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Abstract: The prediction of cold load in ice-storage air conditioning systems plays a pivotal role
in optimizing air conditioning operations, significantly contributing to the equilibrium of regional
electricity supply and demand, mitigating power grid stress, and curtailing energy consumption
in power grids. Addressing the issues of minimal correlation between input and output data and
the suboptimal prediction accuracy inherent in traditional deep-belief neural-network models, this
study introduces an enhanced deep-belief neural-network combination prediction model. This
model is refined through an advanced genetic algorithm in conjunction with the “Statistical Products
and Services Solution” version 25.0 software, aiming to augment the precision of ice-storage air
conditioning load predictions. Initially, the input data undergo processing via the “Statistical Products
and Services Solution” software, which facilitates the exclusion of samples exhibiting low coupling.
Subsequently, the improved genetic algorithm implements adaptive adjustments to surmount the
challenge of random weight parameter initialization prevalent in traditional deep-belief networks.
Consequently, an optimized deep-belief neural-network load prediction model, predicated on the
enhanced genetic algorithm, is established and subjected to training. Ultimately, the model undergoes
simulation validation across three critical dimensions: operational performance, prediction evaluation
indices, and operating costs of ice-storage air conditioners. The results indicate that, compared to
existing methods for predicting the cooling load of ice-storage air conditioning, the proposed model
achieves a prediction accuracy of 96.52%. It also shows an average improvement of 14.12% in
computational performance and a 14.32% reduction in model energy consumption. The prediction
outcomes align with the actual cooling-load variation patterns. Furthermore, the daily operational
cost of ice-storage air conditioning, derived from the predicted cooling-load data, has an error margin
of only 2.36%. This contributes to the optimization of ice-storage air conditioning operations.

Keywords: ice-storage air conditioning; deep-belief neural network; load forecasting; operation
optimization

1. Introduction

Amidst the escalating global emphasis on energy efficiency and sustainable devel-
opment, myriads of industries confront significant challenges in diminishing energy con-
sumption and enhancing system efficiency [1]. In recent years, the proportion of energy
consumed by air conditioning in the total electricity consumption has surged, markedly
exacerbating the strain on the power grid due to its substantial electricity usage. Owing to
the ability of ice-storage air conditioning systems to store energy during off-peak hours and
periods of low electricity prices, these systems can release the stored cold energy during
peak load or high electricity price intervals the following day. This assists in “shifting
peaks and filling valleys” in air conditioning power consumption, alleviating the burden
during peak periods and facilitating the balance between high- and low-demand periods
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on the power grid. Consequently, this has prompted researchers to delve into the study of
ice-storage air conditioning systems [2].

Currently, the prediction of cold load in ice-storage air conditioning systems faces
challenges such as low accuracy, delayed responsiveness, and imprecise acquisition of
operational parameters, impeding efficient energy management and optimal operation [3].
Accurate cold load forecasting can significantly enhance the management and regulation
of ice storage and cooling systems, thereby lowering energy costs and enhancing overall
energy efficiency. Moreover, optimizing ice-storage air conditioning involves ensuring
a balance between the cooling capacity provided by the chiller and the ice tank during
peak and off-peak electricity pricing periods. This process begins with predicting the
necessary cold load, followed by allocating cooling capacity based on these predictions [4],
Consequently, cold-load prediction is fundamental in optimizing the operation of ice-
storage air conditioning systems.

Presently, air-conditioning cooling-load prediction predominantly employs data-
driven methods, including Support Vector Machine (SVM), Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Genetic
Algorithm (GA) [5]. The LSTM network often experiences a significant decline in general-
ization ability due to the random initialization of network parameters, making it prone to
getting trapped in local optima [6]. SVM, a commonly used artificial intelligence method,
is capable of transforming nonlinear relationships but suffers from lengthy data processing
times [7]. CNN and RNN models are straightforward and feasible prediction methods,
yet their predictive capabilities fall short of SVM [8,9]. However, these relatively common
load forecasting methods face issues in several aspects, including the ability to transform
nonlinear relationships, data processing time, predictive capabilities, handling time-series
and nonlinear data, processing large volumes of complex input data, convergence speed,
and accuracy. Additionally, these methods often fail to fully capture the dynamic character-
istics and complexity of systems [10]. Deep-belief networks (DBNs) offer a new perspective
and tool for a more in-depth analysis and prediction of ice-storage air-conditioning cooling
load, demonstrating higher predictive accuracy in scenarios involving high-dimensional,
large-scale data load forecasting [11]. Gong et al. [12] (2021) examined traditional load
forecasting models in ice storage systems, highlighting the limitations of time-series and
regression models and the need for methodological advancements. Yao and Shekhar [13]
(2021) explored the efficacy of DBNs in energy demand forecasting within deep learning
frameworks, demonstrating their effectiveness in complex data handling and accuracy.
However, these studies’ reliance on random initial weights and thresholds in DBNs has led
to challenges in ensuring diagnostic accuracy, often resulting in suboptimal prediction due
to mismatched input and output data. Addressing these shortcomings in DBN applications
thus forms the core focus of this paper.

