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Abstract: Coalbed methane (CBM) pilot wells typically exhibit a short production period, necessitat-
ing evaluation of their estimated ultimate recovery (EUR) through numerical simulation. Utilizing
limited geological data from the pilot areas to finish history matching and subsequent production
forecasting presents substantial challenges. This paper introduces a comprehensive numerical simula-
tion workflow for CBM pilot wells, encompassing the following steps. Initially, geological parameters
are categorized into two groups based on their statistical distribution trends: trend parameters (i.e.,
gas content, permeability, Langmuir volume, and Langmuir pressure) and non-trend parameters
(i.e., fracture porosity, gas–water relative permeability, and rock compressibility). The probability
method is employed to ascertain the probable high and low limits for trend parameter distributions,
while empirical or analogous methods are applied to define the boundaries for non-trend parameters.
Subsequently, the parameter sensitivity analysis is conducted to understand the influence of varying
parameters on cumulative gas and water production. Conclusively, experimental design algorithms
generate over 100 simulation cases using the identified sensitive parameters, from which the top ten
optimal cases are chosen for EUR prediction. This workflow features two technological innovations:
(1) considering the most comprehensive set of reservoir parameters for uncertainty and sensitivity
analyses, and (2) considering the matching accuracy of both cumulative production and dynamic
production trends when selecting optimal matching cases. This approach was successfully imple-
mented in the C pilot area of the Bowen Basin, Australia. In addition, it offers valuable insights for
numerical simulation of unconventional natural gases, such as shale gas.

Keywords: CBM pilot well; history matching; uncertainty analysis; sensitivity analysis

1. Introduction

Pilot wells are essential in exploring and developing coalbed methane (CBM) re-
sources [1]. Their primary purpose is to gather detailed information about the characteris-
tics of CBM reservoirs and to test whether these reservoirs can produce CBM at commercial
rates. Early geological understandings can also be updated through history matching of
production data from pilot wells [2]. However, the production duration of pilot wells is
typically short, and relevant geological data are usually scarce. These two factors pose
challenges in selecting suitable methods for numerical simulation [3].

History matching serves as a critical intermediary between geological model construc-
tion and production forecasting [4]. It refines the reservoir parameters of static geological
models by aligning them with dynamic production data, thereby establishing a solid foun-
dation for subsequent production predictions. Generally, history matching methods for
pilot wells fall into two categories: the manual trial-and-error (MTE) method and the exper-
imental design (ED) method [5]. The MTE approach requires operators to manually adjust
coal reservoir parameters to align with production data. Several international software
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platforms, such as Petrel RE 2023 and SIMEDWin, facilitate history matching. Nevertheless,
core tasks, including parameter selection, modification sequence, and adjustment mag-
nitude, remain predominantly manual. Scholars have primarily focused on parameter
adjustments to optimize matching accuracy [6,7], addressing factors such as permeability,
gas content, relative permeability of water and gas, Langmuir volume (VL), Langmuir
pressure (PL), and fracture porosity [8–11]. However, research on the direction and extent
of parameter adjustments is somewhat limited, and the methods applied are often arbitrary.

The ED method emerged in the industrial literature in the 1970s [12]. Currently, these
techniques have been successful applied in underground uncertainty assessments [13,14],
reserve estimation, and production forecasting [15]. Although several studies present
practical applications, few specifically focus on applying the ED method to the numerical
simulation of pilot wells [16]. The ED method typically involves two steps. The first
involves selecting an ED algorithm (e.g., Box–Behnken, Central Composite) to generate
various parameter combinations, establishing the upper and lower limits for each parameter,
and creating simulation cases. The second step entails running these simulation cases
and selecting the optimal matching cases based on parameter combinations. Using this
approach, Alessio et al. [17] selected seven reservoir parameters and generated 28 matching
cases for 11 wells in the F6 field in 2005 to assess the development risks; Zhao et al. [18]
calibrated seven parameters, including permeability, gas content, VL, fracture porosity,
rock compressibility, sorption time, and PL, and generated 77 simulation cases by selecting
the six most sensitive parameters. The optimal simulation cases were chosen based on
the matching results at the well group level; Duan et al. [1] utilized five parameters (i.e.,
permeability, gas content, fracture porosity, gas saturation, and variogram length) for
history matching, generating 43 simulation cases through the ED method. Twenty top cases
were identified based on the matching results of cumulative gas and water production
in the single well level, and the intersection of these two results was determined as the
optimal simulation cases for the entire well group.

