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Abstract: The inherent volatility of PV power introduces unpredictability to the power system,
necessitating accurate forecasting of power generation. In this study, a machine learning (ML)
model based on Gaussian process regression (GPR) for short-term PV power output forecasting is
proposed. With its benefits in handling nonlinear relationships, estimating uncertainty, and generating
probabilistic forecasts, GPR is an appropriate approach for addressing the problems caused by PV
power generation’s irregularity. Additionally, Bayesian optimization to identify optimal hyper-
parameter combinations for the ML model is utilized. The research leverages solar radiation intensity
data collected at 60-min and 30-min intervals over periods of 1 year and 6 months, respectively.
Comparative analysis reveals that the data set with 60-min intervals performs slightly better than
the 30-min intervals data set. The proposed GPR model, coupled with Bayesian optimization,
demonstrates superior performance compared to contemporary ML models and traditional neural
network models. This superiority is evident in 98% and 90% improvements in root mean square
errors compared to feed-forward neural network and artificial neural network models, respectively.
This research contributes to advancing accurate and efficient forecasting methods for PV power
output, thereby enhancing the reliability and stability of power systems.

Keywords: Bayesian optimization; PV power forecasting; Gaussian process regression; machine
learning; solar radiation intensity

1. Introduction

The global demand for energy has been steadily increasing over the last few decades,
leading to substantial growth in electricity production worldwide [1]. Traditionally, con-
ventional fossil fuels have served as the primary energy source for electricity generation.
However, the sustainability of these traditional fossil fuel resources is now uncertain due
to their rapid depletion [2]. Moreover, the combustion of fossil fuels is a major contributor
to greenhouse gas emissions, exacerbating severe global warming and posing a threat to
the planet’s health [1,3].

In response to these challenges, there has been a significant shift in focus from fossil
fuels to renewable energy sources (RESs) for electricity generation. This transition involves
harnessing solar energy, wind energy, tidal energy, and biomass energy [4,5]. In the context
of growing energy development, the incorporation of renewable energy sources (RES) into
contemporary power systems is increasingly reliant on hydrogen. Among the various
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RESs, solar energy stands out as the most widespread and promising resource for cleaner
power generation. The Earth’s surface receives average solar radiation of approximately
1367 W/m2, capable of generating a staggering 1.8 × 1011 MW annually [6]. This immense
and pervasive energy supply is more than sufficient to effortlessly meet the world’s energy
needs. The distribution of solar potential, as illustrated in Figure 1, showcases enormous
opportunities to harness solar energy on Earth.

The International Energy Agency (IEA) recognizes photovoltaics (PV) as one of the
fastest-growing and most cost-effective renewable energy sources. Currently, PV forecast-
ing research is considered a central focus among the major areas of prediction analytics.
The production of PV power is highly influenced by meteorological variables, including
solar radiation, clouds, humidity, pressure, temperature, etc. The inherently intermittent
nature of these factors renders PV power production unpredictable, thereby impacting grid
stability and the cost-effectiveness of power system operation [7]. Therefore, the accurate
prediction of PV power output is crucial to eliminate these uncertainties and fluctuations.

Forecasting PV power on an hourly to day-ahead basis offers numerous advantages,
including optimized power dispatching, cost efficiency, and a dependable power sup-
ply. Accurate PV power prediction contributes to appropriate power dispatching, cost-
effectiveness, and a reliable power supply. With precise forecasting, companies can avoid
penalties, schedule supply offerings to the market as efficiently as possible, and enhance
revenues [8,9]. Additionally, accurate forecasting can be used to make decisions regarding
unit commitment, reserve needs, and maintenance planning to achieve the lowest possible
operating costs. Considering these factors, accurate PV forecasting has been acknowledged
as one of the major issues in power systems [10].

Solar power forecasting can be categorized into physical, statistical, and machine-
learning models. Numerous methods have been developed using both physical models
and numerical approaches. Numerical weather prediction (NWP) is established based
on structural and physical hypotheses [11]. The chaotic nature of weather patterns and
atmospheric uncertainties makes NWP computationally challenging and necessitates a
greater operating cost. Additionally, these models must be developed for specific locations.
The foundation of statistical models is the use of conventional regressive mathematical
models like linear regression (LR) and autoregressive integrated moving average (ARIMA)
models. Since LR models linearly map the target power and inputs, they are unable to
effectively depict the nonlinear relationship between solar power’s input characteristics
and outputs. Furthermore, the accuracy of these models declines as the forecasting horizon
lengthens. To resolve these difficulties, several machine learning (ML) techniques have
been developed.

Artificial neural networks (ANNs) and support vector machines (SVMS) are the
most common ML models with strong nonlinear approximation capabilities [12]. Since
the 1980s, researchers have increasingly used ANNs. ANNs have gained popularity
among researchers over statistical models due to a higher degree of accuracy and the
nonlinearity of meteorological data. The most frequently used ANNs include the multilayer
perceptron (MLP), feed-forward neural networks (FFNNs), radial basis neural networks
(RBNNs), recurrent neural networks (RNNs), backpropagation neural networks (BPNNs),
general regression neural network (GRNNs), and adaptive neuro-fuzzy interface systems
(ANFISs) [13]. A good comparison can be found in the work of Donnelly et al., which
utilized Gaussian process (GP) models to emulate a hydraulic inundation model, enabling
real-time flood depth predictions with uncertainty quantification [14]. Their framework
accurately reproduces water depths and the extent of inundation, surpassing a neural
network-based emulator and offering significant computational speedups compared to the
original simulator.

MLP is a type of supervised feed-forward ANN with one or more layers between its
input and output layers. These layers, sometimes known as hidden layers, can be adjusted
to fit the difficulty of a problem. FFNN is a less sophisticated ANN architecture in which
information simply passes from the input layer to the output layer [15]. On the other hand,
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an RBNN is considered a two-layer ANN, and the learning process can be divided into
two distinct stages based on the weights of the synaptic connections [16]. It performs
well but requires time for the learning process. An RNN is effective at learning various
computational structures and intricate interactions, making it a suitable tool for forecasting
time-series data.

According to Yona et al., forecasting errors are significantly reduced with an RNN
compared to an FFNN [17]. BPNNs have garnered considerable attention among other
ANN-related techniques due to their superior non-linear mapping function. An LSTM
model, incorporating a clearness index method and k-means classification of the weather,
has been introduced to enhance prediction accuracy on overcast days [18]. Furthermore,
a framework for partial daily pattern prediction (PDPP) has recently been proposed to
improve time correction modification (TCM) in the LSTM-RNN model [19]. However, the
primary drawbacks of ANNs are overfitting and the substantial amount of data needed for
training, increasing the complexity of implementation and costs in reality.

