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Abstract: In response to the urgent need for efficient pneumonia diagnosis—a significant health
challenge that has been intensified during the COVID-19 era—this study introduces the RCGAN-
CTL model. This innovative approach combines a coupled generative adversarial network (GAN)
with relativistic and conditional discriminators to optimize performance in contexts with limited
data resources. It significantly enhances the efficacy of small or incomplete datasets through the
integration of synthetic images generated by an advanced RCGAN. Rigorous evaluations using a
wide range of lung X-ray images validate the model’s effectiveness. In binary classification tasks
that differentiate between normal and pneumonia cases, RCGAN-CTL demonstrates exceptional
accuracy, exceeding 99%, with an area under the curve (AUC) of around 95%. Its capabilities extend
to a complex triple classification task, accurately distinguishing between normal, viral pneumonia,
and bacterial pneumonia, with precision scores of 89.9%, 95.5%, and 90.5%, respectively. A notable
improvement in sensitivity further evidences the model’s robustness. Comprehensive validation
underscores RCGAN-CTL’s superior accuracy and reliability in both binary and triple classification
scenarios. This advancement is pivotal for enhancing deep learning applications in medical diagnos-
tics, presenting a significant tool in addressing the challenges of pneumonia diagnosis, a key concern
in contemporary healthcare.
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1. Introduction

Pneumonia, a respiratory infection characterized by lung dysfunction and potentially
severe complications, such as coughing and chest tightness, was notably exacerbated by the
emergence of a novel coronavirus in Wuhan, China, in 2019. Though originally confined to
mammals, the virus spread rapidly and triggered a global pandemic that, as of 5 January
2023, has resulted in over 657 million confirmed COVID-19 cases and 6.67 million deaths
worldwide. The neo-coronavirus’s swift propagation has placed enormous strain on health-
care systems worldwide, with diverse recombinant subtype variants rapidly proliferating.
This trend has corresponded with an alarming rise in COVID-19-related viral and bacterial
pneumonia, with one in five patients contracting respiratory ailments [1]. Elderly indi-
viduals and those with underlying medical conditions face a greater risk of pneumonia
contraction. To address this critical health challenge, there is a need for efficient and con-
venient tools that offer low-cost, reliable, and effective treatment options for pneumonia
screening and post-recovery evaluations.
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Generally, radiologic image-based scanning techniques are utilized to diagnose inflam-
matory lung diseases. Different researchers have proposed diverse artificial intelligence
(AI) solutions for images. ShowKat et al. [2] applied a transfer learning (TL) approach
to extract pneumonia features by transferring information between individual domains
and fine-tuning additional layers, such as the BN layer in the pre-trained network of TL,
ResNet, to achieve fast and stable operation of the network. Chakraborty et al. [3] employed
pre-trained VGG-19 deep learning architecture to classify various types of chest pneumonia
X-ray images, using MongoDB as a database for storing images and categories. Avola
et al. [4] conducted a study on 12 ImageNet pre-trained models to differentiate X-rays of
healthy individuals from those of pneumonia patients to demonstrate that the existing
architecture can effectively diagnose pneumonia. The study also employed the Grad-CAM
algorithm for visualization and analysis. Manickam et al. [5] developed an approach based
on segmenting chest X-ray images with the U-Net architecture to identify pneumonia
and further employed the ImageNet dataset model to determine whether pneumonia is
abnormal or not. Both Adam and SGD optimizers were used for batch analysis to extract
features more efficiently, and the results showed that the accuracy of the ResNet50 model
was significantly higher than that of the other models. Mamalakis et al. [6] developed a
novel transfer learning network called DenResCov-19, which was developed using a CNN
block with an additional layer that connects the DenseNet-121 and ResNet-50 networks, an
approach that effectively compares the two competing network scenarios. The network has
produced excellent results in classification problems for class II (healthy and pneumonia),
class III (COVID-19, pneumonia, healthy), and class IV (COVID-19, pneumonia, healthy,
TB). Lovey et al. [7] also used conditional generative adversarial network (CGAN) synthetic
images directly as a dataset to participate in resnet50 model training, although due to
CGAN one-time image generation, there are issues with feature fixation and overfitting,
resulting in an accuracy of only 82.91% in identifying neo-crown pneumonia. Kaderuppan
et al. [8] proposed a novel deep collaborative network called O-Net, which improves the
quality of images (contrast and resolution) by simultaneously learning phase information
and image features. Ayan et al. [9] used two convolutional networks, Xception and Vgg16,
to diagnose pneumonia. Transfer learning and fine-tuning methods were used during
the training process, and the results showed that the Xception network achieved better
performance. Hammoudi et al. [10] used four different deep-learning models to diagnose
pneumonia and compared their performance using ACC and F1-score. The DenseNet-121
model performed the best on ACC, achieving 94%, while the Xception model performed
the best on the F1-score, achieving 93%. A classification method for chest X-rays using
pre-trained CNN models and transfer learning techniques was proposed by Luján-García,
et al. [11] Furthermore, a gradient-based class activation mapping (Grad-CAM) algorithm
was employed to visualize the output of the CNN model and display the potential locations
of pneumonia.