Through the above discussion about simulation methods, it becomes apparent that
using ED methods to generate multiparameter combinations is more appropriate for the
history matching of the pilot wells [1,18–20]. This study introduces a comprehensive numer-
ical simulation workflow for CBM wells, integrating the strengths of the aforementioned
studies. Nine reservoir parameters are selected to enhance the comprehensiveness and
representativeness of the parameters. Following uncertainty and sensitivity analyses, seven
parameters are chosen, resulting in 143 simulation cases. In selecting the optimal simulation
cases for the single well, the matching results of both the cumulative production and the
dynamic production trends are considered. Initially, the best matching cases for gas and
water in the single well level are identified, followed by determining their intersection
to ensure applicability across all wells. This approach was successfully applied in the
simulation work of the C pilot area in the Bowen Basin, Australia, and satisfying results
were achieved.

2. Pilot Well Overview
2.1. Geological Background

The Bowen Basin, a backarc foreland basin, is situated in Queensland, Australia,
and extends southward into northern New South Wales. This asymmetric syncline spans
approximately 0.2 × 106 km2. Its two flanks feature differing syncline structures; the eastern
flank is steeper and endures nearly east–west compressive stress, aligning predominantly
with NNW [21] (Figure 1).

In the Bowen Basin, the Late Permian Blackwater Formation, deposited by river–
lake facies, constitutes the primary coal-bearing strata. These strata evolve into a delta
sedimentary system towards the south, reaching a total thickness of about 150 m. Three coal
measures, namely the Rangal coal measures (RCM), Fort Cooper coal measures (FCCM),
and Moranbah coal measures (MCM), are developed from top to the bottom. The target
RCM primarily consists of siltstone, sandstone, interbedded mudstone, and coal seams.
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It can be subdivided into 12 sublayers based on their sedimental cycles [18]. The coal
seam thickness varies from 3.8 m to 26.9 m, averaging about 4 m. Its maximum vitrinite
reflectance mainly varies from 1.2% to 1.8% [18,22]. The RCM is characterized by complex
structures, thin coal seams, moderate gas content, high permeability, inactive groundwater,
and localized crack development.

Figure 1. (a) Outline of Bowen Basin structure and (b) coal depth contour in the C pilot area.

The C pilot area lies on the eastern flank of the Nebo syncline [23], targeting a coal
depth of 333 m to 346 m, averaging 342 m. In this area, the target coal thickness ranges
from 4.3 m to 10.2 m, averaging 6.45 m. Three single lateral surface-into-seam (SIS) wells
were drilled with a production period of about seven months.

2.2. Characteristics of CBM Reservoirs

Around the pilot area, 565 core samples from 45 wells were tested for gas content,
ash content, VL, and PL. The measured dry ash-free gas content (GC_DAF) is 2.28 m3/t
to 24.31 m3/t, averaging 13 m3/t; the ash content varies from 7% to 51.2%, with an
average value of 21.1%. The measured VL ranges from 8.26 m3/t to 25.44 m3/t, averaging
18.6 m3/t, and the PL ranges from 1.76 MPa to 1.98 MPa, averaging 1.84 MPa. Due to
the insufficiency of collected data and the high heterogeneity of the coal, although some
correlation coefficients are not very strong, they still exhibit discernible trends [24] (Figure 2).
The tested rock compressibility lies between 1 × 10−5 bar−1 and 3 × 10−4 bar−1, averaging
1.25 × 10−4 bar−1. The tested sorption time varies from 15 days to 89 days. Permeability
data, sourced from on-site tests such as the drill stem test and diagnostic fracture injection
test, range from 0.01 mD to 141.3 mD, averaging 15 mD.
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Figure 2. (a) Relationship between GC_DAF and burial depth, (b) relationship between permeability
and burial depth, (c) relationship between VL and RD, and (d) relationship between PL and RD.