Support vector regressors are a type of machine learning model that can establish nonlin-
ear relationships. Solar power forecasts have been conducted using support vector regression
(SVR), considering various weather factors such as cloud cover and sun exposure [20]. A
hybrid technique combining genetic algorithms and an SVM has been developed to enhance
accuracy compared to a simplified SVM [21]. However, these models rely on the predeter-
mined nonlinear mapping and parameters, making it challenging to fully comprehend the
underlying nonlinear relationship between the inputs and the intended values [22,23].

In the present study, various research gaps were identified. These gaps encompass
the need for a deeper understanding of the GPR model’s ability to capture underlying
patterns when faced with noisy or outlier-laden data. Additionally, the manual tweaking
of hyperparameters in the Bayesian optimizer, recognized as a time-intensive process,
constitutes another area for exploration. It presents a methodical approach to applying
Bayes’s theorem in order to update observed data with the prior understanding [24,25].
The study also suggests investigating the model’s adaptability to diverse time intervals
and delving into the evaluation of objective functions in the presence of noise. To overcome
these challenges, this study contributes to the following areas.

• Enhanced Forecasting Accuracy: The proposed GPR model with Bayesian optimiza-
tion demonstrates a significant enhancement (98% and 90%) in forecasting accuracy
compared to alternative models like the feed-forward neural network and ANN. This
highlights a substantial contribution to improving prediction outcomes.

• Robustness and Flexibility: The integration of GPR with Bayesian optimization
contributes to the model’s robustness and flexibility, especially in handling noisy and
limited data. This adaptability ensures that the model remains relevant and useful in
evolving environments.

• Time and Resource Savings: Bayesian optimization is noted for its efficiency in
systematically exploring the hyperparameter space, leading to potential time and
resource savings. This contribution is particularly relevant in scenarios involving
complex models and large data sets.

• Handling Multivariate Analysis: The suitability of GPR for multivariate analysis is
highlighted, showcasing its effectiveness in handling many input variables. This con-
tribution is essential for addressing the complexities of associations between predictor
variables and the target variable, such as in solar energy forecasting.

The subsequent sections of this paper are presented as follows: A literature review
is provided in Section 2; Data and data preparation are described in Sections 3 and 4,
respectively; An overview of the Bayesian optimizer is discussed in Section 5. The pro-
posed methodology is presented in Section 6. Results and analysis with a comparison are
discussed in Sections 7 and 8 summarizes the conclusions and future work.
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Figure 1. World solar resources map [26].

2. Literature Review

There are many forecasting algorithms presented in the literature on solar power
forecasting. Dhillon et al. [27] compared three models (feed-forward neural networks, back-
propagation neural networks, and model-averaged neural networks) for forecasting solar
energy in the field of precision agriculture to predict power for wireless sensor networks
(WSNs). The model was developed using data from NREL’s (the National Renewable
Laboratory’s) four-month period. Eight variables, including pressure, temperature, relative
humidity, the dew point, wind speed, the hour of the day, the zenith angle, and historical
solar intensity readings, were utilized to predict GHI for the next 24 h. The outcome showed
that a feed-forward neural network provided the best result with the least memory needed
(20 KBytes), and the values of the RMSE and the coefficient of correlation (R2) were, re-
spectively, 98.052 and 56.61. Elizabeth et al. [2] proposed a unique multi-step CNN-stacked
LSTM model with a dropout layer for the prediction of short-term solar irradiance and
POA irradiance. The actual solar data were obtained from the Abu Dhabi-based Sweihan
Photovoltaic Independent Power Project. The proposed model offered the best RMSE and
R2 values of 0.36 and 0.98 for solar irradiance prediction and 61.24 with R2 0.96 for POA
prediction, which also showed better performance compared to ML techniques such as LR,
SVR, and ANNs with the same data set. To confirm the suggested architecture’s robustness,
noise-injected data were also tested.

Khan et al. [28] suggested that the most effective forecasting model for PV power
output is recurrent neural networks. The data were provided from Quaid-e-Azam Solar
Park in Bahawalpur, Pakistan, a 100 MW solar power plant. The study concluded that
the bidirectional long short-term memory (LSTM) RNN framework outperformed the
SARIMA model under all weather conditions (sunny, cloudy, rainy, partially cloudy, dusty,
and foggy), particularly under cloudy weather conditions where the root mean square
error (RMSE) was found to be the lowest at 0.0025, R2 was at 0.99, and the coefficient
of variation of the root mean square error (CV-RMSE) was observed at 0.0095%. C.-H.
Liu et al. [13] proposed an ML methodology architecture based on LSTM and MLP with
different train data set sizes from two PV sites, KHH (Kaohsiung) and MFU (Thailand),
respectively. The result of the machine learning operations for data processing, model
fitting, cross-validation, metrics evaluation, and hyperparameters tweaking demonstrated
that the suggested simplified LSTM model performed better than the MLP model. The
average RMSE was 0.512, which is highly encouraging and suggests that the proposed
technique and architecture will work well for applications that require short-term solar
power forecasting.

Vanderstar et al. [29] proposed a method to anticipate two-hour-ahead solar irradiance
levels using real-time solar irradiance measured both locally and at distant monitoring
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stations using an ANN at a site in Northwestern Alberta, Canada. The results of this
study show that it is possible to use as few as five remote monitoring stations to achieve
near-peak forecasting accuracy from the algorithm and that it is preferable to give the
remote monitoring sites adequate geospatial separation around the target site, rather than
clustering the sites in the strictly upwind directions. The RMSE was 10.8%, which is a
comparatively low value.

Taoufik et al. [30] proposed a solar energy predictor for communicating sensors or
SEPCS. This prediction model makes short-term predictions about future energy availability
based on historical energy observations. The authors used a database that identified
the evolution of solar radiation over the course of a year to evaluate the performance
of the suggested algorithm. Then, a performance comparison revealed that the SEPCS
predictor greatly outperformed the most advanced energy predictors by lowering the
average prediction error from 28 to 6.5%.

Zang et al. [31] introduced two brand-new deep convolutional neural networks (CNNs),
namely the Residual Network (ResNet) and the Dense Convolutional Network (DenseNet),
as the main forecasting models. To build input feature maps for the two novel CNNs, a data
preprocessing method involving historical PV power series, meteorological components, and
numerical weather prediction was proposed. A meta-learning strategy based on a multi-loss-
function network was introduced to train the two deep networks, ensuring high robustness of
the extracted convolutional features with superb nonlinear representation abilities consisting of
more than ten layers. The point forecasting mean absolute errors (MAEs) of the hybrid ResNet
and DenseNet were 0.152 kW and 0.180 kW, respectively, according to a case study using a 5 kW
capacity PV array. The coverage error rate of the two models in probabilistic forecasting was
less than 5%, notably with the error rate of ResNet being less than 1%.