In addition to the aforementioned research findings, transfer learning [12] has dis-
played extensive applicability in various fields. Nonetheless, transfer learning fails to attain
normal training outcomes in small datasets, particularly in scenarios where data is missing
and has a significant likelihood of resulting in classification failure. To tackle this issue,
a novel dataset enhancement method coupled GAN with relativistic discriminators and
conditional transfer learning (RCGAN-CTL) is proposed, which enables the compensation
of small or missing data samples in transfer learning. RCGAN, a network designed by
Li [13] to merge infrared and visible images, is utilized in this study to investigate an
enhanced RCGAN network that is applied to the medical imaging domain. The enhanced
RCGAN network is employed in the data generation module to produce high-quality
synthetic images, while the data classification module uses a CTL structure with suitable
image complementary datasets participating in the transfer learning training. The primary
advantages of the RCGAN-CTL approach are summarized below.

(1) The quality of synthesized images is significantly enhanced by utilizing an enhanced
RCGAN for data generation, which allows for the fusion of synthetic images belonging
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to the same category but possessing distinct characteristics through the input of a
random vector and additional condition vectors.

(2) CTL benefits from the use of the pre-training network to restrict the input transfer
learning images and ensure the quality of synthetic images involved in training.
Furthermore, transfer learning can update the parameters of the pre-training network
to dynamically alter the conditional restrictions.

(3) The RCGAN model is not simply linked to the CTL model, and the parameter update
of CTL impacts the update of the random vector of RCGAN, resulting in more pliable
and diverse features of the generated images in each cycle and reducing the overfitting
phenomenon of the training process.

Section 2 details the theoretical basis; Section 3 describes the synthetic data method and
the conditional transfer learning diagnosis model in detail. The experimental procedure
and results are presented in Section 4, while Section 5 provides discussion. The final part is
the conclusion.

2. Theoretical Background
2.1. Conditional Generative Adversarial Networks

In this paper, RCGAN incorporates a conditional vector that is akin to CGAN [14].
However, RCGAN differentiates itself by enabling the network to generate specific, high-
quality synthetic images by stacking generators and discriminators on top of the original
architecture. The RCGAN model is comprised of D1 and D2 discriminators and G1 and G2
generators, which serve as its primary components. The coupled generators produce com-
pliant data for fusion, whereas the coupled relativistic discriminators assess the similarity
between the synthetic and real data. The discriminator and generator components engage
in a reciprocal relationship. Here, the coupled generator employs feature fusion techniques
to create enhanced images. Simultaneously, the coupled relativistic discriminator evaluates
these images, guiding the process by identifying differences between the synthetic and
authentic images.

Assuming that x represents the real data distribution and y represents a random noise
vector, we can derive the subsequent objective function for GAN [15]:

min
G

min
D

V(D, G) = Ex∼pd [logD(x)] + Ex∼pn [log(1 − D(G(y)))] (1)

in this context, Ex∼pd signifies the expected value over the distribution of the true data,
indicating an operation over the real, authentic data samples. Conversely, Ex∼pn represents
the expected value over the distribution of noise-generated data, referring to the operations
performed on synthetic or artificially generated data samples. D(x) is the data produced
by the generator, and G(y) denotes the discriminative output of the G network for the D
network. To introduce an extra conditional vector z in the CGAN, it is imperative to merge
z with both x and y. This process culminates in the CGAN [14] objective function:

min
G

min
D

V(D, G) = Ex∼pd [logD(x|z)] + Ex∼pn [log(1 − D(G(y|z)))] (2)

when it comes to handling complex and intricate data types like images, CGAN holds an
edge over GAN. This is because CGAN has the ability to govern data in compliance with
conditional information, leading to greater flexibility in image processing.

Assuming two generators, G1 and G2, and two discriminators, D1 and D2, by incor-
porating supplementary conditional vectors z and ensuring that they all adhere to the
minimum–maximum standard mutual constraint, the objective function of RCGAN can be
expressed as follows:

max
D1,D2

min
G1,G2

V(D1, D2, G1, G2) = EI1 [logD1(G1(x|z))] + Ex∼pd [log(1 − D1(G1(x|z)))]

+EI2 [logD2(G2(y|z))] + Ex∼pn [log(1 − D2(G2(y|z)))]
(3)

in comparison to GAN, the improved RCGAN employs a coupled network to integrate
diverse high-level features, mutually reinforcing one another to produce images with
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varying degrees of quality, from “normal” to “very high”, thereby endowing the synthetic
images with multiple characteristics akin to those of genuine images.

