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Abstract: With the continuous expansion of grid-connected wind, photovoltaic, and other renewable
energy sources, their volatility and uncertainty pose significant challenges to system peak regulation.
To enhance the system’s peak-load management and the integration of wind (WD) and photovoltaic
(PV) power, this paper introduces a distributionally robust optimization scheduling strategy for a WD–
PV thermal storage power system incorporating deep peak shaving. Firstly, a detailed peak shaving
process model is developed for thermal power units, alongside a multi-energy coupling model for
WD–PV thermal storage that accounts for carbon emissions. Secondly, to address the variability
and uncertainty of WD–PV outputs, a data-driven, distributionally robust optimization scheduling
model is formulated utilizing 1-norm and ∞-norm constrained scenario probability distribution fuzzy
sets. Lastly, the model is solved iteratively through the column and constraint generation algorithm
(C&CG). The outcomes demonstrate that the proposed strategy not only enhances the system’s
peak-load handling and WD–PV integration but also boosts its economic efficiency and reduces the
carbon emissions of the system, achieving a balance between model economy and system robustness.

Keywords: thermal power unit deep peak shaving; combined WD–PV fire storage scheduling;
distributionally robust optimization; synthetic norm constraint

1. Introduction

In recent years, China has seen a steady rise in its new energy installed capacity.
According to the National Energy Administration’s Demand Side Management for Peak-
ing Coal power generation [1], China is striving to balance a secure and stable energy
supply with sustainable, green, and low-carbon growth. This approach is in line with
the country’s methodical drive toward achieving carbon peak and carbon neutrality. The
energy infrastructure in China has been progressively refined, boasting over 1.05 billion
kilowatts of ultra-low emission coal-fired power generation units. Additionally, the share
of clean energy consumption has climbed from 20.8% to surpass 25%, reflecting the nation’s
commitment to a more environmentally considerate energy mix.

China’s energy resources are marked by a scarcity of oil and gas, with a notable
abundance of coal. Wind (WD), photovoltaic (PV), and other clean energy sources are
catching up at a relatively fast speed. China’s installed coal power capacity will increase
from 1.01 billion kilowatts in 2018 to 1.12 billion kilowatts in 2022, a net increase of only
110 million kilowatts. Renewable energy capacity surged from 728 billion kW in 2018 to
1.213 billion kW in 2022, constituting 47.3% of the total installed capacity. In 2022, China
saw a historic moment as the total installed capacity of renewable energy surpassed that of
coal power [1]. In the near future, new energy generation will become the main electricity
supply. However, the high proportion of clean energy access for the stability of the power
grid is a huge challenge. At the same time, we must also attach great importance to the
consumption of new energy. The randomness, volatility, and uncertainty in renewable
energy output pose inherent challenges to its consumption [2]; the system in the new energy
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large-scale output and intermittent output peak–valley difference is large, and the peak
load pressure continues to increase.

However, by the end of 2022, although the proportion of coal power capacity in China’s
total installed capacity dropped to about 43.8%, the proportion of electricity generation
was still as high as 58.4% [1]. Currently, China’s power system relies heavily on thermal
power in its supply structure. The flexible adaptation of traditional thermal power units for
deep peak regulation can greatly enhance the adjustment capacity on the power side [3].
Existing studies have shown that deep peak shaving is one of the most effective ways
to boost renewable energy consumption in the flexible transformation of thermal power
units [4–6]. At present, there have been many studies on deep peak shaving of thermal
power units. Aiming at the phenomenon of power grid frequency fluctuation caused by
the increasing proportion of renewable energy, Reference [7] proves the importance of deep
peak regulation and on–off regulation for stabilizing system frequency through a series
of derivations. In Reference [8], taking into account the extra coal consumption loss and
unit life reduction of thermal power units operating in deep peak regulation without oil
(DPR) mode, a robust optimization scheduling model of scale WD power grid-connected
and DPR cost was proposed, and, finally, a robust day-ahead scheduling scheme with
optimal economy was obtained. On the basis of thermal power storage, Reference [9]
established a two-tier model involving hierarchical utilization of energy storage and DPR
in the assistant service market, which can effectively improve the phenomenon of WD’s
abandonment and enhance the competitiveness of fossil power in the assistant service
market of peak regulation. In Reference [10], proposing a unit commitment comprehensive
optimal model aimed to minimize total costs by optimizing wind power curtailment in
the context of the expensive deep peak regulation of thermal units. However, the above
reference did not fully consider the probability distribution information of uncertain factors
when optimizing the scheduling of uncertain outputs, such as WD and PV, which led to
conservative optimization decision results and a poor economy. In order to address this
issue, this paper incorporates the uncertainty of the probability distribution of WD and PV
power output through the construction of fuzzy sets in day-ahead scheduling. To mitigate
renewable energy abandonment, we leverage peak load balancing advantages, enhance
clean energy absorption rates, and lower system operating costs.

Currently, two predominant research methodologies are employed to address the
uncertainty inherent in integrating clean energy into the power system. These are stochastic
optimization (SO) [11–14] and robust optimization (RO) [15–18]. Each method provides
strategic frameworks for managing the unpredictable nature of clean energy outputs.
Generally, SO necessitates a distribution model for uncertain parameters, which involves
establishing numerous variables and constraints [14]. Given that the coefficient probability
distributions are known, these constraints can be converted into deterministic ones for
resolution. However, this often results in issues, such as an extensive computational scale
and reduced efficiency in solving the model. The concept of RO is comparatively conser-
vative, as it does not demand an accurate distribution model for uncertain parameters.
Instead, the stochastic variability of the variables is characterized by a specified fluctuation
boundary [19]. If the value of the variable remains within this boundary, an optimal so-
lution can be derived using the robust optimization model [20]. Distributionally Robust
Optimization (DRO), a data-driven approach, amalgamates the strengths of both SO and
RO. It offers a novel solution paradigm that addresses the low precision of the SO model
and the inherent conservatism of the RO model [21]. DRO constructs a set of uncertain
probability distributions grounded in historical data and employs 1-norm and ∞-norm
constraints over scenario probability distribution fuzzy sets. The aim is to ascertain the
optimal solution under the premise that the prediction error of the uncertain factors adheres
to the worst-case probability distribution [22]. This methodology adeptly circumvents the
issue of nonlinear relationships inherent in indeterminate polynomials and the product of
dual variables.
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Similarly to the traditional two-stage robust optimization (TRO) solution, DRO also
obtains the optimal solution of the problem through the iteration of the main problem and
subproblem, but the TRO usually only considers the robustness, and the economy is poor;
DRO takes robustness and economy into consideration through the iterative solution of the
main subproblem and finally achieves the unity of robustness and economy.