Perveen et al. [32] used fuzzy logic and neural networks to construct their short-
term PV power forecasting technique using a 15-year data set across India. Regression
models and intelligent models were compared using statistical measures. The suggested
model was used to forecast short-term PV power under a variety of climatic circumstances.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) model outperformed other models,
according to simulation findings, for PV power forecasting. The greatest root mean square
error (RMSE) for the suggested model was 0.5% on foggy days.

Ahmed et al. [33] conducted a statistical comparison among seven brain models to
ascertain the global solar radiation (GSR) in Qena, Egypt. In contrast to other models, the
study showed that the artificial neural network (ANN) model produced good outcomes.
Comparing models and assessing the importance of the anticipated data are both possible
using the test of the mean values of the mean bias error (MBE), RMSE, mean percentage
error (MPE), Nash and Sutcliffe efficiency (NSE), and R2. The hydraulic system’s calibration
criteria included the NSE metric, which provides a better comparative outcome.

Asl et al. [34] introduced solar energy prediction in Dezful, Iran (positioned at 32.1648◦ N
and 48.25◦ E) using a linear transferable Levenberg–Marquardt (LM) method based on a
multi-layer perceptron neural network (MPL NN) and taking the input parameters as the
relative humidity, the daily mean air temperature, evaporation, the soil temperature, the
day of the year, daylight hours, and the wind speed. The MPL has three neurons in the first
hidden layer and two in the second hidden layer with the sigmoid transferred function,
which produces the best prediction outcomes. The findings of the testing data showed
that the mean absolute percentage error (MAPE) equaled 6.08%, while R2 equaled 99.03%,
and the training data showed that the mean square error (MSE) equaled 0.0042 and the
standard error of estimate (SEE) equaled 5.9278, which is suitable for estimating global
solar radiation (GSR).

DURRANI et al. [35] proposed an irradiance forecasting system based on multiple
feed-forward neural networks for predicting the PV yield. Five years’ worth of historical
meteorological data were used to train the proposed irradiance forecast model’s neural
networks. For Stuttgart, the mean absolute percentage inaccuracy of the global horizontal
irradiance forecast was 3.4% on sunny days and 23% on gloomy days. Sunlight, cloudiness,
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and temperature have a greater impact on the Global Horizontal Irradiance (GHI) neural
network forecast model than other inputs. The research concluded that this system’s PV
power forecast surpassed that of the PV persistence power forecast model.

Al-Shamisi et al. [36] used the artificial neural network (ANN), multi-layer perceptron
(MPL), and radial basis function (RBF) methodologies with the input parameters of sunshine
hours, the maximum temperature, the mean relative humidity, and the mean wind speed
to perform a research study in the UAE’s Al-Ain city (located at 24.1302◦ N and 55.8023◦ E).
A 3-year sample of data (2005–2007) was used for testing, while the statistical values for
the 10-year period (1995–2004) used to train the network were R2, the root mean square
error (RMSE), and the mean bias error (MBE). The findings of 11 models with varied input
layer parameters demonstrated that, in the majority of circumstances, the RBF technique was
superior to the MPL technique.

Wang et al. [37] introduced a brand-new hybrid model with adaptive learning for
forecasting solar intensity. It is an online forecasting technique, and as data volumes rise
over time, the system’s effectiveness gets better. The UMASS Trace Repository data set,
which captures solar intensity in watts/m2, and meteorological data regarding four weather
parameters (temperature, humidity, the dew point, wind speed, and precipitation), was used
to test the suggested technique. The authors claimed that, after six months, the average
monthly RMSE fell from 28.38 to 14.72 W/m2.

Jensona et al. [38] worked with two data sets: solar radiation data (SoDa) and the National
Center for Environmental Predictions (NCEP) to predict the average daily solar irradiance
using two models (a radial basis function network (RBFN) and a backpropagation neural
network (BPN)). Data from two years were used to train the network, while data from one
year were utilized to test it. For the two data sets, 3.12 MJ/m2 and 3.212 MJ/m2, respectively,
the RMSE values were shown to be lower for BPN.

Manjili et al. [39] established an adaptive system for day-ahead solar intensity fore-
casting using data from NREL. The proposed approach was distinctive in that it combined
statistical and artificial intelligence techniques. Time, temperature, relative humidity, zenith
angle, azimuth angle, total cloud cover, opaque cloud cover, and pressure were the eight
weather characteristics that were fed into the model. The method’s root mean square error
(RMSE) was determined to be 149.29 W/m2.

Zhang et al. [40] presented different deep convolutional neural networks (CNNs) using
high-resolution weather forecast data, investigating various temporal and geographical
connectivities to capture the cloud movement pattern and its impact on forecasting solar
energy generation for solar farms. It was able to lower the error rate from the persistent
model’s 21% to 15.1% from the support vector regression (SVR) models and 11.8% from the
convolutional neural networks compared to the state-of-the-art forecast error rate. Due to
the use of high-resolution weather data in the training data set, the research found that deep
learning models performed better in predicting solar energy generation than the earlier
physical models.

Haixiang et al. [41] proposed the hybrid method of variational mode decomposition
(VMD) and a deep convolutional neural network (CNN) with multiple input factors, which
was capable of enhancing the accuracy of short-term PV power forecasting. Compared to
other 1D VMD-based forecasting approaches, the model’s prediction accuracy was higher
because it was trained on correlations in both hours and days. When developing new
CNN models, transfer learning is crucial. The study came to the conclusion that deep
learning models beat conventional physical models when it comes to predicting solar
energy outputs.

Lee et al. [42] proposed a novel deep neural network that can be trained to estimate
the amount of solar energy that would be produced the next day using time series data
gathered from photovoltaic inverters and national weather centers. The study refers to
integrating two CNNs with filters of various sizes in order to effectively identify local short-
term characteristics and efficiently capture long-term features. With roughly estimated
weather data, the suggested method accurately predicts solar power and operates reliably
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without sophisticated preprocessing to weed out outliers. The network surpasses a number
of conventional regressors as well as a cutting-edge deep neural network-based solar power
prediction algorithm.

Table 1 summarizes insights from various works in the literature on key research
aspects. It provided a vital foundation for our planned investigation by pointing out
patterns and gaps in the literature. Recognizing fundamental limitations, it became our
starting point for our research, shaping our contributions. Through this synthesis, we
aimed to build upon existing knowledge and address identified gaps in the current state of
research.

Table 1. Literature review summary.