2.2. Conditional Transfer Learning Based on Shared Parameters

The proposed conditional transfer learning method relies on shared parameters and
aims to identify the common parameters or prior distributions between the models of
the source and target data spaces. To achieve this objective, a pre-trained model is used
as a screening condition, and transfer learning is employed. Specifically, the ImageNet
pre-trained model is retrained using real image datasets while retaining the model pa-
rameters and setting the conditional pass function to complete the initialization setting of
the screening module. During the pre-training phase, synthetic data is input into the TL
network together with the real data to extract generic features. In the fine-tuning phase of
the TL model, the model is fine-tuned to satisfy the data distribution for the target task.

Assuming that xi is the ith input sample and yi is the ith label, f (xi; w) represents the
predicted output of xi, and the loss function L( f (xi; w), yi) of the target can be obtained.
In this context, w represents the weights of the model, which are crucial parameters
determining how the model processes and transforms the input data to make predictions.
The objective function of the pre-training stage can be obtained by adding the regularization
coefficient λ and the model parameter w1 to the loss function:

J(w) =
1
n∑n

i=1 L( f (xi; w), yi) + λ|w1|2 (4)

the objective function formula for the fine-tuning stage can be obtained by modifying
the objective function of the pre-training stage with the introduction of a regularization
coefficient denoted as lambda two λ2 and a modified model parameter represented by w2.

J(w) =
1
n∑n

i=1 L( f (xi; w), yi) + λ|w1|2 (5)

to enable the shared parameters to move in the direction of minimizing the loss function
through the gradient descent algorithm, the formula L( f (xi; w), yi) requires extension and
modification tailored to the specific tasks and models. Once the training is complete, the
model parameters from the fine-tuning phase are transferred to the pre-training network,
with the conditional screening network facilitating parameter updating.

3. Proposed Method

This paper proposes a method for image classification diagnosis in cases of missing
or small datasets using a theoretical approach discussed in the previous subsection. The
framework consists of a data generation module and a disease diagnosis module.

Traditionally, diagnosing diseases like pneumonia involves analyzing a large number
of chest X-rays to identify patterns. However, gathering such a large number of images
can be challenging due to patient privacy concerns. Extracting features from small batches
of data has become more common in recent years, often with problems such as data
deficiencies. The RCGAN-CTL approach has been adopted, with the data generation
module introducing the enhanced coupled GAN with relativistic discriminators (RCGAN).
In simpler terms, this module generates new X-ray images that are not real but are realistic
enough to be used for training the model. In this study, the RCGAN has been adapted
to better suit medical images by enhancing its complexity and capability to create more
detailed synthetic images. The generator will use the similarities in images of the same
class but with different features to generate a new image by combining the differences in
the last layer. It essentially ‘learns’ from existing X-ray images to produce new ones that
help in training the system. The relative discrimination guides the generator by comparing
the relative differences between the two sets of real and synthetic images.

The disease diagnosis module incorporates conditional transfer learning (CTL) into its
design, which helps the model learn more effectively from both real and synthetic images.
The pre-training network generates synthetic images, which must score higher than 0.9
to be inputted into the TL network. The TL network is then trained after completing
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the pre-training, and the weight parameters are passed to the pre-training network to
complete the update and optimize the input of random vectors in the RCGAN input
layer. Each cycle populates the high-quality synthetic dataset into the real dataset of
DL’s diagnostic classification, and the architecture is deployed based on data sharing.
This enables the convolutional layer to extract spatial features from X-ray images while
retaining the important weight parameters of the convolutional layer. This approach allows
researchers to effectively use a smaller dataset of real X-rays by supplementing it with
high-quality synthetic images. Ultimately, the RCGAN-CTL combination trained network
achieves accurate prediction of X-ray category images from the defective dataset. Figure 1
depicts the network structure, where IS denotes the synthetic image, IR represents the real
image, and ISP is the synthetic image generated by pre-training the network.
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3.1. Experimental Data

The present study utilized a dataset sourced from Kermany et al. [16], who had DL
models to analyze chest X-ray images. Specifically, the dataset comprised 5856 labeled chest
X-ray images obtained from patients aged 1 to 5 years who were admitted to Guangzhou
Women’s and Children’s Hospital. These images were segregated into two categories:
Pneumonia and normal lung images. Of the total images, 1341 were normal lung images,
while 3875 were images depicting lungs with pneumonia. The model constructed was
trained using this dataset and subsequently tested using 227 normal images and 389 images
of lungs affected by pneumonia. Notably, this study utilized a relatively small dataset that
equivalently replaced the missing dataset commonly used in research.