Currently, distributionally robust optimization has found widespread application
in the energy sector and integrated energy systems to accommodate renewable energy
sources and minimize their impact on the energy grid [22,23]. However, its utilization
in power systems remains limited. With the integration of large-scale renewable energy
sources into power grids, conventional thermal power units are often compelled to shift
from their traditional role as primary power suppliers to serving as auxiliary power sources
to balance the fluctuating demand of the grid. Consequently, thermal power units may
operate at peak loads for extended durations, leading to significant wear and tear on
the units. Previous research indicates that energy storage systems can help alleviate the
uncertainties associated with renewable energy [24].

Therefore, to alleviate the peak load on thermal power units and enhance the inte-
gration of renewable energy, this paper presents a distributionally robust optimization
operation strategy of a WD–PV fire storage power system considering the deep peak
shaving of thermal power units. Under the constraint of the comprehensive norm and
considering the application of energy storage, to improve the absorption rate of renewable
energy, a coordinated operation strategy of system robustness and a model economy is
constructed. The main contributions of this paper are as follows:

(1) A fine modeling of a thermal power unit is carried out. By coupling energy storage
equipment, the absorption rate of renewable energy is improved, and a distributionally
robust optimal scheduling model of a thermal power unit coupled with WD and PV storage
is established.

(2) The probability of uncertain scene distribution is constrained by combining 1-norm
and ∞-norm, and the probability distribution of the worst scene is determined by updating
the scene probability value.

(3) In order to maximize the consumption of new energy and reduce the abandonment
of renewable energy, a collaborative optimization strategy of power system robustness and
economy is established through comprehensive norm constraints. In addition, through the
comparison of a variety of cases, the comprehensive effect of the model is verified.

The remainder of this paper is organized as follows: Section 2 introduces the peak-load
model of the thermal power unit; Section 3 introduces the structure and operation strategy
of the distributionally robust optimization model; and Section 4 introduces the optimization
framework, data, and simulation results of the model. Section 5 provides a summary of the
main discoveries, acknowledges limitations, and proposes future research directions.

2. Peak-Load Model of the Thermal Power Unit

In the power system with multiple thermal power units, especially when there are sig-
nificant changes in power load or the integration of new energy sources, two typical modes
of peak regulation operations emerge: deep peak regulation and on–off peak regulation.

2.1. Depth Peak Shaving of Thermal Power Units

Deep peak shaving in thermal power units involves modifying their output to match
fluctuations in the integration of new energy sources. This adjustment aims to align with
the output of wind and photovoltaic power generation, ensuring the real-time balance of
system power [25].

Based on the operational status and energy consumption traits of thermal power units,
the peak regulation process can be categorized into three modes: regular peak regulation
(RPR), deep peak regulation without oil (DPR), and deep peak regulation with oil (DPRO).
Relevant modes of depth peak shaving are shown in Figure 1.
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Figure 1. Peak regulation process for the thermal power unit.

Among them, Pb refers to the minimum operating output of the unit, Pa refers to the
limit output of stable combustion of the unit during deep peak regulation, Pmin refers to
the limit output of stable combustion of the unit during DPRO, and Pmax refers to the
maximum operating output of the unit.

With the integration of large-scale, new energy sources into the power grid, the design
considerations for 600 MW and 1000 MW high-capacity thermal power units emphasize the
necessity of possessing a certain peak load capacity. Earlier investments in smaller-capacity
thermal power units below 300 MW in China were constrained by technological limitations,
enabling only base load capacity. At present, these smaller-capacity units have yet to
undergo comprehensive transformation, resulting in slower responsiveness during depth
peak regulation. Following the transformation of thermal power units, grid companies have
significantly enhanced the depth of peak regulation, gradually augmenting the flexibility
of these units to engage in deep peak regulation during periods of high demand for grid
regulation [26]. However, the deep peak shaving operation of modified coal-fired power
units deviates from their rated optimal operation, leading to performance deterioration
in subsystems and auxiliary equipment [27]. Consequently, this gives rise to issues, such
as a significant reduction in unit lifespan, elevated coal consumption costs, and increased
carbon emissions within the power supply. The costs associated with peak regulation for
thermal power units can be broadly categorized into coal consumption cost, shaft life cost,
and oil injection cost.

(1) Coal consumption cost of the thermal power unit.

The coal consumption cost of thermal power units is usually expressed by consump-
tion characteristics. A fixed set of abc coefficients [28] is usually adopted for specific units
participating in generation optimization scheduling. The coal consumption characteristic
parameters of thermal power units can be obtained through function fitting. The coal con-
sumption cost of units participating in peak load balancing can be shown in Equation (1):

C1 = (aiP2
gi.t + biPgi.t + ci)Ccoal (1)

where C1 represents the coal consumption cost of the thermal power unit i at t moment,
Pgi.t represents the actual output power of the thermal power unit, Ccoal represents the
price (RMB/t) of coal purchased from the thermal power plant, and ai, bi, ci represent the
characteristic parameters for coal consumption in the thermal power unit i.

(2) Life cost of the rotating shaft

The steam turbine stands as the primary power generation equipment within a thermal
power station, serving as the core component in most thermal power units. Its operation
encompasses variable and fixed operating conditions. During transitions like start-ups
and shut-downs, significant changes occur in steam temperature, pressure, and other
parameters, leading to uneven heating of the rotor and primarily causing low-cycle fatigue
damage. In contrast, when the steam turbine operates under fixed conditions, the metallic
material comprising the rotor tends to gradually deteriorate due to thermal stress in high-
temperature environments, leading to damage primarily induced by high-temperature
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creep [29]. Throughout operation, both low-cycle fatigue damage and high-temperature
creep damage typically manifest simultaneously. Coupled with varying capacities across
different thermal power units, the life loss of the rotor shaft is exacerbated. This paper
calculates the rotor shaft’s lifespan cost using the Manson–Coffin formula as a reference,
expressing its life cost through Equations (2) and (3):

C2 =
λCunit

2N f (Pgi.t)
(2)

N f (Pgi.t) = 0.00577P3
gi.t − 2.682P2

gi.t
+484.8Pgi.t − 8411

(3)

where C2 denotes the thermal power unit i in the depth peak load, the life cost of the
rotating shaft at t time, N f (Pgi.t) represents the function of the cracking cycle of the rotor
on the actual output power [6], and Cunit represents the construction cost (RMB/MW) of
the thermal power unit.