Reference No. Author Name Generalizability Computational
Efficiency

Long-Term
Forecasting

Uncertainty
Analysis

Real-World
Application Studies

Model
Robustness

[27] Dhillon et al. X X X X ✓ ✓

[2] Elizabeth et al. X ✓ X X X ✓

[28] Khan et al. X X ✓ X ✓ ✓

[13] C.-H. Liu et al. ✓ ✓ X X X ✓

[29] Vanderstar et al. ✓ X X X ✓ ✓

[30] Taoufik et al. X ✓ X X ✓ ✓

[31] Zang et al. X ✓ X X X ✓

[32] Perveen et al. X ✓ X X ✓ ✓

[33] Ahmed et al. X X X X ✓ ✓

[34] Asl et al. ✓ ✓ X X ✓ ✓

[35] DURRANI et al. X X ✓ X ✓ ✓

[36] Al-Shamisi et al. X X ✓ X ✓ ✓

[37] Wang et al. ✓ X ✓ X ✓ X

[38] Jensona et al. ✓ ✓ ✓ X ✓ ✓

[40] Manjili et al. X X ✓ X ✓ ✓

[41] Zhang et al. X ✓ X ✓ ✓ X

[42] Lee. et al. X ✓ X X X ✓

This study ✓ ✓ ✓ ✓ ✓ ✓

3. Data Description

This study utilizes meteorological data obtained from Solcast (Solar Api and Weather
Forecasting Tool) in the geographical coordinates of Canberra, Australia (35.2802◦ S and
149.1310◦ E, as shown in Figure 2), in order to create the proposed model (https://solcast.
com/). In order to evaluate the model’s performance, it was subjected to testing using
two distinct data sets originating from an identical geographical location. The data sets
encompassed the period spanning from 1 September 2021 to 1 September 2022, with the
temporal resolution of 60 min and 30 min. The analysis utilized a data set consisting of
8785 samples for a 60-min interval and 17,615 samples for a 30-min interval, which was
partitioned into two distinct subsets.

For the 60-min-interval data set, the training data set comprised a total of 7057 samples,
but the testing data set had only 1757 samples, and for the 30-min-interval data set, the
training data set comprised a total of 14,091 samples, but the testing data set had only
3524 samples available for use in judging the accuracy of the models. Every single data
sample included eight different characteristics, which were as follows: the ambient temper-
ature, cloud capacity, dew point, snow depth, pressure, wind velocity, zenith, and global
horizontal irradiance (GHI). The aforementioned elements exert a substantial influence on
the precision of the GHI forecast. The meteorological observations are linked to the global
horizontal irradiance and impact the prediction of the GHI. Figures 3 and 4 present plots
of the various input variables, together with the GHI values for both 30-min and 60-min

https://solcast.com/
https://solcast.com/
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intervals, respectively. The plots were generated using the mean value for each 24-h cycle
in order to improve comprehension.

Figure 2. Solar resources map, Australia (SOLARGIS, 2020) [26].

Figure 3. Data set from Solcast for 60-min interval.
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Figure 4. Data set from Solcast for 30-min interval.

4. Data Preparation
4.1. Data Scaling

Data scaling is an important step in developing a solar forecasting model because solar
irradiance data have a large number of variables, and since they have so many dimensions,
they must be scaled before being input into an ML network. The process of rescaling data
from their original range so that all values fall between [0 and 1] or [−1 and 1] is known
as data scaling. It is required to know or precisely estimate the minimum and maximum
sampled values, which can be calculated using available recorded data. Data scaling is
based on (1).

So, each signal was scaled between 0 and 1 or −1 and 1, corresponding to the minimum
and maximum values obtained across the whole data set. In this context, the min–max
scaler was employed for the purpose of data scaling.

xn
scale =

xn

xmax − xmin
(1)

where the following points apply:

xn: Specific sample.

xn
scale: New value of xn.

xmax: Highest value in the feature column.

xmin: Lowest value in the feature column.

4.2. Feature Extraction

The process of selecting or transforming raw data into a set of useful and informative
characteristics that can be utilized as inputs for predictive models is referred to as feature
extraction. To extract the best features from the data set, the heat map was used to highlight
signal correlation. The heat map can ensure a high correlation between the signal for
prediction and other important system indications. Figures 5 and 6 illustrate the heat map
that was generated from the data sets utilized in this research with the 60-min interval and
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30-min interval, respectively. Here, the ambient temperature, cloud opacity, wind velocity,
and zenith showed a high correlation with GHI for both data sets. Since the other variables
did not exhibit a convenient correlation score with GHI, they were not utilized to train
the suggested or comparison models. In Figures 5 and 6 the following abbreviations are
used: AT—ambient temperature, CO—cloud opacity, DP—dew point, SD—snow depth,
WV—wind velocity, Pr—pressure, Zn—zenith, and GHI—global horizontal irradiance.

Figure 5. Input correlation analysis using heat map for 60-min interval.

Figure 6. Input correlation analysis using heat map for 30-min interval.

5. An Overview of Bayesian Optimizer

Hyperparameters play a crucial role in ML algorithms since they directly dictate the
behavior of training algorithms and significantly impact the performance of the resulting
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models. Various techniques have been developed and successfully applied in specific
domains, although their implementation often requires specialized knowledge and expert
experience. In some cases, brute-force search methods are employed due to the complexity
of the problem. Consequently, the development of an efficient hyperparameter optimization
algorithm capable of optimizing any given machine learning method would greatly enhance
the overall efficiency of the learning process. This research aims to establish a relationship
between the performance of ML models and their respective hyperparameters through
the utilization of Gaussian processes. By doing so, the problem of hyperparameter tuning
can be abstracted as an optimization problem, and Bayesian optimization is employed to
address it. Bayesian optimization operates on the principles of the Bayesian theorem, in
which a prior distribution is established over the optimization function, and information
from previous samples is used to update the posterior distribution of the function [43].
A utility function is then employed to select the next sample point that maximizes the
optimization function. It consists of three fundamental components: a search space that
encompasses potential parameter samples, an objective function, and a surrogate. It
constructs a probabilistic model of the objective function, utilizing this model to identify
the most auspicious hyperparameters for assessment against the genuine objective function.

x′ = arg max
xϵA′

f (x) (2)

The above equation reflects the core concept of Bayesian optimization. Here, A′ repre-
sents x’s search space. The fundamental purpose of Bayesian optimization is to integrate the
a priori distribution of the function f (x) with the empirical evidence in order to derive the
posterior distribution of said function. Subsequently, this posterior information is utilized
to identify the optimal location of the function f (x) based on a specified criterion. This
criterion is enacted via a utility function, u, which is also known as the acquisition function.