Meanwhile, several scholars have delved into optimizing the operation of ice-storage
air conditioners. Liu et al. [14] (2022) investigated strategies for optimizing ice storage
systems, underscoring the significance of scheduling optimization and demand-response
strategies in enhancing system efficiency. Gao et al. [15] (2022) identified challenges in
applying deep learning models to these systems, specifically concerning data quality, model
interpretability, and reliability. While these approaches contribute valuably to the study
of ice-storage air-conditioning operation optimization, they often treat load forecasting
and operational considerations as distinct entities, overlooking the interdependence of
these aspects.

Addressing the aforementioned issues, this study enhances the traditional DBN neural
network by integrating the “Statistical Product and Service Solutions” (SPSS) version 25.0
software for data analysis, rather than applying conventional mathematical processing
directly to the data. This approach involves conducting a correlation analysis of the system’s
input and output variables to increase data interconnectivity. Considering the limitations
and characteristics of traditional DBNs, this work combines an improved genetic algorithm
(IGA) with the DBN to form a composite prediction model. By employing the IGA to select
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an optimal set of initial weights and thresholds for the DBN, the approach overcomes the
randomness associated with the selection of initial values in traditional DBN models. This
strategy enhances the neural network’s capacity for nonlinear generalization and mapping.
Compared to the traditional DBN model, the optimized model exhibits faster convergence
speed and the ability to escape local optima, offering particular advantages in processing
high-dimensional and large-volume data. The IGA-optimized DBN is well-suited for
application in research focused on optimizing the operation of ice-storage air conditioning
systems, demonstrating its potential to significantly improve performance and efficiency
in complex data environments. Experimental results show that the IGA–DBN composite
prediction model outperforms common air-conditioning cooling prediction methods, with
an average performance improvement of 19.82% and a prediction accuracy of 96.52%. The
model demonstrates a more significant prediction discrepancy with larger data volumes
and an average increase in convergence speed of 22.36%. Moreover, the daily operational
cost error for ice-storage air conditioning, derived from the predicted cooling-load data, is
only 2.56%, facilitating the further optimization of such air conditioning systems.

2. Ice-Storage Air Conditioning Cold-Load Prediction and Operation
Optimization Process

The primary challenge in predicting the cold load of ice-storage air conditioning
systems lies in enhancing accuracy and timeliness. Traditional methods have not effectively
integrated cold-load prediction with the operational dynamics of these systems. Therefore,
it is crucial to re-analyze and re-integrate data based on real-world application scenarios
for more effective guidance in optimizing the operation of ice-storage air conditioning.

The cold-load prediction and operation optimization process of the ice-storage air
conditioner in this paper is shown in Figure 1. The initial step involves utilizing SPSS
version 25.0 software data analysis software to perform a correlation analysis on the input
data for the cooling load of ice-storage air conditioning. This includes conducting Pearson
correlation significance tests to enhance the interconnectedness of the data, allowing for the
exclusion of four variables with the least strongest correlations: solar radiation intensity
at time t, solar radiation intensity at time t − 1, wind speed at time t, and atmospheric
pressure at time t. This process selects six variables as input for the IGA–DBN neural-
network prediction model: outdoor dry-bulb temperature at time t − 1, outdoor dry-bulb
temperature at time t, cooling load at time t − 1, cooling load at time t − 2, cooling load at
time t − 3, and relative humidity at time t. This selection aims to address the limitations
caused by low correlations between input and output variables, such as slow network
training speed and low prediction accuracy, thereby improving the model’s predictive
accuracy. Furthermore, addressing the traditional GA’s drawbacks, such as slow search
speed and premature convergence, and its fixed crossover and mutation probabilities based
on experience, which are unsuitable for different function optimization problems, improve-
ments to the GA are proposed. Subsequently, the IGA is used to select an optimal set of
initial weights and thresholds for the DBN, overcoming the randomness in the selection of
initial values. This enables the DBN to achieve faster convergence speed and the ability to
escape local optima while leveraging the neural network’s nonlinear generalization and
mapping capabilities, resulting in the IGA–DBN composite prediction model. This model
is then applied to the prediction of the cooling load for ice-storage air conditioning. To
demonstrate the superiority of the improved model, this study calculates and analyzes the
operational costs of two typical air conditioning operational modes—ice-storage priority
operation mode and unit priority operation mode—using the air-conditioning cooling-load
prediction results from the composite prediction model.
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tinguishes the ice-storage air conditioning system from conventional air conditioning sys-
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Figure 1. Ice-storage air conditioning cold-load prediction and operation optimization process.