2.3. Production Characteristics of Pilot Wells

Figure 3 illustrates the production curves of three pilot wells, spanning a production
period of seven months. Peak gas production varies from 12,470 m3/d to 22,315 m3/d,
averaging 17,681 m3/d (Figure 3a). Simultaneously, water production fluctuates from
42 m3/d to 50 m3/d, averaging 45.1 m3/d (Figure 3b). Over these seven months, gas
production has exhibited a continuous increase, characterized by a rapid growth rate in
the initial two months and a consistent rise in subsequent months. In contrast, the water
production demonstrates a decreasing trend, with the rate of decline diminishing in the
later stages.

Figure 3. (a) Gas production profiles and (b) water production profiles.
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3. Numerical Simulation Workflow

The CBM simulation is a crucial tool for detecting and predicting the flow dynamics
of CBM within coal reservoirs. This method involves applying mathematical models
and computational techniques to investigate the mechanisms of CBM storage, migration,
and extraction. This study focuses on three CBM wells in the C pilot area of the Bowen
Basin, Australia. The methodology is outlined in Figure 4. A manageable-sized model was
extracted from the regional geo-model of the Bowen Basin. The selected model size balances
computational efficiency and representativeness. Following quality control, production
data from the pilot wells are loaded. After initializing the model, a thorough uncertainty
analysis is conducted on nine parameters to enhance model accuracy and reliability. This
analysis categorizes parameters into deterministic and indeterminate types (including both
trend parameters and non-trend parameters), applying probabilistic methods to ascertain
the upper and lower limits of trend parameters. Non-trend parameters are assigned
values through empirical and analogical approaches. Subsequently, 18 simulation cases are
generated, and these cases are run using a fixed bottom-hole flow pressure (BHFP) method.
Each case’s cumulative gas and water outputs are compared to those of the base case to
identify sensitive parameters and create tornado plots.

Figure 4. Numerical simulation workflow of CBM pilot well.

The matching parameters are ultimately selected based on the uncertainty and sensitiv-
ity analysis results of the reservoir parameters. These are then integrated as variables into
the ED workflow. Utilizing the central composite sampler algorithm, over 100 simulation
cases are generated, ensuring that the dynamic trends of gas and water production in each
pilot well closely align with actual production dynamics. The simulations aim to achieve a
congruent cumulative gas and water production. The study involves analyzing production
characteristics, calculating the simulation deviation of cumulative gas and water produc-
tion, and selecting the top ten simulation cases. Probability-based estimated ultimate
recovery (EUR) predictions are formulated based on these selections. As the primary focus
of this study is on numerical simulation, subsequent paragraphs will illustrate this from
the stage of model initialization.

4. Preparation before Numerical Simulation
4.1. Dynamic Model Initialization

The box model of the C pilot area is extracted from the regional geological model of
the Bowen Basin, encompassing an area of 25 km2 (5 km × 5 km). It includes nine vertical
coal seams with a total thickness of 38 m. The planar grid features a uniform step size, with
each grid measuring 100 m × 100 m. The total number of grids is 285,768 (126 × 126 × 18).

Reservoir parameters for dynamic model initialization generally fall into two cate-
gories: deterministic parameters and indeterminate parameters [25]. Deterministic param-
eters are known for their high reliability and are not modified in the history matching
process. These include structure, initial conditions, PVT parameters, and capillary pres-
sure. Conversely, indeterminate parameters represent unknown or uncertain elements in
the history matching process. Depending on their statistical distribution patterns, these
parameters are further classified into trend parameters and non-trend parameters [25].
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Trend parameters, calculable by establishing correlations with other variables, encompass
gas content, permeability, VL, and PL. Non-trend parameters, typically assigned based
on empirical methods or analogies to other CBM gas fields in the Bowen Basin, include
fracture porosity, gas–water relative permeability, rock compressibility, and sorption time
(Table 1).