(3) Cost of fuel injection

During the oil injection deep peak shaving phase of a thermal power unit, the com-
bustion of coal within the unit experiences instability. Injecting oil into the boiler becomes
necessary to facilitate static coal burning, thereby ensuring the stable operation of both the
boiler and the unit’s water cycle. The oil injection cost for the thermal power unit can be
expressed using Formula (4):

C3 = QoilSoil (4)

In Formula (4), C3 represents the oil cost of the thermal power unit i in the depth peak
load at t time, Qoil represents the fuel consumption of the thermal power unit in the DPRO
stage, and Soil represents the price of unit oil.

In conclusion, the cost of deep peak shaving for thermal power units can be represented
using a piecewise function (5):

C(Pgi.t) =


C1 Pmin ≤ Pgi.t ≤ Pmax

C1 + C2 Pa ≤ Pgi.t ≤ Pmin

C1 + C2 + C3 Pb ≤ Pgi.t ≤ Pa

(5)

(4) Analysis of carbon emissions in the peak regulation process

The calculation of carbon emissions of thermal power units in the process of peak load
balancing is the basis of realizing low-carbon scheduling of a power system. At present,
the carbon emission calculation methods for power system scheduling mainly include
three methods.

It is approximately considered that the carbon emission of thermal power units is
proportional to its output, and the proportional coefficient is carbon emission intensity [30].
This method is simple and clear, and it has been adopted in most references.

Polynomial functions similar to unit consumption characteristics are used for fitting,
such as quadratic function [31], cubic function [32], etc.

The power supply unit’s coal consumption is multiplied by the carbon dioxide emis-
sion coefficient [33].

In this study, the quadratic function in the second method is employed to model carbon
emissions in the peak shaving process, so the process can be expressed by Equations (6) and (7):

Cemi = Cemi.g + Cemi.b (6)
Cemi.g =

T
∑

t=1

N
∑

i=1
[αi(Pgi.t)

2 + βiPgi.t+λi]

Cemi.b = H
T
∑

t=1
Pbuy.t

(7)
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where Cemi, Cemi.g, and Cemi.b, respectively, represent the total carbon emissions of the
power system, the carbon emissions of thermal power units in the peak load balancing
process, and the equivalent carbon emissions of the system to the power grid, αi, βi and
λi, respectively, represent the carbon emission characteristic function parameters of unit
i, and H denotes the equivalent carbon emission characteristic function parameters of
power purchase.

In the actual peak shaving process, the involved devices include electric energy storage
and WD–PV power generation. Given that wind power and photovoltaic systems operate
on clean energy sources, their carbon emissions are not factored into the actual power
generation process. Additionally, the charge and discharge process of energy storage
primarily involves internal chemical reactions devoid of carbon emissions. Hence, this
paper disregards the consideration of carbon emissions from electric energy storage, wind
power, and photovoltaic sources.

2.2. Thermal Power Unit On–Off Peak Regulation

On–off regulation in thermal power units refers to a process where, in the event of a
significant increase or decrease in renewable energy penetration or a heightened load peak–
valley difference within the power system, merely employing depth peak load regulation
becomes insufficient for the thermal power unit to maintain the system’s power balance.
Consequently, expanding the peak regulation scope necessitates the adjustment of the
number of connected thermal power units to the grid, either reducing or increasing them.

On–off peak regulation stands as a primary method for thermal power units to engage
in peak regulation. Units operating under variable conditions not only impact the lifespan
of the rotor shaft but also induce irreversible changes in other metallic components of
the unit. These alterations affect the unit’s overall service life, resulting in on–off costs.
The cost associated with unit participation in on–off peak shaving can be represented by
Equations (8) and (9):

C4 = Vgi.t(1 − Vgi.t−1)Ciup + Vgi.t−1(1 − Vgi.t)Cidown (8)

Vgi.t = Lgi.t + Jgi.t + Kgi.t (9)

In the formula, C4 denotes the on–off cost of the unit, Vgi.t denotes the binary state
variable of the unit in the peak load phase, Lgi.t denotes whether the unit is in the 0–1 state
variable of RPR, Jgi.t denotes whether the unit is in the 0–1 state variable of DPR, Kgi.t
denotes whether the unit is in the 0–1 state variable of DPRO, Ciup denotes the cost of the
unit when it is started, and Cidown denotes the cost of the unit when it stops running.

Due to the high requirements of the reaction speed and the on–off time of the unit, the
unit with small capacity and a short downtime is generally selected as the thermal power
unit with on–off peak regulation [6].

3. Data-Driven Distributionally Robust Optimal Scheduling Model

With the integration of large-scale new energy sources like wind power into the grid,
acknowledging their volatility and uncertainty becomes crucial due to their impact on the
power system. Previously, many attributed the abandonment of wind power to technical
challenges, citing issues with volatility, uncontrollability, and a lack of grid flexibility for
WD and PV power generation. However, in the current context, the abandonment rates,
reaching up to 30% to 40%, cannot be solely ascribed to technical limitations. The primary
root cause lies in the scenario of excessive installed power capacity and oversupply, posing
the challenge of determining priority usage among available resources. Although the
Renewable Energy Law [34] mandates that renewable energy sources have priority access
to the grid, the de facto priority in the current power system remains with thermal power
generation. This priority status stems from the government’s annual issuance of planned
electricity quantities, which has constrained the developmental space for renewable energy.
Consequently, to enhance the absorption capacity of wind and photovoltaic power stations
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and address the uncertainties in their output alongside the adverse effects of forecast errors
on the power system, this paper endeavors to construct a novel distributionally robust
planning and scheduling strategy for WD–PV fire storage based on comprehensive norms.
The schematic diagram of the system is shown in Figure 2.
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3.1. Two-Stage Distributionally Robust Optimization Objective Function

In short-term day-ahead scheduling, the uncertainty associated with WD and PV
power generation can be characterized by their output prediction errors. However, this
method has limitations when applied to long-term scheduling. This paper aims to devise
an optimal scheduling scheme considering the given prediction intervals for renewable
energy. It seeks to achieve a cooperative optimization aligning system economy and
robustness. Following the framework outlined in Reference [22], the objective function for
the distributionally robust optimization is constructed as follows:

min
{

Cstage1 + max(pT+1minC′
stage2)

}
(10)

where pT represents the probability value of the generation scenario T, T ≥ 1, Cstage1
represents the power purchase cost of the system, and C′

stage2 represents the operating cost
of the unit during peak load balancing.