3. Analysis of the Working Principle and Operation Mode of Ice-Storage
Air Conditioner
3.1. Working Principle of Ice-Storage Air Conditioning

The ice-storage air conditioning system consists of refrigeration units, ice storage
devices, connecting pipes, and control regulators, among other equipment, and is primarily
divided into four main systems: the source of cold system, chilled water system, cooling
water system, and control system. The source of cold system is a key component that distin-
guishes the ice-storage air conditioning system from conventional air conditioning systems.
It is composed of dual-mode refrigeration units and ice storage devices. The chilled water
system uses water as the cooling medium and includes chilled water pumps, air condition-
ing terminals, and chilled water pipelines. The cooling water system also uses water as
the cooling medium and comprises refrigeration units, cooling water pumps, pipelines,
and cooling towers. The control system is made up of communication systems, sensors,
controls, and actuators. It forms the foundation for the economical and energy-saving
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operation of the ice-storage air conditioning system. In addition to the start–stop control of
system electromechanical equipment, the control system also integrates peak–valley elec-
tricity prices and the next day’s cooling-load demand. It controls and adjusts the working
state of the refrigeration units’ ice-making condition, the distribution of cooling capacity
between the refrigeration unit in the cooling condition and the ice storage device, and the
working state of the refrigeration unit in the cooling condition. This achieves economic and
energy-saving benefits.

In ice-storage air conditioning systems, understanding the components and behaviors
of cold load is crucial when leveraging low electricity prices. In this study, the cold load
composition primarily consists of indoor and outdoor heat loads, encompassing factors
such as ventilation rates, building structures, electrical equipment, solar radiation, and
external temperatures. Addressing these components, ice-storage air conditioning systems
often employ advanced intelligent control systems to adjust based on factors like indoor
and outdoor temperatures, building loads, and electricity prices, aiming to minimize
power consumption while ensuring comfort. Through effective load management, such
as adjusting indoor temperatures and optimizing building insulation, overall cold load is
reduced. The efficient cycling of ice storage and energy storage is employed to meet cold
load demands and utilize low electricity prices effectively. The operation of ice-storage air
conditioning systems is closely intertwined with efficient cycling of ice storage and energy
storage. Ice-storage air conditioners operate on a diurnal cycle, encompassing night-time
ice storage and daytime cooling. The ice storage phase predominantly occurs during
off-peak hours in the power grid, where the air conditioning system utilizes phase-change
latent heat for ice formation, typically employing direct electricity for ice storage. During
the daytime, when end-users require cooling, the system enters the cold supply phase.
This period coincides with peak demand for cooling load and higher electricity prices. The
operation of refrigeration units and ice storage equipment during this time allows for joint
cold supply from the chiller and ice tank. This strategy facilitates “shifting peaks to fill
valleys” in electricity usage, alleviating grid pressure during peak periods and enhancing
demand-response flexibility [16]. An ice-storage air conditioning schematic diagram is
shown in Figure 2.
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3.2. Mode of Operation of Ice-Storage Air Conditioners