Table 1. Numerical simulation parameter classification.

Indeterminate Parameters
Deterministic ParametersTrend Parameters Non-Trend Parameters

Gas content Fracture porosity Structure
Permeability Gas–water relative permeability Initial conditions

VL Rock compressibility PVT parameters
PL Sorption time Capillary pressure

The four trend parameters used in the box model of the pilot wells were derived from
the regional geo-model of the Bowen Basin. The gas content is crucial for estimating the
gas initially in place (GIIP). An examination of the GC_DAF data within the model reveals
a correlation with depth, describable via a logarithmic equation. Permeability, pivotal in
controlling coal reservoir fluid flow capacity and influencing the economic viability of CBM
well development [26,27], is represented by an exponential equation relating permeability
to depth. The isothermal adsorption curve is described by the Langmuir equation, which
includes two key parameters, i.e., VL and PL. When predicting the distribution of VL and
PL, a correlation with RD is established, respectively. The gas–water relative permeability
of coal is a function of the saturation during the corresponding phase of the two-phase
flow. When integrated with permeability data, it yields the effective permeability. In the
dynamic model, relative permeability data are derived from Corey-type equations [28].

It should be noted that during the CBM developing process, permeability undergoes
significant changes due to coal matrix shrinkage caused by decreasing reservoir pressure
and coal matrix swelling caused by gas desorption. This process is simulated by the
improved P & M model [29].

Five non-trend parameter settings in the box model of pilot wells are assigned values
through empirical analysis and analogy. These settings include a fracture porosity of 0.4%,
a rock compression coefficient of 5 × 10−5 bar−1, Corey coefficients for gas and water of 3
for both, and a sorption time of 50 days [5,18]. The aforementioned parameters represent
the initial medium values in the dynamic model, as listed in Table 2.

Table 2. Dynamic model parameter setting of the pilot wells.

Parameters Low Medium High

Gas content (m3/t) 4.43 × Ln(depth) − 14.10 4.43 × Ln(depth) − 10.39 4.43 × Ln(depth) − 6.68
Permeability (mD) 1.96 × Exp(−0.011 × depth) 24.47 × Exp(−0.011 × depth) 275.26 × Exp(−0.011 × depth)

VL (m3/t) −19.48 × RD + 47.17 −19.48 × RD + 50.81 −19.48 × RD + 54.45
PL (MPa) −0.258 × RD + 2.275 −0.258 × RD + 2.33 −0.258 × RD + 2.388

Fracture porosity (%) 0.1 0.4 1
Corey gas 2 3 4

Corey water 2 3 4
Rock compressibility (bar−1) 1 × 10−5 5 × 10−5 5 × 10−4

Sorption time (days) 10 50 100

In addition to the aforementioned nine reservoir parameters, drilling and completion
and production data for the pilot wells were imported into the simulator after undergoing
data quality control to initialize the dynamic model. The simulation cases employs the
BHFP as the constraint to match the observed gas and water production data.

The study utilized the CBM module in Petrel RE 2023 software for conducting history
matching, and the simulation process was governed by the material balance equation [5].
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4.2. Parameter Uncertainty Analysis
4.2.1. Analysis of Uncertainty in Trend Parameters

Gas content is typically determined through experimental analysis of coal cores ob-
tained from drilling. Gas content is mainly influenced by coal rank, ash content, and
maceral composition. A correlation of GC_DAF and depth is used in this study to predict
the distribution of gas content, and scattered data points are found around the matching
curve. In order to capture these uncertainties, the probability method is employed to
ascertain the probable high and low limits, and the steps are described below. Firstly,
the residuals between the measured values and corresponding values derived from the
correlation equation are calculated separately. Following residual distribution analysis, the
90th and 10th percentile values are selected to delineate high and low trends, encompassing
the majority of data points within the low-trend and high-trend bands (Figure 2a).

The permeability values show an exponentially decreasing trend with increasing
burial depth. In the scope of the regional geo-model, permeability testing data are scarce
and show significant variability, resulting in high uncertainty. The probability method is
also used to draw the 90th and 10th percentile trends (Figure 2b).