As evident from Equation (10), the objective function takes the form of a two-stage min–
max–min robust optimization. Different from TRO, DRO solves the one-stage scheduling
scheme in the worst case by optimizing the lower-bound LB and estimating its economy by
minC′

stage2. In the additional stage of the system, the “worst” scenario that the system may
encounter is determined by max(pT+1minC′

stage2) and the probability value is updated; the
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unity of robustness and economy is realized through continuous iteration in the first and
second stages.

The sub-function comprises power purchase costs and operating expenses. The
operating costs encompass various elements: coal consumption costs during thermal
power unit peak shaving, on–off costs, shaft life expenses, oil injection expenses, deep peak
shaving compensation expenses, electric energy storage utilization costs, and wind and
photovoltaic abandonment expenses. The expression is as follows:

Cstage1 = SbuyPbuy (11)

C′
stage2 = Cg1 + Cg2 + Cg3 − CGP + CES + Ccur (12)

In Formula (11), Cstage1 is the power purchase cost of the thermal power unit during
deep peak shaving, Sbuy represents the purchase price of a large power grid (RMB/kWh),
and Pbuy represents the power purchased by the system from a large power grid during peak
regulation. In Formula (12), Cg1, Cg2, and Cg3, respectively, represent the power generation
cost of thermal power unit 1, unit 2, and unit 3, CGP represents the compensation for the
unit involved in deep peak regulation, CES represents the use cost of electric energy storage,
and Ccur represents the penalty cost of abandoning renewable energy.

(1) Cost of power generation for the thermal power unit.
Cg1 = C1 + C4
Cg2 = C1 + C4
Cg3 = C1 + C2 + C3 + C4

(13)

(2) Depth peak load compensation cost

CGP = Pgi.tSb (14)

where Sb indicates the electricity compensation price.

(3) The cost of storing electric energy

CES = δES

24

∑
t=1

(Pt
ES.cha + Pt

ES.dis) (15)

where Pt
ES.cha represents the charge power of the energy storage, Pt

ES.dis represents the
discharge power of the energy storage, and δES represents the unit power of the electric
storage cost.

(4) The curtailment of abandoning WD and PV

Ccur = δcur

24

∑
t=1

(Ppv.cur + Pwd.cur) (16)

where Ppv.cur denotes the amount of PV curtailment, Pwd.cur denotes the amount of WD
curtailment, and δcur denotes the cost of abandoning WD and PV per unit power.

3.2. Power Constraints

(1) System constraints

Pg1 + Pg2 + Pg3 + Ppv + Pwd + PES.dis + Pbuy = PL + PES.dis (17)

where PL indicates the electrical load of the system.

(2) Unit constraints

The upper and lower limits of unit output constraints are

Pgi.min ≤ Pgi ≤ Pgi.max (18)

where Pgi.min and Pgi.max, respectively, represent the minimum and maximum technical
outputs of thermal power units.
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The unit climbing power constraint is

Pgi.down ≤ Pt
gi − Pt−1

gi ≤ Pgi.up (19)

where Pg1.down and Pg1.up, respectively, represent the maximum upward and downward
climbing rates of thermal power units.

Unit on–off constraint{
Vg1.τ ≥ τ(Vg1.t − Vg1.t−1) τ = t, t + 1, t + 2, . . . , t + Ton

g1.min − 1

1 − Vg1.τ ≥ τ(Vg1.t−1 − Vg1.t) τ = t, t + 1, t + 2, . . . , t + To f f
g1.min − 1

(20)

where τ denotes the min continuous on–off time for units.

(3) Constraints of electric energy storage equipment

Pmin
ES ≤ Pt

ES ≤ Pmax
ES

Pmin
ES.cha ≤ Pt

ES.cha ≤ αH.chaPmax
ES.cha

Pmin
ES.dis ≤ Pt

ES.dis ≤ αH.disPmax
ES.dis

αH.cha + αH.dis ≤ 1
Pt=1

ES = Pt=24
ES

Pt
ES = Pt−1

ES + ηcha
ES Pt

ES.cha − Pt
ES.dis/ηdis

ES
(2 ≤ t ≤ 24)

(21)

where Pt
ES represents the real-time capacity of electric energy storage, Pmax

ES and Pmin
ES repre-

sent the upper and lower limits of electric energy storage capacity, αH.cha represents the
charging state parameters of electric energy storage, αH.dis represents the discharge state
parameters of electric energy storage, Pmax

ES.cha and Pmin
ES.cha, respectively, represent the upper

and lower limits of the energy storage charging power, Pmax
ES.dis and Pmin

ES.dis, respectively,
represent the upper and lower limits of the energy storage discharging power, ηcha

ES repre-
sents the energy storage charging efficiency, ηdis

ES represents the energy storage discharging
efficiency, and αH.cha + αH.dis ≤ 1 means to avoid charging and discharging electric energy
storage at the same time.

(4) WD and PV power constraint

Wind power output constraint
0 ≤ Pt

wd ≤ Psen
wd

0 ≤ Pt
wd.cur ≤ Psen

wd
Pt

wd + Pt
wd.cur = Psen

wd

(22)

where Psen
wd denotes the predicted value of wind power output.

Photovoltaic power output constraint
0 ≤ Pt

pv ≤ Psen
pv

0 ≤ Pt
pv.cur ≤ Psen

pv
Pt

pv + Pt
pv.cur = Psen

pv

(23)

where Psen
pv denotes the predicted value of photovoltaic output.