P(M|V) ∝ P(V|M)P(M) (3)

The core idea of Bayesian optimization is deduced from Bayes’s theorem. For instance,
if V is the presented evidence data, the probability of posterior function P(M|V) for model
M is equal to the product of the prior probability P(M) and P(V|M). Here, P(V|M) explains
how well the model explains the observed data, in which (V) is the observing data for a
given particular model, M.

x′t′ = arg maxx u(x|D1:t′−1) (4)

y′t′ = f
(
x′t′

)
(5)

For t′ = 1, 2, 3, . . . , x′t′ can be found optimizing the acquisition function u using
function f . D1:t′−1 = {xi, yi}t′−1

i=1 denotes the training data set consisting of t′ − 1 samplings
of function f . Then, observe the objective function y′t′ = f (x′t′). This process is repeated
until either the maximum number of iterations is reached or the difference between the
current value and the ideal value acquired thus far is less than a predetermined threshold.
It can be noted that, compared to other optimization techniques, Bayesian optimization
does not require the explicit definition of function f .

6. Methodology
6.1. Gaussian Process Regression

Gaussian process regression (GPR) is a machine learning technique based on Bayesian
learning theory. But GPR is quite different from other ML models. Where other models
provide a single predicted value, GPR provides a probability distribution over a probable
target value for each input data point for which a level of uncertainty can be considered in
the model. Through the Gaussian process, the underlying connection between the input
features and the target is modeled via GPR using a bunch of random variable s. In this
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model, the probable functions each represent a mapping from the input feature to the target
feature, and the Gaussian process specifies a distribution over functions. The distribution
over functions is accomplished using a mean and covariance function (kernel function).
The mean function signifies the expected behavior of the functions in the Gaussian process.
It creates a baseline for making predictions. The mean function is chosen based on the
given problem and the preceding data set. The covariance function is used to compare the
input points and find the measure of similarity between them. It takes two input points
and finds the correlation between the specified input points. Different covariance functions
can be used to identify various relationships in the data. Since the data set used here is
continuous and dense, shows a bit of noise, and shows a smooth relationship between the
input features and target features, the radial basis function (RBF) is used. The RBF kernel
assumes the decreasing correlation of input points with the increase of distance between
the input points. The model finds the base prediction and correlation of input points to
help the distribution over the target value. Since GPR can consider multiple functions,
and each function is considered a map from the input feature to the target feature, the
covariance of the input points helps the model decide how much ripple can be considered
for the prediction. This ripple allows the consideration of uncertainty in the prediction,
which provides an upper hand over other ML models. This unique feature often gives this
model an upper hand over neural networks as well.

The basic form of the GPR equation is

yi = f (x) + ε (6)

where the following points apply:

y is the observed PV output variable.

x is the input variable.

f(x) represents the unknown function that relates the input and output variables.

ε is the noise term assumed to be normally distributed with a mean of zero and variance σ2
n.

To predict the future PV output f ∗, considering the weighted function and noise with
a Bayesian linear model, the distribution can be shown as

p( f ∗|x′, X, y) =
∫

p( f ∗|x′, ω)p(ω|X, y)dω (7)

6.2. Prior Distribution

Prior distribution in GPR represents the assumption about a target variable before
sampling any data with a mean function and covariance function illustrated in Figure 7a.
Mathematically, it is denoted with

P( f ) = N(m(x), K(x, x′)) (8)

where the following points apply:

P( f ) denotes the prior distribution for the target variable f .

N represents the multivariate Gaussian distribution.

m(x) is a mean function that can be set as either constant or a function, depending on the
input variable x.

K(x, x′) is the covariance or kernel function that measures covariance between different
input functions.



Processes 2024, 12, 546 13 of 25

(a) (b)

Figure 7. (a) Prior samples, (b) Posterior distribution with observations. Solid line: mean forecast;
dashed lines: samples. Shaded zone: twice the standard deviation at each input value of x.

6.3. Posterior Distribution

The posterior distribution in GPR is obtained after seeing the training data. It takes into
account both the previous distribution and the actual data, allowing us to make predictions
and estimate uncertainty. This is illustrated in Figure 7b. The posterior distribution is also
a Gaussian process, and it can be expressed as follows:

P( f |X, y) = N(m∗(x), K∗(x, x′)) (9)

where the following points apply:

P( f |X, y) denotes the posterior distribution over the target variable f , given the input data
X and target values y.

N represents the multivariate Gaussian distribution.

m∗(x) is the posterior mean function that predicts the value of f at input x based on the
observed data.

K∗(x, x′) represents the posterior covariance function, which measures the uncertainty in
the predictions.

The posterior distribution enables predictions for fresh input values to be made by
sampling from the distribution or computing the mean or median estimate. The posterior
covariance function may be used to quantify the uncertainty in the predictions.

6.4. Equations for Mean and Covariance Prediction

The predictive mean m∗ can be calculated as follows: m∗ = K(X∗, X) · [k(X, X)] +
σ2 I]−1 · y where σ2 is the noise variance, and I is the identity matrix.

The mathematical from of covariance can be represented as

k∗ = K(X∗, X)− K(X∗, X) · [k(X, X) + σ2 I]−1 · K(X∗, X) (10)

6.5. Radial Basis Function (RBF) Kernel

The RBF kernel, also called the squared exponential kernel, is commonly used in
GPR because it can capture smooth and continuous interactions between inputs and the
target variable. It is also a positive definite kernel; therefore, the resultant covariance
matrix is a positive semidefinite. The hyperparameters of the RBF kernel (i.e., σ2 and I)
of the GPR model are learned from data during training using a maximum likelihood
estimation or other optimization approaches. The GPR model adjusts to the peculiarities of
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the individual data set and captures the underlying patterns in the data by maximizing
these hyperparameters. The RBF kernel can be mathematically expressed as follows:

K(x, x′) = σ2 exp
(
−1

2
(

x − x′

l
)2
)

(11)

where the following points apply:

K(x, x′) is the covariance between input variables x and x′.

σ2 is the variance parameter.

(x − x′) is the Euclidean distance between x and x′.

l is the lengthscale parameter that determines the smoothness and length scale of the
covariance function.

The integration of Bayesian optimization techniques with GPR architecture allows
for the combination of the versatile Gaussian process models with Bayesian optimization
methods. The employed approach utilizes a probabilistic model, commonly incorporating
the RBF kernel, in order to effectively capture intricate correlations within the data set.
Bayesian optimization serves as a guiding framework for the hyperparameter tweaking of
the model, enabling it to efficiently adapt and enhance its predictive capabilities. Initially,
raw weather data undergo preprocessing, followed by feature extraction, to prepare them
for the GPR model. During model training, the Bayesian optimizer selects informative
data points to query, maximizing the acquisition function and improving model perfor-
mance. After each iteration, the model’s performance is evaluated using a testing set, and
adjustments to the model parameters and data points are made accordingly. The detailed
architecture is displayed in Figure 8. The utilization of GPR in conjunction with Bayesian
optimization presents a formidable approach for the modeling and optimization of intricate
functions that are characterized by uncertain or noisy data.