Despite limited isothermal data availability, strong correlations exist for both VL vs.
RD and PL vs. RD. In order to represent coal heterogeneity and the uncertainty arising
from limited testing data [30], probability trends are established when predicting both the
VL and PL distribution (Figure 2c,d).

4.2.2. Analysis of Uncertainty in Non-Trend Parameters

Porosity is associated with the water storage capacity of reservoirs [31]. The Petrel
RE 2023 software offers a dual-porosity model, ideal for the numerical simulation of CBM,
encompassing both fracture porosity and matrix porosity. In other words, the fracture
porosity in the dynamic model is a matching parameter, which has the highest uncertainties.
Based on the rule-of-thumb, the high and low fracture porosity values are set as 1% and
0.1%, respectively.

The gas–water relative permeability used in the dynamic model is derived from
the Corey equation rather than the measured values [32], resulting in high uncertainty.
Analogous with the model setting of the CBM gas field in the Bowen Basin, the high and
low Corey equation exponents were defined as 4 and 2 separately for gas and water.

The rock compression coefficient, denoting the volumetric shrinkage of rock under unit
formation pressure, predominantly impacts reservoir permeability during the dewatering in
CBM wells [33]. Due to the inadequate amount of testing data and high coal heterogeneity,
the rock compressibility values are obtained by analogy, setting them at 5 × 10−4 bar−1

and 1 × 10−4 bar−1 for high and low estimates, respectively.
The sorption time values are tested from the desorption experiment of coal cores [34],

which have a moderate uncertainty. For sorption time, the high and low values are set as
100 days and 10 days, respectively.

4.3. Parameter Sensitivity Analysis

In order to analyze the impact of reservoir parameter variations on cumulative gas and
water production during the history matching process, a sensitivity analysis is conducted
on the high, medium, and low values of the nine parameters. Initially, a base case is
generated using medium values for each parameter. Subsequently, 18 simulation cases
are established, adjusting only one parameter to its high or low value in each case while
keeping the others at their median values. The final step involves comparing the calculated
cumulative water and gas production from each simulation case with that of the base case.
These comparisons are quantified by production deviation (PD) and sensitivity index (SI),
which are defined as follows:

PD% =
Qs−Qb

Qb
× 100% (1)
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SI = PDp − PDn (2)

where Qs is the simulated cumulative water or gas yield of the sensitive case (m3); Qb is
the simulated cumulative yield corresponding to the base case (m3); PDp is the positive
yield deviation of one parameter (%); and PDn is the negative yield deviation of the
corresponding parameter (%).

As shown in Figure 5, the SI value for gas decrease in the parameter sequence of
gas content, permeability, VL, fracture porosity, Corey gas, compressibility, Corey water,
sorption time, and PL, and the SI value for water decrease in the parameter sequence of
permeability, porosity, Corey water, Corey gas, VL, compressibility, gas content, PL, and
sorption time.

Figure 5. Tornado plots of the: (a) PD for gas and (b) PD for water (the blue bar indicates the high
value of the parameter, and the red bar indicates the low value of the parameter).

Given the distribution of the SI values and the rules-of-thumb, 20% and 5% are
selected as the threshold values for distinguishing sensitive parameters from non-sensitive
parameters for gas and water, respectively. Because PL and sorption time are not sensitive
to gas and water production, these two parameters are not considered in the following
ED analysis.

Compared to the study of Zhao et al. [18], this paper incorporates an additional
parameter, PL, which is used as a trend parameter, leading to a more comprehensive
parameter setting. Duan et al. [1] utilize the variogram length in their research, which
is less sensitive to production; thus, it is not employed in this study. Additionally, their
study incorporates the concept of gas saturation, the ratio of gas content to the theoretical
maximum adsorption capacity (calculated by VL and PL) under actual reservoir pressure.
However, only three gas saturation values are assigned, inadequately describing the actual
distribution of gas saturation under geological conditions. In other words, the parameter
selection in this study is more reasonable.