A comprehensive data cleaning process was applied to the dataset from publicly avail-
able datasets by Kermany to ensure its quality and consistency. This involved removing
irrelevant or low-quality images and standardizing image formats and resolutions, thereby
refining the dataset to meet the specific research needs and enhancing model accuracy and
reliability. The research employed this refined dataset for model training, complemented
by an evaluation of an additional set of 227 normal and 389 pneumonia lung images. This
methodology underscores the study’s commitment to employing rigorous data preparation
and utilization strategies, aiming to achieve high-quality, research-specific data for precise
model development and validation.

3.2. Data Pre-Processing

The complexity and variations present in the acquired images can be attributed to
multiple factors, such as the scanning equipment used, working habits, and personal health.
In addition, the images in the dataset may exhibit pixel non-uniformity issues. Therefore,
to ensure uniformity in our proposed approach that employs a stacked network, it is crucial
to preprocess the data.

To achieve this, the experiment executes a center crop pre-processing technique with
the short edge of the image as the square’s edge length. This technique enables us to retain
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essential information from the original image. The next step involves scaling and resizing
the image to 256 × 256 pixels and modifying the single-channel grayscale map into a three-
channel image. Before commencing the formal training, we employ data augmentation
methods such as flipping and rotating to simulate various forms of non-standard clinical
images. This approach helps to ensure that the model is capable of effectively handling
variations present in the dataset.

3.3. Data Generation Module

The coupled generator in this structure is designed to produce high-quality images
with similar features to real images through the use of inverse convolution layers. These
layers help to reduce the low-resolution input into a high-resolution output, with a filter
size of 5 × 5. The generator is composed of two groups, each containing four deconvolution
layers, three ReLU activation layers, three batch normalization layers, and a tanh layer
composition. The input information is reprojected and reconstructed into a 4 × 4 × 1024 ma-
trix, which is then input into the inverse convolution layers to generate an image. The
step lengths in the convolution layers play a crucial role in the quality of the generated
image. After optimization, the step lengths were set to 3, 2, 3, and 3, with the number of
convolution kernels set to 256, 128, 64, and 3, respectively. To ensure comparability with
the discriminator output for loss calculation, the image pixel range value of the generator is
restricted to [−1, 1] using the tanh activation function. To further enhance joint learning of
image features across multiple domains and reduce the amount of training data required,
the weight parameters of the first two convolutional blocks are shared between the two
generators. The structure of the coupled generator is illustrated in Figure 2.

Processes 2024, 12, x FOR PEER REVIEW 6 of 17 
 

 

data preparation and utilization strategies, aiming to achieve high-quality, research-spe-
cific data for precise model development and validation. 

3.2. Data Pre-Processing 
The complexity and variations present in the acquired images can be attributed to 

multiple factors, such as the scanning equipment used, working habits, and personal 
health. In addition, the images in the dataset may exhibit pixel non-uniformity issues. 
Therefore, to ensure uniformity in our proposed approach that employs a stacked net-
work, it is crucial to preprocess the data. 

To achieve this, the experiment executes a center crop pre-processing technique with 
the short edge of the image as the square’s edge length. This technique enables us to retain 
essential information from the original image. The next step involves scaling and resizing 
the image to 256 × 256 pixels and modifying the single-channel grayscale map into a three-
channel image. Before commencing the formal training, we employ data augmentation 
methods such as flipping and rotating to simulate various forms of non-standard clinical 
images. This approach helps to ensure that the model is capable of effectively handling 
variations present in the dataset. 

3.3. Data Generation Module 
The coupled generator in this structure is designed to produce high-quality images 

with similar features to real images through the use of inverse convolution layers. These 
layers help to reduce the low-resolution input into a high-resolution output, with a filter 
size of 5 × 5. The generator is composed of two groups, each containing four deconvolu-
tion layers, three ReLU activation layers, three batch normalization layers, and a tanh layer 
composition. The input information is reprojected and reconstructed into a 4 × 4 × 1024 
matrix, which is then input into the inverse convolution layers to generate an image. The 
step lengths in the convolution layers play a crucial role in the quality of the generated 
image. After optimization, the step lengths were set to 3, 2, 3, and 3, with the number of 
convolution kernels set to 256, 128, 64, and 3, respectively. To ensure comparability with 
the discriminator output for loss calculation, the image pixel range value of the generator 
is restricted to [−1, 1] using the tanh activation function. To further enhance joint learning 
of image features across multiple domains and reduce the amount of training data re-
quired, the weight parameters of the first two convolutional blocks are shared between 
the two generators. The structure of the coupled generator is illustrated in Figure 2. 