3.3. Comprehensive Norm Constraint

In practical operations, the output of renewable energy is subject to uncertainties
due to varying weather conditions. Although historical experimental data can provide a
probability distribution for its output fluctuations, limitations exist in obtaining an accurate
scenario of probability distribution due to data constraints. Therefore, it becomes essential
to establish a suitable uncertainty set that aligns the scenario probability closer to actual
conditions while fluctuating within a reasonable range. This paper proposes constructing
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a confidence set based on comprehensive norms to confine the fluctuation range of the
probability distribution, thereby forming an uncertainty set for renewable energy output. By
creating a confidence interval rooted in comprehensive norms, it constrains the fluctuation
scope of the scenario distribution probability, aiming to seek the optimal solution within
the worst-case uncertainty set in this scenario.

(1) Constraining the probability distribution values of discrete scenarios with the initial
probability distribution as the center and using the 1-norm and ∞-norm as constraint
conditions result in respective feasible domains Ω1 and Ω∞.

Ω =



pi ≥ 0 i = 1, 2, . . . K
K
∑

i=1
pi = 1

Pr
{

K
∑

i=1

∣∣pi − p0
i

∣∣ ≤ θ1

}
≥ α1

Pr
{

max
∣∣pi − p0

i

∣∣ ≤ θ∞
}
≥ α∞

(24)

where pi denotes the scenario i probability value that needs to be updated,
K
∑

i=1

∣∣pi − p0
i

∣∣ ≤ θ1

represents Ω1 (1-norm), max
∣∣pi − p0

i

∣∣ ≤ θ∞ represents Ω∞ (∞-norm), θ1 and θ∞ represent
the maximum deviation value of the probability, and α1 and α∞ represent the confidence of
the probability distribution value.

(2) It can be seen from Reference [35] that the following confidence levels {pk} are satisfied: Pr
{

K
∑

i=1

∣∣pi − p0
i

∣∣ ≤ θ1

}
≥ 1 − 2Ke−

2Mθ1
K

Pr
{

max
∣∣pi − p0

i

∣∣ ≤ θ∞
}
≥ 1 − 2Ke−2Mθ∞

(25)

where K and M represent the number of discrete scenes and the number of sample scenes.

(3) Obtained from Equations (24) and (25){
θ1 = K

2M ln 2K
1−α1

θ∞ = 1
2M ln 2K

1−α∞

(26)

Update probability scenario values using Equations (14)–(16) and F1 in Equation (10).

3.4. Model Solving Method

Generally speaking, it is difficult to solve a model that combines a min–max–min
structure and constraint with uncertain variables [36]. In handling uncertain variables, this
paper employs a method that involves generating 10 scenarios and their corresponding
probability values based on 180 days of data [37]. This is achieved through copula joint
WD–PV generation and the application of the k-means clustering algorithm. The resulting
probability values serve as the initial probabilities for the analysis. Current solving methods
for such problems primarily include Benders’ dual decomposition (BD) and the column
and constraint generation algorithm (C&CG) [38]. In each iteration of BD, the optimal
solution of the main problem is passed to the subproblem as a parameter. After solving
the subproblem, a new optimal cut or feasibility cut is added to the main problem until
the iteration process converges completely. However, the C&CG algorithm will add a new
set of constraints and variables to the main problem after each iteration and approximate
the optimal solution of the original problem by constantly cutting space. In contrast,
the C&CG algorithm retains the second-stage continuous variables in the optimization
calculation of the main problem, making the lower bound of the winner problem more
compact. Therefore, the C&CG algorithm is often easier to converge than the BD method
and requires fewer iterations. So, it is widely used.
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4. Analysis of Numerical Examples
4.1. Model Optimization Framework

This paper separates the model from Main Problem (MP), Subproblem1 (SP1), and
Subproblem2 (SP2). MP is to solve LB, SP1 is to solve minC′

stage2. SP2 is tasked with solving
max(pT+1minC′

stage2) and {pk} through comprehensive norm constraints. Equations (24)–(26)
are the comprehensive norm constraints.

LB =
{

min(Cstage1 + η), LB
}

UB =
{

Cstage1 + max(pT+1minC′
stage2), UB

}
η ≥ pTC′

stage2
pT = p0 i f T = 1

(27)

where LB represents the lower bound of the operating cost of the first stage, UB represents
the upper bound of the operating cost of the second stage, p0 represents the probability
value of the initial scenario, and η represents the maximum real-time scheduling cost of the
system under the limit scenario.

The model optimization process, depicted in Figure 3, involves iterative steps. Initially,
based on the probability of the initial scenario, Equation (27) computes the optimal power
buying (PB) considering the worst-case scenario. Subsequently, SP1 determines the most
economical operational state using the equipment capacity derived from LB. Then, SP2
adjusts the probability scenario using Equations (24)–(28). In subsequent iterations, the
corrected scenario probability from the previous iteration is utilized. Through iterative
refinement, the residual (re) converges to the minimum value, ensuring precision.

re = |(UB − LB)/UB| (28) 
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 Figure 3. Model-solving flow chart.

In the first iteration, based on the initial scenario probability value, the LB of Formula (27)
was calculated to obtain the best optimization scheme under the worst scenario. SP1 was
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calculated according to the purchased power obtained by LB, and the optimal operating cost
under the influence of the purchased power was calculated. Then, the scenario probability
value was modified by max(pT+1minC′

stage2) and Formulas (14)–(16) to calculate the worst
probability distribution so as to obtain the maximum expected cost. By calculating the
residual between the two, the second iteration starts with the first modified probability
distribution value. Through continuous iteration, the residuals converge to the minimum,
and finally the robustness and economy of the system are unified.

4.2. Introduction of Numerical Examples

To confirm the effectiveness of the model put forward, analysis and simulation were
conducted on a regional power system that integrates both renewable energy sources and
thermal power units. The capacity of thermal power units is 200 MW, 300 MW, and 600 MW,
respectively, of which 200 MW and 300 MW units can only carry out RPR. Excepting the
basic peak regulation ability, the 600 MW units can also carry out deep peak regulation
after modification. The loss coefficient for the thermal power unit in deep peak shaving is
1.2, the cost of the thermal power unit is RMB 3464/kW, the fuel consumption in deep peak
shaving is 4.8 t/h, and the oil price is RMB 6130/t [39]. The on–off time for units is set to 3 h,
5 h, and 8 h, respectively; The penalty cost of abandoning WD and PV is RMB 536/(MWh).
The average power of the rotor cracking cycle for deep peak shaving is 240 MW. Table 1
displays additional pertinent parameters. As in Reference [6], a lithium iron phosphate
battery is used for electric energy storage. The correlation coefficient is shown in Table 2,
where the charge and discharge of energy storage are RMB 50/(MWh).