5. Numerical Simulation Process
5.1. Simulation Cases Generation and Analysis

Based on the sensitivity analysis results in the previous section, seven sensitive pa-
rameters are selected and input into the ED workflow as uncertain variables. The central
composite sampling algorithm is employed for sampling and calculating uncertain pa-
rameters in their corresponding uncertainty ranges. And then, 143 simulation cases are
generated and run for three pilot wells. Each case represents an optimized combination of
low, medium, and high values for the seven parameters mentioned above.

Taking MB006 as an example, the observed production data are encompassed within
the simulated curves of 143 generated cases. The simulated peak gas rate of the cases
ranges from 4971 m3/d to 40,722 m3/d, with an average of 24,102 m3/d. The simulated
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peak water rate of the cases ranges from 3.02 m3/d to 26.85 m3/d, with an average of
14.93 m3/d (Figure 6a,c).

Figure 6. Gas rate matching results of (a) 143 cases and (b) selected 10 cases for MB006; (c) water rate
matching results of 143 cases and (d) selected 10 cases for MB006.

In order to quantify the simulation results of cumulative gas and water production,
the simulation deviation (SD) is defined as follows:

SD% =
Qc−Qo

Qo
× 100% (3)

where Qc is the simulated cumulative production (m³); Qo is the corresponding observed
value (m³).

The SD for gas ranges from −78.04% to 91.69%, averaging −2.65%. The SD for water
ranges from −76.92% to 104.5%, averaging 1.3%. Due to the random combination of the
selected seven sensitive parameters within their corresponding high and low bands, the
variation ranges of SD values for gas and water are large. However, the small average SD
values for gas and water indicate that the settings of the initial medium values for the seven
sensitive parameters are reasonable.

5.2. Optimal Simulation Selection and EUR Prediction Method

The main aim of history matching is to attain a more accurate understanding of the
geology by calibrating reservoir parameters to match the actual production data. In other
words, the parameter combinations of the simulation cases having satisfied matching results
are close to the actual geology conditions. In this study, two criteria, the SD range of −20%
to 20% and trend matching of dynamic production, are used to distinguish the satisfied
and unsatisfied simulation cases. According to these two criteria, the satisfied simulation
cases are selected for MB005, MB006, and MB007, respectively. Then, the intersection of
the aforementioned cases is determined. For this pilot area, ten optimal cases are finally
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selected (Figure 6b,d), and their parameter combinations are listed in Table 3. According
to the absolute value of the average of SD, we classify the ten simulated cases and select
the three best cases with less than 2% SD. Through this analysis, it is evident that the gas
content, permeability, and fracture porosity are kept at their base values, with high Corey
water. In other words, the initial settings of the aforementioned parameters are reasonable.

Table 3. Parameter settings for the top ten simulation cases.

Case
No.

Gas
Content

VL Permeability Fracture
Porosity

Corey
Gas

Corey
Water

Rock
Compressibility

SD of Gas (%) Average
SDMB005 MB006 MB007

1 Base Base Base Medium Low High Medium 0.13 0.6 −0.75 −0.01
2 Base High Base Medium Medium High Medium 2.4 1.03 0.66 1.36
3 Base Base Base Medium Medium High Low − 1.85 − 1.4 − 0.92 − 1.39
4 Base Low Base Medium Medium High Medium −2.56 −2.15 −1.7 −2.13
5 Base Base Base Medium Medium Low Medium −3.55 −2.53 −1.16 −2.41
6 High Base Base Medium Medium High Low 3.04 3.76 2.88 3.23
7 Base Base Base Low Medium High Medium −4.1 −3.32 −5.85 −4.42
8 Base Base High Medium Medium High Medium 6.33 6.82 5.5 6.22
9 Low Base Base Medium Medium High Medium −9.76 −9.52 −10.25 −9.84
10 Base High Low High High Low Medium 12.83 13.2 15.64 13.89

For all of these three wells, satisfied matching results are attained. In this paper, MB006
is selected as an example to illustrate this. Comparing the results from the top ten cases
with the observed production data reveals a similarity between the simulated gas–water
dynamic trend and the actual situation (Figure 6b,d). The SD of gas varies from −9.52% to
13.2%, as listed in Table 3.