Figure 8. Architecture of GPR with Bayesian optimizer.

7. Result and Analysis

The primary objectives of this work were to analyze the performance of various
ML-based forecasting techniques, such as LSTM, GPR, and a proposed GPR with a Bayesian
optimizer, to predict the GHI. Moreover, some conventional machine learning models were
also evaluated and compared with the proposed techniques. To assess the feasibility of this
study, two different solar data sets with different sampling times from Canberra, Australia,
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provided by Solcast, were used. Forecasting performance was measured using various
performance evaluation metrics. The data were divided into a percentages of 70–30 for the
training set and the testing set. Simulations and programming were conducted in a Python
environment using Google Colabratory.

7.1. Performance Evaluation Matrices

As discussed above, the following performance measuring metrics were used in this
study to assess the performance of the forecasted model: the root mean square error (RMSE),
mean square error (MSE), the determination of correlation coefficient (R2), and the mean
absolute error (MAE). These metrics were considered to evaluate the model’s performance.
Lower values of these metrics indicate better predictive results. In the following discussion,
n represents the total number of samples, Yact represents the actual values of forecasting
variables, and Ypred represents the predicted solar power.

(a) Root mean square error (RMSE): The RMSE is the square root of the average of the
squared differences between actual vs. predicted values:

RMSE =

√
1
n

n

∑
i=1

(Yact − Ypred)2 (12)

(b) Coefficient of determination (R2): R2 denotes the percentage of variance in actual
values that can be explained using expected values. It has a scale from 0 to 1, with 1
indicating a perfect fit:

R2 = 1 −
∑n

i=1(Yact − Ypred)
2

∑n
i=1(Yact − Ymean)2 (13)

where Ymean is the mean of actual solar power.
(c) Mean square error (MSE): It is the average of the squared differences between the

predicted and actual values:

MSE =
1
n

n

∑
i=1

(Yact − Ypred)
2 (14)

(d) Mean absolute error (MAE): The absolute value of the difference between the actual
value and predicted values:

MAE =
1
n

n

∑
i=1

|Yact − Ypred| (15)

(e) Average absolute error (AAE): AAE calculates the average absolute difference
between each predicted and actual value:

AAE =
1
n

n

∑
i=1

∣∣∣∣Ypred − Yact

Yact

∣∣∣∣× 100% (16)

(f) Average biased error (ABE): ABE calculates the average difference between each
predicted and actual value:

ABE =
1
n

n

∑
i=1

(Ypred − Yact

Yact

)
× 100% (17)

In this section, the collected solar irradiance data are used to test the performance of
the proposed methodology. This study employed a multivariate analysis approach, utilizing
two distinct data sets that exhibited varying time intervals between each sample. One of
the experimental conditions involved a 60-min gap between each sample, whereas the other
condition involved a 30-min interval. Under both conditions, we used four columns as input
variables to estimate GHI. The comparison between the observed solar irradiance values



Processes 2024, 12, 546 16 of 25

and the anticipated values is illustrated in figures for seven different models: RF, MLP, SVR,
regression, LSTM, GPR, and the suggested GPR with a Bayesian optimizer. It provides insight
into the performance of all the methods discussed so far. The test performance accuracy
and flexibility are discussed in Table 2 using six error matrices (RMSE, MSE, MAE, R2, AAE,
and ABE), as described previously [44,45]. The value of the R2 closeness to 1 indicates a
more accurate model. The RF, MLP, SVR, and regression models all performed well in terms
of computing time, finishing their calculations in less than 60 s. On the other hand, the
GPR model required a significantly longer processing time—roughly 368 s on average. In
a comparable manner, the suggested model and LSTM model showed higher computing
demands, averaging 406 and 476 s, respectively. The aforementioned results highlight the
greater computational load linked to GPR, LSTM, and the proposed model in contrast to
RF, MLP, SVR, and conventional regression techniques. From Table 2, it can be seen that
the GPR model, LSTM model, and GPR with a Bayesian optimizer outperformed all the
other models. The GPR model for the 60-min interval performed the prediction task with the
following error metrics: RMSE = 1.80, MSE = 3.24, MAE = 1.06, R2 = 0.97, AAE = 0.279%, and
ABE = 0.018%. And for the 30-min interval, the obtained error metrics were as follows: RMSE
= 1.89, MSE = 3.57, MAE = 1.13, R2 = 0.96, AAE = 0.576%, and ABE = −0.549%. However, the
LSTM architecture performed better than GPR for both time intervals with the following error
metrics: RMSE = 1.28, MSE = 1.64, MAE = 0.94, R2 = 0.99, AAE = 0.706%, and ABE = −0.509%
for the 60-min interval and RMSE = 1.17, MSE = 1.37, MAE = 1.15, R2 = 0.99, AAE = 0.619%,
and ABE = −0.615% for the 30-min interval. Lastly, it can be observed that the proposed GPR
with a Bayesian optimizer model outperformed other previously stated deep learning and
ML models for all performance matrices. The performance results are noted as RMSE = 1.09,
MSE = 1.18, MAE = 0.49, and R2 = 0.99 for the 60-min interval, and for the 30-min interval,
the obtained performance metrics were RMSE = 1.12, MSE = 1.25, MAE = 1.25, and R2 = 0.99.
The advantages of GPR, LSTM, and the suggested model exceeded the disadvantages even
though their computing times were longer. On the other hand, even if certain models have
quicker computation times, their poor efficiency makes them inappropriate for practical usage.
This emphasizes the trade-off between predicted accuracy and computing efficiency, with the
latter being more crucial when choosing a model.

Table 2. Performance metrics for different models and data sets.

Model Data Set RMSE MSE MAE R2 AAE (%) ABE (%)

RF 60-min. int. 7.03 49.45 3.69 0.99 3.52 −0.03
RF 30-min. int. 8.25 68.08 4.08 0.99 4.08 −0.38

MLP 60-min. int. 13.72 188.49 9.17 0.99 9.10 −0.85
MLP 30-min. int. 23.52 553.31 15.97 0.99 15.05 2.38
SVR 60-min. int. 40.28 1622.46 39.02 0.87 39.02 3.88
SVR 30-min. int. 49.65 2465.12 48.76 0.86 48.52 4.01

Regression 60-min. int. 68.73 4723.81 65.38 0.82 64.77 4.57
Regression 30-min. int. 74.65 5572.60 72.98 0.80 73.04 4.87

GPR 60-min. int. 1.80 3.24 1.06 0.97 0.27 0.01
GPR 30-min. int. 1.89 3.57 1.13 0.96 0.57 −0.54

LSTM 60-min. int. 1.28 1.64 0.94 0.99 0.70 −0.50
LSTM 30-min. int. 1.17 1.37 1.15 0.99 0.61 −0.61

GPR with Bay. Opt. 60-min. int. 1.09 1.18 0.49 0.99 0.14 −0.03
GPR with Bay. Opt. 30-min. int. 1.12 1.25 1.25 0.99 0.23 0.06

It can be shown that, of the seven models utilized under both the 30-min interval
and the 60-min interval circumstances, GPR with a Bayesian optimizer achieved the best
performance measure scores. The performance metrics of each tested model are presented
in Table 2, and the used model parameters and optimal values are shown in Table 3. The
best-performing hyperparameters for LSTM and GPR were chosen through manual testing.
On the other hand, a Bayesian optimizer was employed to find the optimal parameters
for our proposed model. A predefined range was provided to the Bayesian optimizer to
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explore it in order to identify the optimal hyperparameters. The optimizer successfully
suggested the optimal hyperparameters to optimize model performance. This approach
improved the predictive accuracy and automated hyperparameter selection.