The advantages of ice-storage air conditioning systems encompass two main aspects.
Firstly, they can facilitate peak shifting in the power grid, effectively balancing the load by
storing cooling energy during off-peak hours (“valley”) and utilizing it during peak hours
(“peak”). Secondly, by leveraging time-of-use electricity pricing policies that differentiate
between peak, off-peak, and mid-peak (or “flat”) rates, these systems can significantly
reduce the operational costs of air conditioning. The extent to which an ice-storage air
conditioning system can maximize its advantages is not only dependent on the rationality
of its design but also on the appropriateness of its operational mode. An operational mode
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of an ice-storage air conditioning system refers to the strategy applied over a cycle of
operation that aligns with the next day’s hourly cooling-load demand. This strategy plans
the amount of ice to be stored during the ice-making phase and distributes the load between
the refrigeration units and the ice storage device during the cooling phase, in accordance
with the structure of electricity tariffs. Therefore, optimizing the operation of ice-storage air
conditioning systems by utilizing time-of-use electricity rates can effectively lower their
operational costs. This optimization involves planning the ice production and storage for
periods when electricity is cheaper and using the stored ice for cooling during periods
when electricity prices are higher, thus achieving economic and energy-saving benefits.

The optimization of ice-storage air conditioner operation involves identifying the
optimal point for switching between various modes to maximize energy savings and
reduce consumption. Advanced prediction of cold load is critical for determining the
operation mode of these air conditioners and for the efficient control of the main engine in
conjunction with the ice tank. Ideally, the chiller operates minimally during peak electricity
consumption periods to minimize operational costs. This paper’s research emphasizes the
method for predicting the cold load of ice-storage air conditioners and its role in guiding
operational optimization. Consequently, the study utilizes the enhanced DBN combination
prediction model to analyze two prevalent operation modes: ice-storage priority and unit
priority. The effectiveness of the proposed prediction method is demonstrated through the
calculation of operational costs under these modes.

In ice-storage priority mode, the air conditioner initially uses a cooling tower and
ice unit to produce ice at night, storing it in an ice bank. During the day, the stored ice
is the primary source for meeting cooling demands. When the ice supply is insufficient,
the refrigeration unit supplements the necessary cooling capacity. This mode’s primary
advantage is maximizing electricity usage during low-tariff hours, thus conserving energy
and reducing operating costs. Conversely, in unit priority mode, the refrigeration unit
primarily addresses the immediate cooling demand. The ice storage is utilized either when
the refrigeration unit’s capacity is insufficient or to optimize operating costs. Typically
employed outside peak daytime tariff hours or when immediate response to significant
cooling demands is necessary, this mode offers more flexible control and quicker response
times, although it may not be as energy-efficient as the ice-storage priority mode [17].

4. Improved DBN Ice-Storage Air Conditioner Prediction Modeling
4.1. The DBN Model

Deep-belief networks are multilayered probabilistic generative models extensively
utilized in feature learning and classification of intricate datasets. DBNs effectively amalga-
mate the characteristics of neural networks with probabilistic graphical models, enabling
them to proficiently process nonlinear and high-dimensional data. As generative models,
DBNs distinguish themselves by learning the joint distribution of the provided data—a
capability that extends beyond mere classification to the generation of new data samples.
The architecture of a DBN comprises multiple hidden layers, with each layer responsible
for learning distinct features and representations of the data [18]. This layered, hierarchi-
cal approach renders DBNs particularly adept at extracting features from complex data
structures. The structural configuration of DBNs is depicted in Figure 3.

The training process of DBNs is a well-designed multi-step process that aims to
maximize the capture and characterization of the input data. This process can be divided
into two main parts: layer-by-layer pre-training and global fine-tuning.

In the context of layer-by-layer pre-training within a DBN, the architecture comprises
multiple layers of Restricted Boltzmann Machines (RBMs), each tasked with capturing
features from various levels of input data. During this pre-training phase, each RBM
layer is trained independently, without the influence of other layers. This independence
allows each layer to concentrate solely on learning feature representations from its received
input, beginning from the bottom layer and ascending sequentially through the DBN
hierarchy [19]. Successive layers of RBMs utilize the output from the preceding layer as



Processes 2024, 12, 523 7 of 21

their input. Consequently, the RBMs in the lower layers of the network are adept at learning
fundamental data features, while those in the higher layers progressively extract more
abstract and complex feature representations. The corresponding calculation is shown in
Equation (1):

hj = wijvi + bj

vi = wijhj + ai
(1)

where vi, ai are the i-th neuron input and bias of the visible layer; hj, bj are the j-th neuron
output and bias of the hidden layer; and wij is the connection weight between the neurons
of the visible and hidden layers.
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The visible layer probability distribution function E(ν, h) for each layer in the RBM
network is defined as shown in Equation (2):