Utilizing the top ten simulation cases, EUR predictions are conducted for these three
wells with the constraint of BHFP. The initial pressure of each well in the dynamic model is
set according to the actual value on the last production date. The target BHFP is set as 2 bar
for each well after twenty years of dewatering.

6. Results and Discussion
6.1. EUR Prediction Results

The EUR of the top ten cases is predicated for these three pilot wells. Taking the
MB006 well as an example, all the cases show a similar trend, i.e., production initially
increased, declined rapidly, and eventually stabilized later. The calculated EUR varies from
20.76 × 106 m3 to 27.8 × 106 m3, averaging 24.65 × 106 m3 (Figure 7). Due to the scarce
geological data and short production periods for these three pilot wells, it is hard to predict
their future production accurately. However, the EUR ranges calculated by the top ten
cases provide the EUR of individual wells with a high confidence degree.

6.2. Discussion
6.2.1. Application of Simulation Algorithms and Parameter Optimization

The central composite sampler algorithm used in this study is an experimental design
algorithm to establish a quadratic surrogate model as an alternative algorithm to the Box–
Behnken sampler. The central composite design includes embedded factors or fractional
factor designs with a central point, enhanced by star points that facilitate estimating the
model’s response curvature. The number of star points is invariably double the number of
factors, representing new extremes (low and high) for each factor in the design. Two types
of support exist for the central composite design: inscribed and face-centered.
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(1) Inscribed type

In this case, the central composite design represents a rotatable five-layer structure,
where all off-center variables are positioned on the hypersphere within the factorial hy-
percube. In addition, in each dimension, these variables are consistently located on the
hypersphere within the factorial hypercube (Figure 8a). This design yields high accuracy in
the central space but exhibits reduced precision near the hypercube corners.

Figure 8. Center composite sampling type: (a) inscribed; (b) face-centered.

(2) Face-centered type

In this case, the central composite design in another scenario is a non-rotatable three-
layer configuration, wherein all points diverging from the center reside on the factorial
hypercube (Figure 8b). This arrangement signifies that the sequence of variables plays a
critical role. It ensures commendable accuracy across the entire design space, albeit with
marginally diminished precision in calculating pure quadratic coefficients.

This study selects seven parameters and generates 143 simulation cases using the
face-centered algorithm of central composite sampling. Additionally, the number of pa-
rameters can be increased as the research requires the production of more matching cases,
enhancing the representation of uncertainty. However, this approach is time-consuming;
fewer parameters imply greater randomness. The seven reservoir parameters chosen for
this study are notably representative, and the selected combination of simulation cases
holds scientific significance.
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6.2.2. Analysis of Differences in Parameter Sensitivity

In this paper, the sensitivity analysis reveals that specific parameters, notably influen-
tial on gas and water production, have an SI value surpassing about 100%. For instance,
gas content and permeability are critical for gas production, and fracture porosity and
permeability are crucial for water production. These findings align with these of prior
research [5,18,35]. However, the sensitivity degrees on gas and water production of other
parameters are controversial [6,36–38] (Table 4). This may be because the high and low
value setting approaches for the sensitivity parameters are different, e.g., empirical method,
analogous method, testing data, or probability method. Given that the uncertainty ranges
of the sensitivity parameters have an important impact on the simulated EUR for the pilot
wells, the setting methods are pivotal for the CBM simulation task. The approach proposed
in this paper is more reasonable and scientific.

Table 4. Previous studies on the sensitivity of various parameters.

Authors
Sensitivity Parameters and Sequence

1 2 3 4 5 6 7 8 9

Duan et al. [5] Gc K Cg VL Φ PL Cw C Tau
Zhao et al. [18] Gc K VL Φ Cw Cg Tau C

Acuna et al. [35] Φ Gc K Ng Cg
Philpot et al. [36] K Xf Φ Gc C

Zhou et al. [6] K VL ρm d Φ PL Tau
Ru, T. [37] Gc Φ K d

Liu et al. [38] Gc VL K S Φ
Note: Gc = gas content, K = permeability, Φ = fracture porosity, Cg = gas relative permeability, Cw = water relative
permeability, VL = Langmuir volume, PL = Langmuir pressure, C = rock compression coefficient, Tau = desorption
time, Xf = fracture half-length, ρm = coal density, d = coal thickness.