 
Figure 2. Proposed enhanced coupling generators in RCGAN networks. 

The coupled relative discriminator consists primarily of five convolutional layers, 
three LeakyReLU activation layers, three batch normalization layers, and a LINEAR layer. 

Figure 2. Proposed enhanced coupling generators in RCGAN networks.

The coupled relative discriminator consists primarily of five convolutional layers,
three LeakyReLU activation layers, three batch normalization layers, and a LINEAR layer.
The input data is an image with dimensions of 256 × 256 × 3, and each convolutional
layer utilizes a 5 × 5 filter. An activation function of LeakyReLU is added following
each convolutional layer to mitigate the gradient disappearance issue. The number of
convolution kernels is 64, 128, 256, and 512 for the four convolutions, respectively. The
final layer is a linear layer that transforms the flattened image features into an output
value representing the similarity between the synthetic and real images. To decrease the
quantity of required training data, the last two convolutional and linear layers share weight
parameters. The structure of the coupled relativistic discriminator is presented in Figure 3.
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3.4. Data Classification Module

The process of conditional transfer learning involves two phases, namely pre-training
and transfer learning. The pre-training phase allows only eligible images to pass through,
and the score of the corresponding category of the synthetic image should be greater than
0.9 to ensure that only high-quality synthetic images are used for training. This approach
helps to improve the accuracy of the final model. The transfer learning phase partially
completes the training and updates the pre-training network parameters. Transfer learning,
which is composed of four main components, namely source and target domains, pre-
trained models, fine-tuning techniques, and evaluation metrics, is used for this purpose.
The ImageNet dataset is used as the source domain, while the target domain consists of
the real dataset of chest X-ray and synthetic datasets. Common features extracted from
the source domain are used for pre-training, and VGG19 is used for the target task, while
AlexNet, ResNet18, and InceptionV3 are used to test the same dataset. This approach
verifies that the RCGAN-CTL approach is broad-spectrum and generalizable and can
be applied to different datasets and tasks. During the fine-tuning process, some layers
are frozen to preserve the pre-training weight parameters, and the final fully connected
layers are fine-tuned. The SoftmaxLayer and ClassificationLayer are cleaned up to adapt
to the task in the target domain. The effectiveness of transfer learning is measured using
evaluation metrics such as accuracy, recall, and F1-score. Additionally, roc curves and
t-SNE downscaling are plotted to further evaluate the model’s performance, which can
help with further optimization of the model and dataset.

4. Experiment Analysis
4.1. Experimental Setup

The experimental algorithms have been developed using the MATLAB R2022a soft-
ware, with computer hardware configurations comprising a 12th generation Intel Core
i9-12900KS 5.5 GHz CPU and NVIDIA GeForce RTX 3090 Ti GPU. The GPU consists of
10,752 CUDA cores, accelerated by cudnn with a maximum core frequency of 1860 MHz.

Throughout the training of the dataset, an array of data augmentation techniques were
implemented to simulate a diverse range of clinical images. The MATLAB platform, espe-
cially its deep learning toolbox, played a crucial role in the generation of synthetic images.
For the data generation module, the optimizer of choice was Adam [17], while for the data
classification module, SGDM [18] was selected. The experiment was carried out with a
miniBatchSize set to 256, a learnRate set to 0.0002, and a gradientDecayFactor of 0.5. The
model underwent a total of three cycles of training, with the data generation module being
trained for 10,000 epochs in each cycle and the data classification module being trained
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for 6 epochs in each cycle. Transfer learning training was conducted on 70% of the dataset
designated as the training set, whilst the remaining 30% was utilized as the validation set.
The experiment was performed with two classifications (normal/pneumonia) (viral pneu-
monia/bacterial pneumonia) and three classifications (normal/viral pneumonia/bacterial
pneumonia), respectively. The diagram of the RCGAN used during the training process is
presented in Figure 4. On the left side of the figure, we can see the sampling map, while the
right side showcases the training process. Figure 5 displays the training graph for transfer
learning based on VGG19. The accuracy of the training set is indicated by blue labels, while
the cross-entropy loss of the training set is indicated by orange labels. Additionally, all
validation sets are indicated by black labels represented by black dashed lines. To observe
the trend curve, image normalization and smoothing of 0.6 were performed.
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4.2. Performance Results

The RCGAN-CTL approach is characterized by its high scalability, facilitating the
integration of the RCGAN data generation module with a variety of data classification
models. In the validation of this approach’s generalizability across different models, the
VGG19 model [19] was first trained and subsequently integrated with pre-trained transfer
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learning models, such as AlexNet [20], ResNet18 [21], and InceptionV3 [22], into the
classification module. The optimal performance of the classification models was achieved
through precise hyperparameter tuning.