E(ν, h) = −
n

∑
i=1

aiνi −
m

∑
j=1

bjhj −
h

∑
i=1

m

∑
j=1

νjwijhj (2)

where h, m are the number of neurons in the visible and hidden layers, respectively.
The probability distribution function P(v) of the visible layer of each RBM network is

defined as shown in Equation (3):

P(v) =
∑
h

e−E(v,h)

∑
ν,h

e−E(ν,h)
(3)

Given the independence of neurons within the same layer, it is possible to calculate
the probability associated with the weight vi = 1 as follows:

P(vi = 1|h) = Sigmoid(ai +
m

∑
i=1

hjwij) (4)
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Similarly, the probability associated with the activation function hj = 1 can
be calculated:

P(hj = 1|v) = Sigmoid(bj +
n

∑
i=1

viwij) (5)

Sigmoid( ) function is referred to as the activation function in the context of neu-
ral networks:

Sigmoid(x) =
1

1 + exp(−x)
(6)

The primary objective of RBM pre-training is to initially obtain optimal parameters,
denoted as parameter θ, represented by θ∗, to achieve a DBN structure with a satisfactory
fitting effect. At this stage, the sample statistical probability within the DBN and the
model-generated probability are maximized to be equal. The calculation formula for θ∗ is
as follows:

θ∗ = argmax
T

∑
t=1

Inp(vt) (7)

where T denotes the total number of training samples.
Global fine-tuning entails the comprehensive refinement of a DBN using the Back

Propagation (BP) algorithm, following the pre-training of all layers. This phase aims to
adjust the weights and biases across the network, enabling improved data representation
and prediction. Utilizing the error gradient, the BP algorithm methodically updates the
parameters from the top layer downwards, thereby enhancing the network’s predictive
capabilities [20]. The significance of the fine-tuning phase lies in its integration of individual
layer learnings, ensuring the DBN’s collective and effective representation of the data. After
pre-training, the DBN acquires initial parameters. The fine-tuning phase aims to enhance
the model’s fitting performance. Starting from the topmost layer of the DBN, fine-tuning
adjusts the initial parameters layer by layer downwards using a small amount of labeled
data obtained during pre-training. Typically, the SoftMax function is employed as the
final classifier, with the BP algorithm used to execute the fine-tuning process. If the DBN
network comprises l RBMs, the output of the pre-training is as follows:

ul(x) = Sigmoid(al + wlul−1(x)) (8)

The SoftMax function determines the output of the DBN by identifying the category
with the highest probability as the predicted class. This process effectively translates
the network’s output into a probability distribution over predicted classes, facilitating
classification tasks by emphasizing the most likely category.

In the initialization phase of the DBN architecture, a DBN model is established. Tradi-
tionally, the selection of optimal initial weights and thresholds in DBN models is random-
ized, which closely ties the iteration time to network parameters and adversely affects the
global search capability. To address this issue, this study proposes the use of an improved
GA to optimize the DBN, thereby overcoming the randomness in the selection of initial
DBN weights and thresholds. This approach continuously guides the optimization of
DBN parameters during model training, enhancing the model’s learning efficiency and
predictive accuracy [21].

4.2. IGA–DBN Neural-Network Prediction Model

In the exploration of ice-storage air conditioning systems, the pivotal roles of load fore-
casting and operational optimization are underscored by their contributions to enhancing
energy efficiency and curbing operational expenses. The DBN emerges as the preferred
analytical instrument, selected for its exemplary prowess in feature extraction and data
modeling. This study leverages the DBN’s predictive insights, in concert with findings
from an optimization algorithm, to refine the operational parameters of ice-storage air
conditioners. Central to the predictive model architecture, the paper examines the learning
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efficacy of the RBM using reconstruction error (RE). Predominantly utilized in machine
learning and signal processing, the RE evaluates the disparity between original and recon-
structed data, serving crucially in dimensionality reduction and feature extraction tasks
table. An incremental approach, adding RBM layers successively, facilitates the observation
of RE variations. Notably, a diminished RE is indicative of more comprehensive feature
extraction and enhanced model stability, as elaborated in Equation (9). The experiment
sets the maximum number of iterations of the network model to 100, the learning rate
is γ = 0.01, and the learning increase coefficient and learning decrease coefficient are
IN = 1.14 and DE = 0.86.