6.2.3. Impact of Drilling Rate of Coal Seams on Gas Production

As shown in Figure 5a, the most sensitive parameters for gas production are gas
content and permeability, which both are controlled by the burial depth. Considering the
short well spacing of 100 m, the variation in geological properties in the pilot area should
be not obvious. The peak production of the three wells is 18,259 m3/d, 27,780 m3/d, and
13,700 m3/d, respectively. The obvious production performance difference may be due
to the individual well drilling rate. As shown in Table 5, there is a positive correlation
between the peak gas production and drilling rate of coal seam, which is consistent with the
previous study [39]. The calculated P50 EUR of the individual wells also exhibits similar
laws. In other words, in order to attain a decent production performance, the drill rate
should be improved at the given horizontal length of the CBM well, and strategies may
include conducting 3D seismic explanation or coal seam correlation before drilling.

Table 5. Drilling rates and P50 EUR for each pilot well.

Well Name Horizontal Length
of the Well (m)

Horizontal Length
in Coal (m)

Drilling Rate of
Coal Seam (%)

Peak Gas
Production (m3/d)

P50 EUR
(m3)

MB005 632 546 86.4 18,259 11.4 × 106

MB006 590 540 91.5 27,780 17.1 × 106

MB007 586 480 81.9 13,700 8.0 × 106

6.2.4. Comparison of EUR

There is a brown CBM field, the Moranbah gas field, in the Bowen Basin. The
main developing well type is dual lateral SIS well, and the peak gas rate mainly varies
from 30 × 103 m3/d to 60 × 103 m3/d, with the EUR ranging from 14 × 106 m3 to
30 × 106 m3 [40]. In this pilot area, the average EUR of an individual well is about 12 × 106 m3,
which is almost a half less than that of the Moranbah gas field. Given that the drainage
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scope of the dual lateral SIS wells used in the Moranbah gas field is two times bigger
than that of the single lateral SIS well used in the pilot areas, the individual EUR values
are comparable (Figure 9). In other words, the simulated EUR in this paper is reliable
and credible.

Figure 9. Well type of (a) single-lateral SIS and (b) dual-lateral SIS (the well trajectory indicated by
light green color was completed with slotted liners).

The main reason for drilling a single lateral SIS well in this pilot area is to reduce costs.
For this pilot area, if large-scale development planning is executed in the future, more well
patterns should be used, such as a dual lateral SIS well, heel intersected lateral well, or
standalone lateral well.

7. Conclusions

Considering challenges such as the absence of reservoir parameters and short period
of production data in the C pilot area, this paper proposes a comprehensive numerical
simulation method. This method not only incorporates comprehensive reservoir parameters
but also considers the matching accuracy of both cumulative production and dynamic
production trends when selecting optimal matching cases. The main conclusions are
listed below:

(1) The distribution of gas content, permeability, VL, and PL exhibits a pattern that
can be predicted by establishing their correlations with other parameters, respec-
tively. In contrast, the distribution of fracture porosity, gas relative permeability,
water relative permeability, rock compressibility, and sorption time does not show a
discernible pattern.

(2) The gas production is most sensitive to gas content and permeability, and the water
production is most sensitive to fracture porosity and permeability. So, the uncertainty
range settings of these four parameters are pivotal for the simulated EUR.

(3) The ED method is an efficacious tool for analyzing parameter uncertainty, facilitating
rapid history matching of production data, and identifying various combinations of
CBM reservoir parameters, significantly reducing the time required for numerical
simulation.

(4) A higher drilling rate of the coal seam corresponds to an increased peak gas production
and a higher EUR of the pilot well. The simulated EUR of this pilot wells’ values
is comparable to that of the brown field in the Bowen Basin. In other words, the
workflow to calculate EUR proposed in this paper is reliable and credible.
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