Table 1. Parameters associated with coal-fired thermal power units.

Unit 1 Unit 2 Unit 3

Unit capacity/MW 200 300 600
Minimum output/% 50 50 50

ai 1.94 0.45 0.32
bi 140 140 140
ci 13,776 25,704 30,576
αi 1.16 × 10−3 9.37 × 10−3 1.60 × 10−3

βi 8.64 7.88 6.80
γi 113.20 158 290.40

Table 2. Actual energy storage parameters.

Energy Storage Capacity/MW 800

Self-discharge rate δES (%) 0.05
Efficiency of charge and discharge ηcha

ES , ηdis
ES 0.95

Upper and lower limits 0.1, 0.9
Initial charge state 0.25

Max and min values of energy storage charging power Pmin
ES.cha, Pmax

ES.cha 0, 0.25
Max and min values of energy storage discharging power Pmin

ES.dis, Pmax
ES.dis 0, 0.25

Figure 4 illustrates the typical daily electricity load demand of the system. Upon
observing the figure, it is evident that the system’s load demand experiences significant
fluctuations primarily between 10 and 17 h, with some variability around midnight. The
forecasted output values of WD and PV are depicted in Figure 5, while Table 3 provides the
power purchase prices set by the power grid. To examine the scheduling of all peak-load
resources within the system over the course of a day, the scheduling period is configured
as 10 scenarios, with each spanning 24 h with one-hour steps.
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Figure 4. Electrical load demand of the system.
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Figure 5. Forecast of WD and PV.

Table 3. Purchase price of power grid.

Time/h 1–7 8–11 12–14 15–18 19–22 23–24

Power purchase
Price/RMB/kWh 0.40 0.75 1.20 0.75 1.20 0.40

In the simulation analysis, the model built is a mixed integer linear programming
problem, so this paper uses the Yalmip toolbox to call commercial solver Cplex Ver 12.1 and
Gurobi Ver 9.1 in MATLAB 2021b to simulate the solution, and the computer parameters
are Inter (R) Core (TM) i7 2.6 GHz and 16 GB RAM.

4.3. Analysis of Simulation Outcomes
4.3.1. Analysis of Scheduling Outcomes

To validate the economic efficiency of the model proposed in this paper, the influence
of uncertainty parameter fluctuation on the total cost is considered, and the confidence
levels α1 and α∞ of the comprehensive norm fuzzy set are 0.5 and 0.99, respectively. Taking
into account the uncertainty associated with WD–PV power and load, the overall cost
of the system amounts to RMB 2,651,749. This includes the generation cost of unit 1 at
RMB 309,335, unit 2 at RMB 868,319, and unit 3 at RMB 137,047. Simultaneously, the
carbon emissions for the entire power system total 28,199,125 t. Further detailed costs and
calculation results can be found in Table 4.
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Table 4. (a) Related costs of thermal power units. (b) Other relevant calculation results.

(a)

Unit 1 Unit 2 Unit 3

Cost of coal RMB 295,335 RMB 854,319 RMB 1,909,841
On–off cost RMB 14,000 RMB 14,000 RMB 14,000

Life cost of shaft × × RMB 733,327
Cost of throwing oil × × RMB 29,424

Deep peak shaving compensates costs × × RMB 1,316,545
Sum RMB 309,335 RMB 868,319 RMB 1,370,047

(b)

Energy Storage Costs Wind and Light Cost Carbon Emissions

Total RMB 117,850 RMB 6.09 × 10−11 28,199,125 t

Figure 6 displays the power balance for scheduling day 2. The figure delineates the
predominant patterns of photovoltaic and wind power outputs along with the concentra-
tion of outputs from different units and energy storage. The photovoltaic output primarily
occurs from early morning to evening, while wind power output is prominent from mid-
night to evening. Thermal power unit 1 exhibits concentrated output from 17 to 24 h, unit
2 concentrates its output from 6 to 24 h, and unit 3 maintains output throughout the day,
with a peak between 18 and 21 h. Regarding peak-load management, energy storage is
charged during 2–6 h and 12–15 h, aligning with higher wind power output during the for-
mer period. This allows efficient absorption of wind power output by charging the energy
storage. Additionally, during 12–15 h when photovoltaic output peaks, charging the energy
storage effectively absorbs a substantial proportion of photovoltaic power, mitigating the
likelihood of PV and WD abandonment. The energy charge and discharge operations,
coupled with power purchases from the grid, are primarily concentrated between 18 and
21 h. During this period, photovoltaic power is minimal, and wind power output de-
creases significantly before 18:00. This synchronization enables a balanced response to the
substantial load demand during this timeframe.
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Figure 6. Power balance diagram for scheduling day 2.

4.3.2. Comparative Examination of Various Scheduling Outcomes

To validate the effectiveness of the proposed model in this paper, the following models
are established for comparison:

(1) Case 1. The thermal power unit and storage deep peak shaving scheduling model
proposed in this paper.

(2) Case 2. The traditional deep peak regulation scheduling model involving only thermal
power units.
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(3) Case 3. The three units set in this paper only carry out basic peak trimming, in which
the climbing power of thermal power unit 3 is set at 50%

This paper investigates the economic impact of coordinating deep peak regulation and
combined peak regulation with energy storage for thermal power units, with comparative
results presented in Table 5.

Table 5. Detailed costs under the three scenarios.