Table 3. Model parameters and optimal values (top) and comparison of proposed methodology with
other models from the literature review (bottom).

Model Parameters Optimal Value

LSTM No. of layers 3

LSTM units per layer 32

Dense units 16

Lookback 1

Learning rate 0.001

Batch size 32

GPR Kernel RBF (length scale = 1, length scale bounds 1 × 10−2 and 1 × 103)

Alpha 0.01

Number of restarts for the optimizer 5

GPR with Bayesian optimizer Kernel RBF

Length scale bounds (1, 10)

Alpha bounds (1 × 10−5, 1)

Number of restarts for the optimizer 5

Number of Iterations for Bayesian optimizer 100

Number of initial points 5

No. Author Architecture used RMSE R2

[27] Dhillon et al. Feed-forward neural network 56.61 0.98

[2] Elizabeth et al. CNN-stacked LSTM 61.24 0.96

[29] Vanderstar et al. ANN 10.8 0.912

[34] Asl et al. MLP 6.08 0.9903

[35] DURRANI et al. Neural network 8.60 (Clear sky)
37.06 (Partly cloudy)

38.52 (Cloudy)

0.99
0.99
0.95

Proposed model GPR with Bayesian optimizer 1.09 0.99

7.2. Comparative Analysis

Here, a comprehensive analysis is carried out on each model that underwent testing.
Furthermore, the outcomes derived from our data sets are shown. Each graph in this
section consists of the first 100 samples that were obtained from our test data.

The figures indicate that the GPR model achieved comparable performance for both
data sets depicted in Figure 9a for a 60-min interval and Figure 10a for a 30-min pe-
riod. Despite being the least efficient among the three models, GPR exhibited acceptable
performance in terms of usability. Due to the minimal difference between the actual and an-
ticipated data, identifying any distinctions in the plots became challenging. The difference
between the observed and forecasted values is shown in Figures 9b and 10b, representing
the 60-min and 30-min intervals, respectively. While the majority of the observed data
points exhibited differences of less than 2 for 60-min intervals and 1.5 for 30-min intervals,
it is worth noting that a significant number of samples displayed larger disparities. Some
of them almost achieved as high a difference as 5 (30 min) and 3 (60 min).
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Figure 9. Observation for 60-min interval with GPR: (a) actual vs. predicted and (b) absolute
difference.

Figure 10. Observation for 30-min interval with GPR: (a) actual vs. predicted and (b) absolute
difference.

The similarity between the LSTM model and the GPR model was also noted. The
LSTM model exhibited superior performance compared to the GPR model, with an R2

score of 0.99 in both instances. This demonstrates that the model performed flawlessly. The
data seen and anticipated for various time intervals are depicted in Figures 11a and 12a.
In a similar manner, the distinctions between the observed and anticipated values are
graphically shown for each sample in Figures 11b and 12b.

In Figure 11b, it is observed that, even though the LSTM model kept the difference
low for the 60-min-interval data set, it failed to maintain the same performance for the
30-min-interval data set.

The GPR model with a Bayesian optimizer demonstrated superior performance com-
pared to the other two models, which is clearly indicated in the graphical representations. The
comparison between the observed and predicted results for the 60-min and 30-min intervals
using GPR with a Bayesian optimizer is illustrated in Figures 13a and 14a, respectively. Given
the model’s impressive performance metrics, the figures presented in Figures 13b and 14b
illustrate the differences between the actual and predicted values for data sets with 60-min
and 30-min intervals, respectively. In these figures, it can be observed that the model predicted
very close values to the observed data. Here, it is also noticeable that the model worked better
for the 60-min-interval data set compared to the 30-min interval data set. Figures 13c and 14c
present the zoomed-in version of the observed and predicted values for data sets with 60-min
and 30-min intervals, respectively.

Here, the proposed methodology is compared with other models from the literature
review, as detailed in Table 3.
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Figure 11. Observation for 60-min interval with LSTM: (a) actual vs. predicted and (b) absolute
difference.

Figure 12. Observation for 30-min interval with LSTM: (a) actual vs. predicted and (b) absolute
difference.

Figure 13. Observation for 60-min interval with GPR with a Bayesian optimizer: (a) actual vs.
predicted, (b) absolute difference, and (c) zoomed-in version for samples 70–90 of the observed and
predicted results.

7.3. Discussions

The comparative advantage of GPR with Bayesian optimization over alternative neural
network models, such as long short-term memory (LSTM) and other used models in the
context of this forecasting task, can be related to a number of crucial variables. Bayesian
optimization is a highly effective method for optimizing hyperparameters, particularly
in the context of GPR models. This approach addresses the natural challenge of tuning
hyperparameters in neural networks that possess a large number of such parameters.
Additionally, the built-in characteristics of GPR, such as its ability to resist overfitting
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and provide uncertainty estimates, contribute to its robustness as a suitable option for
forecasting applications. Moreover, the capability of GPR to effectively handle multivariate
data, along with the systematic method of Bayesian optimization, significantly contributes
to its effectiveness in this particular situation. The selection between GPR and neural
networks is dependent upon the unique attributes of the job, the quantity of the data
set, and the modeling prerequisites. In this regard, GPR presents itself as a persuasive
alternative for accurate prediction, and in our case, it outperformed neural network models
like LSTM.

Figure 14. Observation for 30-min interval with GPR with a Bayesian optimizer: (a) actual vs.
predicted, (b) absolute difference, and (c) zoomed-in version for samples 70–90 of the observed and
predicted results.

In Figures 15 and 16, all three models’ prediction and the actual data are displayed
utilizing line charts for 60-min interval data and 30-min interval data, respectively. To
understand the actual value and predicted value of the models, a box plot of 60-min-interval
data and 30-min-interval data is also included in the figures. Here, for the box plot, all the
test data and their corresponding predicted data were used.