RE(t) =
N

∑
k=1

(Xk − νt)
2 (9)

where RE(t) is the reconstruction error value of the t-th iteration, N is the number of
samples, Xk is the k-th column of the input sample matrix, and νt is the current input layer
neuron state.

The iterative analysis reveals a consistent downward trend in the reconstruction error
(RE) values across the various layers of the RBM. Notably, there is a gradual decline in RE
as the depth of the model increases. Each subsequent RBM layer initially presents a larger
RE, surpassing the final value of its preceding layer, attributed to the random assignment
of initial weights. This dynamic is further elucidated in Table 1, which illustrates the
impact of the DBN model depth on the RE. Table 1 indicates a progressive decrease in
network reconstruction error with increasing depth. However, this is accompanied by
rising computational time and diminished efficiency. Specifically, a single-layer RBM
network exhibits substantial fluctuations in RE and slower convergence. In contrast, a
two-layer RBM network demonstrates a decreasing RE trend with quicker convergence.
While the arithmetic time for three-layer and four-layer RBM networks is more complex,
the four-layer network does not show significant improvements in steady-state error value
or convergence speed compared to the three-layer network. Consequently, this study opts
for a three-layer RBM architecture for the cold-load DBN prediction model.

Table 1. Effect of DBN depth on RE.

Network Depths RE Computation Time/s

1-layer RBM 0.6772~2.2865 82.3
2-layer RBM 0.0431~0.9426 115.2
3-layer RBM 0.0397~0.7686 141.5
4-layer RBM 0.0343~0.6214 189.6

Simultaneously, to demonstrate the advantages of the DBN in tasks such as dimen-
sionality reduction and feature extraction compared to other traditional network models,
this study benchmarks against the computational time taken for reconstructing errors
with three layers of the RBM in a traditional DBN network. It also involves training and
calculating the computational times of conventional networks, including CNN, RNN, SVM,
and LSTM networks. The specific outcomes are presented in Table 2.

Table 2. Computation time of each neural network regarding RE.

Network Model RE Computation Time/s

DBN 0.0397~0.7686 141.5
LSTM 0.0419~0.7881 155.2
RNN 0.0423~0.7897 161.5
CNN 0.0421~0.7799 169.6
SVM 0.0425~0.7673 171.2
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When the training conditions for the model remain unchanged, and after training
different layers of CNN, RNN, SVM, and LSTM networks to meet a steady-state error and
convergence speed within the RE range of 0.0397 to 0.7686, it was found that compared to
the DBN model, the computational time for these four types of network models increased
to a certain extent, with the maximum increase in computational duration reaching 17.35%.
This demonstrates that the DBN model possesses superior convergence capabilities com-
pared to other traditional network models, offering significant advantages in tasks such as
high-dimensional data computation and feature extraction.

Having established the optimal depth for the RBM in the DBN prediction model, this
study next addresses a fundamental challenge in traditional DBN models: the arbitrary
selection of initial weights and thresholds. To rectify this, the research introduces an
optimization of the DBN model using the improved IGA, specifically designed to reduce
the randomness in selecting initial DBN parameters [22]. The traditional GA employs binary
coding, representing individuals within the population with fixed-length binary strings,
where alleles are comprised of binary symbols from the set {0,1}. The selection process
utilizes the roulette wheel selection method; for crossover, single-point crossover is used
with a fixed crossover probability; and mutation is carried out through bit mutation, with
mutation probability also set to a fixed value. In this study, four operational parameters
of the basic GA need to be predetermined: the population size M, which refers to the
number of individuals within the population, is set to 100; the termination criterion for
genetic operations G is set to 500 generations; the crossover probability Pc is set within
the range of (0.4, 0.9); and the mutation probability Pm is set within the range of (0, 0.1).
However, traditional GAs exhibit drawbacks such as slow search speed and a tendency
towards premature convergence. Moreover, the fixed values for crossover probability Pc
and mutation probability Pm, based on experience, may not be suitable for different function
optimization problems. However, traditional GAs suffer from limitations such as slow
search speeds and a propensity for premature convergence. Furthermore, the conventional
approach of using fixed values for crossover probability (Pc) and mutation probability
(Pm), based on empirical judgment, limits their applicability across diverse optimization
problems. In response, this paper proposes modifications to the GA, particularly in the
adaptation of Pc and Pm during the evolutionary process [23]. The traditional adaptive
genetic algorithm (AGA), which dynamically adjusts crossover and mutation probabilities
(Pc and Pm, respectively) based on fitness values, allows these probabilities to automatically
change with fitness. However, when the fitness values of individuals are close to or equal to
the maximum fitness value, both Pc and Pm approach zero. This condition is detrimental in
the early stages of evolution, as superior individuals nearly remain unchanged, increasing
the likelihood of converging to local optima.

