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5. Conclusions

In this paper, a dual-backbone object detection model is proposed for defect detection
in the ceramic AM recoating process. The model consists of two branches: a sequential
convolutional model and a differential Siamese network. The design of these two backbones
can decouple the feature map and spatial attention weight, enabling the model to focus
more precisely on specific regions of the feature map, thereby reducing susceptibility
to outliers. Experimental results demonstrate that the dual-backbone feature extractor
significantly reduces training oscillations, ensuring stability during the training process,
which is crucial for training on small-scale datasets. Through the experiments, it is found
that the combination of resnet50 and HED achieves the most stable training process and
optimal results. Performed on the SiC AM defect dataset, the F1 score of 0.89 is achieved.
As for larger defect targets, the F1 scores reach above 0.97, which indicates excellent
detection performance. The model achieves a detection speed of 54.01 frames per second,
meeting the real-time detection requirements of industrial applications. The multi-head
parallel prediction approach demonstrated that different scale feature maps can contribute
to the prediction of targets of various sizes, enhancing the accuracy of detection results.
Based on the detection model’s results, a 3D reconstruction is performed utilizing the VTK
toolkit, where the slice images of the specimen are segmented into normal print and defect
sections. It can enable timely insight into the internal defect of the manufactured specimen
and provides a convenient method for rapid quality assessment. Our proposed method
demonstrates the potential to enhance the industrialization and application scope of ceramic
AM. By enabling real-time monitoring and defect removal, our approach contributes to
the improvement of product yield and the overall efficiency of the manufacturing process.
Furthermore, the method’s capability for in situ monitoring enhances the intelligence of
ceramic AM equipment, paving the way for broader industrial applications in the future.

Although the proposed method shows good performance in the defect detection of
medium and large targets on the ceramic AM recoating process, it still needs to improve
the detection accuracy of small defect targets. In future work, further improvements
to the model can be made to address the issue of poor detection performance for small
target defects, aiming to enhance the overall detection effectiveness. Additionally, beyond
detecting in-plane defects during the ceramic AM recoating process, detecting longitudinal
defects could be a potential research direction. By fusing information from multiple layers
of images, it becomes possible to obtain developmental information on longitudinal defects.
Therefore, this technology holds promise for directly identifying internal defects within
the workpiece. Finally, the five types of defects proposed in this paper are based on a long-
term observation of the ceramic additive manufacturing recoating process. However, the
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possibility of new defects emerging cannot be ruled out. The effectiveness of our method
for detecting newly emerging defects will need further validation in future research efforts.
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