Figure 15. Comparison among the tested models for the 60-min interval (a) using a box plot and
(b) using line charts.
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Figure 16. Comparison among the tested models for the 30-min interval (a) using a box plot and
(b) using line charts.

7.3.1. Gaussian Process Regression (GPR)

The GPR model is a model based on probability that presumes a Gaussian process
to describe the connection between input and output data. The present work employed
GPR with the utilization of the RBF kernel, which includes hyperparameters such as the
length scale and alpha. The initial configuration for GPR entailed the selection of the RBF
kernel with certain hyperparameters, namely a length scale of 1 and an alpha value of 0.01.
The number of optimizer restarts (five) was selected to ensure that the model underwent
optimization iterations in order to refine the hyperparameters.

The strength resides in its capacity to effectively represent complex linkages and
uncertainties. The selection of the kernel and hyperparameters has a significant impact
on the model’s ability to accurately fit the given data and effectively generalize to unseen
samples. However, when considering the used data sets, it was observed that the link
between the inputs and outputs was intricate, resulting in difficulties for the GPR model in
accurately capturing it.

Another crucial aspect to consider is the process of hyperparameter tweaking. The
performance of the GPR model is heavily influenced by its hyperparameters. When the
Bayesian optimization process is not employed to tune the GPR model, it may not be
optimized with the most suitable hyperparameters. Consequently, this can result in inferior
performance metrics compared to the other three models that were tested. The GPR model
requires effective feature engineering; yet, in our particular scenario, the data exhibited
complexity, and the inputs shown limited the correlation with the output. Despite the
model’s somewhat lower performance among the three, it nonetheless exhibited favorable
performance metrics, indicating its usability.

7.3.2. Long Short-Term Memory (LSTM) Networks

LSTM is a recurrent neural network (RNN) that is well suited to managing sequential
data. As our data set contained time-series data, LSTM effectively incorporated these
dependencies, which may not have been possible for the other models. LSTM is a deep
learning model that can automatically acquire hierarchical, complex features from data. It
can model complex relationships between input characteristics and the objective variable.
As a probabilistic model, GPR may not be able to capture such complex patterns. LSTM
can simultaneously learn feature representations and temporal dependencies, which is
advantageous when the input–output relationships are not expressly known and must be
learned from the data. In addition, LSTM allows for parameter tuning during training,
which improves model performance. LSTM can acquire relevant features automatically
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from the data, reducing the need for manual feature engineering. In coping with our com-
plex data sets, this was a significant benefit. Because of these benefits, LSTM outperformed
GPR and demonstrated superior performance metrics. The result is notable when observed
in the plots shown in the previous section.

7.3.3. GPR with Bayesian Optimizer

GPR with a Bayesian optimizer performed the best among the three models used for
analysis, while GPR performed marginally worse than LSTM and the proposed model. The
Bayesian optimizer is the deciding factor in this case. The results can be seen in the case of
both data sets in the observed and predicted data given below for the 60-min interval and
the 30-min interval, respectively, in Figures 15 and 16.

Bayesian optimization represents a sophisticated and effective approach to systemati-
cally investigating the hyperparameter space of ML models. In contrast to computationally
expensive methods such as brute force, grid search, or random search, Bayesian optimiza-
tion employs a proactive strategy by constantly selecting hyperparameter combinations
that are more likely to produce improved outcomes. The previously discussed efficiency
has the potential to result in substantial time and resource savings, particularly in situations
involving complex models and large data sets. It also allows the model to adapt to the
specific characteristics of the data. The method begins by establishing an initial collection
of hyperparameters and afterwards iteratively improving them to correspond with the
observed performance of the model. The capacity to adapt is of the highest priority when
working with data sets that exhibit diverse time intervals, as it enables the model to flexibly
change its behavior in order to accurately capture the underlying patterns. Bayesian opti-
mization automates the process of hyperparameter tuning. It intelligently chooses the next
set of hyperparameters to evaluate based on past observations, guided by an acquisition
function. This automation simplifies the model development process and reduces the need
for manual trial-and-error tuning.

GPR is a highly suitable method for conducting multivariate analysis due to its ability
to successfully handle many input variables. In the present study, the input factors were
demonstrative of a complex association between the predictor variables and the target
variable, which is the GHI. GPR is particularly suited to collecting data on complex and
non-linear interactions like these. The model is probabilistic in nature, so it includes
both predictable predictions and the ability to measure the level of uncertainty associated
with these predictions. The ability to evaluate the certainty of a model’s predictions is
of significant importance in the context of forecasting work. The utilization of Bayesian
optimization, when combined with GPR, enables the optimization of hyperparameters
by taking into account both the accuracy of predictions and the associated uncertainty.
This approach ultimately results in the development of robust models. The intrinsic
smoothing capabilities of GPR contribute to its robustness against overfitting. The attribute
of robustness holds significant importance in the field of forecasting, as highly complex
models have a tendency to exhibit poor performance when applied to data that have not
been previously seen. The integration of Bayesian optimization can provide an additional
means of tackling the problem of overfitting by simplifying the selection of hyperparameters
that achieve a balance between the complexity of the model and its ability to accurately
predict outcomes.

In summary, the integration of GPR with Bayesian optimization presents numerous
benefits for the problem of prediction. The algorithm effectively examines the hyper-
parameter space, adjusts to diverse data patterns, facilitates multivariate analysis, esti-
mates uncertainty, and exhibits robust performance. These qualities make it an ideal
contender for handling complex and ever-changing information, such as that encountered
in solar forecasting.
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8. Conclusions and Future Work

This research has introduced a robust approach to predicting solar energy variables
using the GPR model with a Bayesian optimizer. The proposed methodology achieved a
significant improvement of 98% and 90%, respectively, in forecasting accuracy compared
to the feed-forward neural network and ANN models, which were considered alternative
models. A key advantage of integrating GPR with a Bayesian optimizer lies in its capacity
to handle noisy and limited data.

The Bayesian optimizer’s active search for informative samples, guided by uncertainty
estimates from the GPR model, enhances the exploitation of available data while mitigating
noise effects. This dynamic approach results in improved model convergence and accuracy,
offering robustness and adaptability to changing environments. The flexibility to update
the GPR model with additional data ensures its relevance and usefulness as the underlying
system evolves, particularly in the context of time-varying objective functions, for which
sequential optimization can provide optimal solutions.

Future studies in the field of forecasting offer several promising avenues. One potential
direction involves delving into hyper-parameter optimization and real-time data integra-
tion, exploring the handling capacity of noisy objective functions that present substantial
opportunities for further exploration. Additionally, the application of these forecasting
techniques in real-world scenarios, such as precision agriculture, could be a fruitful area for
in-depth discussion. These possibilities pave the way for future research and advancements
in the field.
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