Key metrics for the binary classification task (normal vs. pneumonia)—accuracy,
precision, sensitivity, specificity, and F1-score—were computed from the confusion matrices,
as visually represented in Figure 6. These metrics are crucial for evaluating the models’
performance. ROC curves were also constructed, and the AUC values were computed to
discern the performance variations among the different neural networks. These variations
are further detailed in the multifactor histograms shown in Figure 7, illustrating the results
of the five metrics for each model.
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Post-integration of the RCGAN data generation module with the dataset, it was ob-
served that the accuracy of each classification model was notably high, each surpassing
the 97% mark with commendable precision, sensitivity, and specificity. The F1-score re-
mained consistently above 99.0%, reflecting a balanced measure of precision and sensitivity
across the models. The AUC values, consistently around 95.0%, indicate the reliability and
effectiveness of the classifiers. An in-depth evaluation of the five metrics suggests that the
RCGAN-CTL approach exhibits significant generalizability, with the trained models showing
ample accuracy and stability, thus, confirming the method’s efficacy without overfitting.

To assess the efficacy of RCGAN-CTL on multi-classification networks, VGG19 was
trained using the RCGAN-CTL approach and, without it, employing the original dataset,
as depicted in Figure 8. The confusion matrix was generated using the validation set, indi-
cating a significant improvement in the model’s accuracy after implementing RCGAN-CTL.
The existence of similar overlapping features between viral pneumonia and bacterial pneu-
monia [23] can result in the misidentification of images when VGG is trained directly with
the original data, as shown in Figure 8a, where a considerable portion of viral pneumonia
classification produces errors. However, the implementation of the RCGAN-CTL method
has led to better performance. A comparison between Figure 8a,b shows that the accuracy
has improved from 88.1% to 96.1%, and the precision of normal lungs, bacterial pneumonia,
and viral pneumonia has increased from 75.8%, 94.2%, and 82.3% to 89.9%, 95.5%, and
90.5%, respectively. Additionally, the sensitivity has risen from 96.6%, 89.8%, and 65.8% to
97.6%, 92.8%, and 84.2%, resulting in improved F1-score values from 84.9%, 91.9%, and
73.2% to 93.6%, 94.1%, and 87.2%. The findings reveal that utilizing the RCGAN-CTL
method can enhance the model’s ability to achieve accuracy, classification effectiveness,
and stability in multiclassification tasks.
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The ROC curves presented in Figure 9 depict the performance of the VGG19 models
when utilizing the RCGAN-CTL method for both the dichotomous and trichotomous tasks.
In Figure 9, the ROC curves for the VGG19 models using the RCGAN-CTL method are
shown. Panel (a) indicates an AUC of 99.4%, demonstrating the model’s precision in
differentiating between ‘normal’ from ‘pneumonia’ in chest radiographs. Panel (b) reveals
an AUC of 98.1% for distinguishing between ‘viral’ and ‘bacterial’ pneumonia, critical
for treatment planning. Panel (c) presents AUC values of 99.0% for ‘normal’, 98.9% for
‘viral’, and 97.3% for ‘bacterial’ pneumonia, showcasing the model’s capability to accurately
classify these three distinct conditions. The high AUC values indicate that the models
are capable of effectively distinguishing between normal and abnormal cases as well as
accurately identifying the specific type of pneumonia present.
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4.3. Performance Evaluation

The parameters procured after training the model utilizing the proposed technique
have been elaborated in the prior subsection. In order to accentuate the benefits of the
method, as well as make a comparison with advanced algorithms, experimental evaluations
pertaining to dichotomous (normal/pneumonia) (viral pneumonia/bacterial pneumonia)
and trichotomous (normal/viral pneumonia/bacterial pneumonia) scenarios were con-
ducted. Table 1 exhibits a comparison of the RCGAN-CTL (TL using the VGG19 model)
with other networks proposed by noted researchers, in relation to pneumonia detection
performance, including the covxnet model [24]., the Inception V3 model (Kermany [16]
et al., 2018), the VGG16 model (Rajaraman et al., 2018), and the integrated model (Chouhan
et al., 2020). Covxnet [24] employs a novel deep dilation convolution architecture for
pneumonia disease detection, which has been shown to exhibit superiority in comparison
with other methods.

Table 1. Comparison of the parameters of the proposed method in pneumonia detection with other
advanced methods.