Cost/RMB Case 1 Case 2 Case 3

Cost of coal consumption 3,864,248 4,019,497 3,066,030
On–off costs 42,000 84,000 28,000

Rotating shaft life cost 733,327 499,996 ×
Cost of throwing oil 29,424 176,544 ×

Deep peak shaving compensates costs 1,316,544 857,142 ×
Total operating cost of coal-fired units 3,352,455 3,922,894 3,094,029

Energy storage usage costs 117,850 × 81,141
Curtailment cost of WD–PV 6.09 × 10−11 9943 2.89 × 10−11

Combined cost 2,651,749 3,170,399 3,052,203

Among these cases, Case 2 does not incur any energy storage use cost because the
energy storage does not partake in peak loading. In Case 3, there is no cost associated
with rotating shaft life, oil injection, or depth peak balancing compensation because the
original depth peak balancing unit operates solely in basic peak balancing mode, avoiding
DPRO and, consequently, depth peak balancing compensation cost. Regarding WD and
PV abandonment costs, Case 2 exhibits significantly higher expenses compared to Case 1
and Case 3. In Case 2, where energy storage is not involved in peak adjustment, surplus
scenarios remain unutilized, leading to substantial waste in WD and PV generation. In
terms of coal consumption costs, Case 2 surpasses Case 1 by RMB 155,249. This is because
without energy storage participating in peak load balancing, thermal power units need to
elevate output to absorb excess renewable energy. In Case 3, despite all units operating
under RPR, the addition of energy storage significantly reduces coal consumption costs by
31.09% compared to Case 2. Regarding shaft life and fuel injection costs, Case 1 shows a
higher shaft life cost by RMB 233,331 compared to Case 2. However, its fuel injection cost is
RMB 147,120 lower than Case 2 because the lack of energy storage in Case 2 necessitates
increased fuel consumption for DPRO to compensate for unabsorbed renewable energy.
It remains crucial to prioritize turbine shaft maintenance during peak load balancing
by conducting precise evaluations and real-time monitoring to mitigate damage risks.
Increased investment in shaft life costs and appropriate measures are necessary to ensure
stable unit operation and avert safety hazards. The electrical power balance for Case 1,
Case 2, and Case 3 is illustrated in Figure 7.
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Figure 7. Power balance for Case 1, Case 2, and Case 3.
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From Case 1 and Case 3, it is evident that the utilization of energy storage proves
crucial for the deep peak shaving of thermal power units, playing a pivotal role in absorbing
surplus renewable energy. While the total operating and WD–PV abandonment costs of
coal-fired units in Case 3 are lower compared to Case 1, the retrofitted thermal power units
in Case 3, capable of only basic peak trimming, result in significant wastage of societal
resources. Additionally, upon factoring in the fuzzy set based on comprehensive norm
distance, the overall cost for Case 1 is, significantly, 13% lower compared to that of Case 3.
Consequently, Case 1 emerges as a more cost-effective option, exhibiting superior peak
adjustment and renewable energy absorption efficacy.

Figure 8 presents a comparison between predicted and actual scenery absorption under
three conditions on scheduling day 2. In Case 1 and Case 3, scenery absorption closely
aligns with predictions, achieving nearly complete absorption. However, in Case 2, wind
power absorption falls below the predicted value only at 4:00 and 16:00, while photovoltaic
absorption lags behind the prediction at 9:00. This discrepancy arises because the energy
storage in Case 2 refrains from participating in peak load regulation, allowing the system
load to meet requirements during these periods, leading to the occurrence of wind and
photovoltaic abandonment.

Processes 2024, 12, x FOR PEER REVIEW 18 of 23 
 

 

From Case 1 and Case 3, it is evident that the utilization of energy storage proves 

crucial for the deep peak shaving of thermal power units, playing a pivotal role in absorb-

ing surplus renewable energy. While the total operating and WD–PV abandonment costs 

of coal-fired units in Case 3 are lower compared to Case 1, the retrofitted thermal power 

units in Case 3, capable of only basic peak trimming, result in significant wastage of soci-

etal resources. Additionally, upon factoring in the fuzzy set based on comprehensive 

norm distance, the overall cost for Case 1 is, significantly, 13% lower compared to that of 

Case 3. Consequently, Case 1 emerges as a more cost-effective option, exhibiting superior 

peak adjustment and renewable energy absorption efficacy. 

Figure 8 presents a comparison between predicted and actual scenery absorption un-

der three conditions on scheduling day 2. In Case 1 and Case 3, scenery absorption closely 

aligns with predictions, achieving nearly complete absorption. However, in Case 2, wind 

power absorption falls below the predicted value only at 4:00 and 16:00, while photovol-

taic absorption lags behind the prediction at 9:00. This discrepancy arises because the en-

ergy storage in Case 2 refrains from participating in peak load regulation, allowing the 

system load to meet requirements during these periods, leading to the occurrence of wind 

and photovoltaic abandonment. 

  
(a) Wind power (b) Photovoltaic power 

Figure 8. Comparison between the prediction and the consumption situation under different condi-

tions. 

Figure 9 showcases the actual output of the three units under various scenarios, high-

lighting the minimum values over a span of 2 scheduling days. Unit 1 remains non-oper-

ational before 17:00, ensuring its output surpasses the minimum afterward. Similarly, unit 

2 consistently maintains an output surpassing the minimum across various conditions, 

indicating that the basic peak shaving unit setup outlined in this paper does not lead to 

self-damage. In Case 3, where unit 3 is configured for basic peak load only, its actual out-

put is not considered. However, in Case 2, unit 3 experiences shutdowns during 2–9 h and 

operates below its minimum output at 10:00, 12:00, 14–16 h, and 24:00. In contrast, in Case 

1, unit 3 operates below the minimum output only during 12–15 h, without any shutdown 

occurrences. This significantly reduces the damage and associated costs incurred due to 

frequent operation and shutdown triggered by deep peak regulation. This further under-

scores the superiority and cost-effectiveness of the strategy proposed in this paper. 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

150

300

450

P
O

W
E

R
(M

W
)

TIME(h)

Case 1 Case 2 Case 3 PREDICTION

0 2 4 6 8 10 12 14 16 18 20 22 24

0

250

500

750
P

O
W

E
R

(M
W

)

TIME(h)

Case 1 Case 2 Case 3 PREDICTION

Figure 8. Comparison between the prediction and the consumption situation under different conditions.