Missions Methods Accuracy
(%)

Precision
(%)

Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

AUC
(%)

Normal/pneumonia

Proposed 97.7 93.8 100 96.5 99.1 95.9
VGG-19 91.5 91.7 87.4 91.7 80.2 88.2

[24] 98.1 98 98.5 97.9 98.3 99.4
[25] 95.7 95.1 98.3 91.5 96.7 99.0
[16] 92.8 - 93.3 90.1 - 96.8
[26] 96.4 93.3 99.6 - - 99.3

Bacterial pneumonia/
viral pneumonia

Proposed 94.6 99.6 92.3 99.2 95.8 98.1
VGG-19 85.1 83.8 91.5 70.5 87.7 89.3

[24] 95.1 94.4 96.1 94.3 95.5 97.6
[25] 93.6 92.0 98.4 71.7 95.1 96.2
[16] 90.7 - 88.6 90.9 - 94.0

Normal/
bacterial pneumonia/

viral pneumonia

Proposed 96.1 92.0 91.5 95.2 91.7 98.6
VGG-19 78.6 75.6 83.2 83.1 79.9 85.6

[24] 91.7 92.9 92.1 93.6 92.6 94.1
[25] 91.7 91.7 90.5 95.8 91.1 93.8

Table 1 clearly demonstrates the significant enhancement in performance metrics
when VGG-19 is augmented with RCGAN-CTL, transforming it into RCGAN-VGG19.
This transformation is pivotal, as it marks the transition of VGG-19 from a relatively
weaker network into a formidable model capable of competing with and, in certain aspects,
surpassing more advanced architectures. The essence of RCGAN-CTL lies in its strategy
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to augment the dataset, enriching the training material without the necessity of altering
the fundamental architecture of the underlying classification model. This enhancement is
evident in the comparative analysis of pneumonia detection performance, where RCGAN-
VGG19 not only demonstrates a remarkable accuracy of 97.7% but also excels in precision,
sensitivity, specificity, F1-score, and AUC.

In comparing VGG19 after using the RCGAN-CTL method with Covxnet [24] and
Inception-CNN [25], the data illustrates RCGAN-CTL’s advanced diagnostic capability.
Against Inception-CNN, RCGAN-CTL shows superior performance in the normal/pneumonia
classification, with higher accuracy (97.7% vs. 95.7%). In comparison with Covxnet,
RCGAN-CTL closely matches in accuracy (97.7% vs. 98.1%) and AUC (95.9% vs. 99.0%)
while exhibiting complete sensitivity (100%) and a high F1-score (99.1%), indicating its
proficiency in accurately identifying pneumonia. These results, combined with its high
precision and specificity, highlight RCGAN-CTL’s superior diagnostic accuracy and robust-
ness in diverse pneumonia classifications, suggesting its potential as a highly effective tool
in medical imaging.

These metrics transcend mere numerical values; they embody the significant en-
hancement in performance bestowed upon the VGG-19 network by RCGAN-CTL. Such
enhancement serves as a robust testament to the synergistic integration capacity of RCGAN-
CTL with the classification framework, facilitating the extraction and augmentation of
VGG-19’s inherent potential. As a result, the RCGAN-VGG19 model emerges, not merely
aligning with the performance metrics of more sophisticated networks but, in specific
instances, establishing new performance benchmarks. This underscores the transformative
influence of RCGAN-CTL in augmenting the efficacy of pre-existing classification models.

The RCGAN-CTL method is unique in that it does not involve creating a new archi-
tecture or optimizing an existing one. Instead, it focuses on expanding the data used for
training by integrating synthetic images that closely resemble real-world images. This
approach has resulted in better performance for classification tasks, surpassing that of
other similar models. The accuracy of the improved VGG19 network using this technique
is almost equal to that of the Covxnet, but the Precision, Sensitivity, F1-score, and AUC
indexes are significantly higher, indicating outstanding performance. The improved mod-
els created through this methodology are more robust while maintaining high accuracy.
Overall, this approach has proven to be effective in enhancing the performance of existing
models without the need for major architectural changes or optimization.

4.4. Feature Visualization

Utilizing the t-SNE dimensionality reduction technique [27] and the grad-cam tech-
nique [28] to visualize the model’s efficacy through data processing. VGG-19 consists of 16
convolutional layers and 3 fully connected layers. It is noteworthy that the last three fully
connected layers harbor an excessive number of classification-related parameters, hence,
rendering them unsuitable as input for t-SNE. Consequently, the second fully connected
layer, with a dimensionality of 4096, known for retaining a more substantial amount of
feature information, has been chosen as the t-SNE dimensionality reduction layer. The
clustering of normal and pneumonia is shown in Figure 10, displaying an ideal clustering
effect, which aids in clearly discerning the two image categories.