Figure 9 showcases the actual output of the three units under various scenarios,
highlighting the minimum values over a span of 2 scheduling days. Unit 1 remains non-
operational before 17:00, ensuring its output surpasses the minimum afterward. Similarly,
unit 2 consistently maintains an output surpassing the minimum across various conditions,
indicating that the basic peak shaving unit setup outlined in this paper does not lead to
self-damage. In Case 3, where unit 3 is configured for basic peak load only, its actual
output is not considered. However, in Case 2, unit 3 experiences shutdowns during 2–9 h
and operates below its minimum output at 10:00, 12:00, 14–16 h, and 24:00. In contrast,
in Case 1, unit 3 operates below the minimum output only during 12–15 h, without any
shutdown occurrences. This significantly reduces the damage and associated costs incurred
due to frequent operation and shutdown triggered by deep peak regulation. This further
underscores the superiority and cost-effectiveness of the strategy proposed in this paper.
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4.3.3. Analysis of Results under Various Confidence Levels of the System

In distributionally robust optimization, varying confidence levels lead to different
degrees of conservatism within the system. This paper examines the model’s calculation
outcomes by configuring diverse confidence intervals, as detailed in Table 6. In assessing the
conservative response of an uncertain system, higher system costs correlate with heightened
conservatism. Lower risk tolerance, on the other hand, results in larger reserve capacities
adjusted by the system to counterbalance errors and energy consumption stemming from
wind power and photovoltaic output [22].

Table 6. Comparison results of different confidence levels.

α1
α∞

0.50 0.90 0.99

0.20 2,669,522 2,669,522 2,650,137
0.50 2,678,975 2,678,975 2,651,749
0.90 2,704,482 2,715,838 2,665,260

Further, we chose 1-norm α1 = 0.2, 0.5, 0.9 and ∞-norm α∞ = 0.5, 0.9, 0.99, respectively,
to compare with the comprehensive norm constraints, as shown in Table 7(a,b). The
outcomes indicate that, at the equivalent confidence level, the operational cost of the
comprehensive norm is lower than that of the single norm constraint.

Table 7. (a) Comparison results of synthetic norm and 1-norm constraint. (b) Comparison results of
synthetic norm and ∞-norm constraint.

(a)

Synthetic Norm 1-Norm

0.20 2,650,137 2,669,522
0.50 2,651,749 2,678,975
0.90 2,665,260 2,715,999

(b)

Synthetic Norm ∞-Norm

0.50 2,678,975 2,730,154
0.90 2,678,975 2,737,222
0.99 2,651,749 2,665,260

4.3.4. Comparison of System Carbon Emissions

The inflexibility of the power system poses challenges when confronted with a sub-
stantial influx of new energy, particularly in scenarios characterized by small loads and
high WD–PV power generation. This situation necessitates frequent operation of coal-fired
units at low loads, leading to increased unit coal consumption, diminished system opera-
tional efficiency, and heightened carbon emissions. Hence, studying the power system’s
carbon emissions concerning new energy becomes immensely significant. Table 8 provides
a breakdown of carbon emissions from Case 1 to Case 3.

Table 8. Comparison of carbon emission intensity in the three scenarios.

Case 1 Case 2 Case 3

Carbon emissions/t 28,199,125 29,525,768 32,411,404

As observed in Table 8, the carbon emissions in Case 1 are 4.49% lower than those in
Case 2 and 8.90% lower than those in Case 3, respectively. Consequently, the scheduling
strategy proposed in this paper demonstrates lower carbon emissions compared to the
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strategy combining thermal power unit and energy storage for peak shaving. This approach
is notably more environmentally friendly.

5. Conclusions

In this study, we propose a distributionally robust optimal scheduling strategy for a
WD–PV thermal storage power system while considering the deep peak shaving of thermal
power units. This strategy harnesses the full potential of both conventional thermal power
and deep peak shaving units, alongside the flexible utilization of electrical energy storage
systems to integrate renewable energy. We introduce a data-driven, distributionally robust
optimization approach to solve the uncertainties inherent in renewable energy sources,
achieving a synergistic optimization of system robustness and economic efficiency. The
efficacy of the proposed strategy is demonstrated through computational examples, leading
to the following conclusions:

(1) When implementing the strategy delineated in this paper, it is observed that although
the economy of the total operating costs for the coal-fired power units in Case 1 is
marginally less favorable than those in Cases 2 and 3, the overall economic efficiency
of the system is markedly enhanced when taking into account the fuzzy set based on
the comprehensive norm distance. Concurrently, the carbon emissions in Case 1 are
substantially lower in comparison to Cases 2 and 3. This underscores the profound
importance of the cooperative operation of coal-fired units with peak load balancing
capabilities and energy storage not only for the economic and low-carbon functioning
of the power system but also for the tiered utilization of energy.

(2) The deployment of DRO focusing on the comprehensive norm can strike a superior
equilibrium between robustness and economic efficiency. Consequently, DRO proves
to be more adept at addressing uncertainties associated with variable forces, such
as those from WD and PV sources. Moreover, the dual confidence intervals of the
comprehensive norm serve as key parameters that reflect the risk preferences of the
decision maker. A lower degree of conservatism correlates with reduced operational
costs, yet this also diminishes the robustness of the strategy. Thus, decision makers
are required to select different confidence intervals that align with their varying
risk appetites.

(3) It is advisable to prioritize coal-fired units with substantial capacity and a high
frequency of significant load fluctuations as the focal point for emission reduction
initiatives. In tandem, regular inspections of the turbine rotor are critical to promptly
detect any initial cracks and address them effectively. Furthermore, it is essential to
bolster investment in the lifecycle maintenance costs of the unit’s rotating shaft to
forestall any potential accidents.

The findings of this study offer valuable theoretical insights for the integrated peak-
load scheduling of conventional thermal power units, deep peak shaving units, and energy
storage, particularly when integrating new energy sources into the power system. However,
this paper does not account for the investment costs associated with energy storage capacity
or the carbon emissions costs related to low-carbon dispatch strategies, and the estimation
of carbon emissions from coal-fired units is somewhat idealized. The forthcoming research
will extend its focus to include the capacity configuration and investment cost of energy
storage, aiming to maximize scheduling efficiency and economic benefits. Additionally,
the impact of carbon emissions from thermal power units during peak load balancing
cannot be overlooked, necessitating a thorough examination of carbon emission costs in
future analyses. Furthermore, the study will account for demand response variability and
uncertainty in load and explore the flexible conversion capabilities of thermal power units.
Moreover, it will persist in investigating the feasibility of strategies under the integration of
renewable energy sources.
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