The three t-SNE plots depicted offer visual representations of data clusters extracted
from features generated by a VGG19 neural network and processed using an RCGAN-
CTL framework. These plots effectively demonstrate the separation and distribution of
data points for various lung conditions. Plot (a) clearly differentiates the feature clusters
of normal lung conditions from those affected by pneumonia. Plot (b) distinguishes
between the feature clusters for viral pneumonia and bacterial pneumonia, revealing the
differences in the feature space for these pneumonia subtypes. Plot (c) combines all three
conditions, illustrating the relative positions and clustering of features for normal lungs,
viral pneumonia, and bacterial pneumonia within a two-dimensional plane.
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The figure’s description pertains to the use of gradient-based class activation mapping
(Grad-CAM) for analyzing both real and synthetic images of normal and pathological
lungs. It emphasizes that synthetic images produced by the RCGAN-CTL process showcase
feature localization that closely resembles that of real images. Key radiological features of
pneumonia, such as patchy consolidation and bilateral multifocal ground-glass opacities,
are accurately localized in the synthetic images. This precision suggests that these images
could effectively augment datasets for machine-learning applications. Furthermore, the
lack of significant thermogram overlay in the normal lung images corroborates the model’s
ability to discriminate between healthy and diseased tissue.

The utilization of the gradient-based class activation mapping technique involves the
processing of real and synthetic images of normal lungs and pneumonia, respectively. As
displayed in Figure 11, the Grad-CAM processed images are presented, with the top and
bottom columns representing the real and synthetic images of normal and pneumonia,
respectively. The findings indicate that the synthetic images exhibit similar feature local-
ization to the real images, with pneumonia demonstrating a patchy solid localized area
with bilateral multifocal ground glass-like shadows, sometimes accompanied by patchy
solid lesions, with the thermogram surrounding or directly overlaying the lesioned area.
Notably, none of the normal lung images exhibit significant thermogram overlay, indicating
that the synthetic images are of sufficiently high quality for dataset expansion and that the
RCGAN-CTL approach is reliable and valid.
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5. Discussion

The results of the RCGAN-CTL method, as presented in this study, indicate a sig-
nificant advancement in the field of medical imaging, particularly in the diagnosis of
respiratory diseases using small or incomplete datasets. Compared to traditional ap-
proaches [29], the RCGAN-CTL method shows a notable improvement in dealing with
limited data availability by generating high-quality synthetic images, thereby enhancing
the diagnostic accuracy and robustness of the models.

However, it is critical to recognize that the success of the RCGAN-CTL method is
closely tied to the quality and diversity of the synthetic images it generates. While the
method has demonstrated promising outcomes, its performance might be challenged when
applied to datasets characterized by extreme imbalances or rarity in case presentations [30].
This highlights the need for a comprehensive and diverse dataset to train robust models
capable of generalizing well across various scenarios. Looking beyond respiratory dis-
eases, the RCGAN-CTL approach holds potential for application in other medical imaging
areas, such as oncology, neurology, and cardiology [31]. This is particularly relevant in
scenarios where real-world data is scarce or difficult to collect, a common issue in medical
research [32]. By augmenting datasets with synthetic yet realistic images, RCGAN-CTL
could significantly contribute to improving diagnostic accuracies in these fields. The de-
pendency of the RCGAN-CTL method on the initial quality of available data is a notable
limitation. The generation and effectiveness of synthetic images are contingent upon the
representativeness of the training set, which may limit the model’s applicability to condi-
tions not included in the initial dataset [33]. Moreover, the computational intensity required
by this method may not be feasible in resource-constrained settings. Future developments
of the RCGAN-CTL model should focus on integrating more sophisticated image pro-
cessing techniques to enhance the realism of synthetic images further. This could involve
exploring advanced algorithms that optimize computational efficiency while maintain-
ing high accuracy [34]. Collaboration with medical professionals could provide valuable
insights into the clinical applicability of the model and guide future improvements [35].

6. Conclusions

A novel approach, named RCGAN-CTL, is proposed to improve the diagnosis of
pneumonia on missing and small samples. This approach involves a network of RCGAN
that incorporates conditional transfer learning. At each loop, synthetic images produced by
RCGAN are inserted to enhance the dataset and assist in analyzing X-ray abnormalities
from various dimensions by combining the visual field features of real and synthetic
images. The principle behind this approach is to increase the size of the database expand
the size of the database through the RCGAN network, which includes X-rays of normal
individuals and patients with various types of pneumonia, and conditionally filter the
images input to the transfer learning model accordingly. Despite a certain degree of
feature overlap in different pneumonia images, the method has achieved satisfactory
results through numerous controlled group experiments. It has exhibited remarkable
generalization, accuracy, and robustness in various transfer learning environments and
different types of classification tasks. and triple classification tasks. Lastly, the efficacy of
RCGAN-CTL is verified through visualization techniques t-SNE and Grad-CAM, which
analyze the effectiveness of synthesized images and decision sites. Additionally, this
method can be applied to several different classification models to enhance the performance
of the original model.
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