Considering the limitations of traditional AGAs, where the crossover and mutation
probabilities become zero when the fitness value equals the maximum fitness value, there is
a tendency to converge to local optima. Additionally, individuals with lower fitness exhibit
reduced mutation capabilities, leading to stagnation. While the elitist strategy protects the
optimal individuals, it may cause the population’s evolution to stall when the number of
individuals is large, leading to local convergence. Furthermore, traditional adaptive GAs
have focused solely on the comparison between the average and optimal values within
the population, neglecting a comprehensive evaluation of how crossover and mutation
probabilities are set across the entire population. The modified approach allows Pc and
Pm to dynamically regulate the algorithm’s search efficiency without compromise. These
probabilities are crucial in influencing the GA’s behavior and performance. To escape
local optima, Pc and Pm are increased when the population’s fitness con-verges towards
a local optimum. Conversely, if the population’s fitness is more varied, Pc and Pm are
reduced to preserve superior individuals. Additionally, individuals with fitness levels
above the population average are assigned lower Pc and Pm to facilitate their progression to
subsequent generations, while those below the average are subjected to higher Pc and Pm
values to facilitate their elimination. Based on the adaptive genetic algorithm, the variation
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in crossover and mutation probabilities follows a specific rule: individuals of lower fitness
are assigned higher crossover probabilities and lower mutation probabilities. Conversely,
individuals of higher quality are allocated crossover and mutation probabilities based
on their fitness level and the iteration state. As the number of iterations approaches the
maximum, the crossover probability decreases, while the mutation probability increases.
The improved adaptive genetic algorithm automatically adjusts the crossover and mutation
probabilities, as shown in Equations (10) and (11).

In order to further improve the accuracy of the prediction model, the best initial
weights and threshold parameter configurations of the DBN model are optimized using
the IGA in this paper as follows:

Step 1: Initialize the parameters in the DBN network, select the number of neuron
layers and the number of neurons in the DBN, and then select the dimensions of the
individuals to establish the DBN network structure.

Step 2: Initialize the GA population to produce N individuals constituting the initial
solution set. Encoding the initial values of the DBN model by an improved GA.

Step 3: Determine the fitness function f = 1/ob, and calculate the fitness f j.
Step 4: Individuals are selected according to roulette rules, and the average fitness

value of the current population, favg, and the maximum fitness value of the current popula-
tion, fmax, are calculated.

Step 5: Individuals in the population are randomly paired into pairs, and their
crossover probability Pc is calculated by the adaptive crossover formula, which randomly
generates R(0, 1), and the crossover operation is performed on the chromosome if R < Pc.
The adaptive crossover probability formula is shown in Equation (10):

Pc =


{

k1( fmax − f ′)
fmax − faνg

, f ′ > faνg

k2, f ′ ≤ faνg

(10)

where faνg denotes the average fitness value of the current population, fmax denotes the
maximum fitness value of the current population, f ′ denotes the fitness value of the i-th
chromosome, and k1, k2 are set parameters.

Step 6: For all individuals in the population, their adaptive mutation probability Pm is
calculated by the adaptive mutation formula, R(0, 1) is randomly generated, and crossover
operation is performed on the chromosome if R < Pm. The adaptive mutation probability
adjustment formula is shown in Equation (11):

Pm =


{

k3( fmax − f )
fmax − faνg

, f > faνg

k4, f ≤ faνg

(11)

where faνg denotes the average fitness value of the current population, fmax denotes the
maximum fitness value of the current population, f denotes the fitness value of the i-th
chromosome, and k3, k4 are set parameters.

Step 7: The fitness of new individuals generated from crossover and mutation is
calculated. Low-fitness individuals generate new individuals after being manipulated by
the IGA algorithm, and the resulting population of new individuals is mixed with the good
population to form a new population.

Step 8: At the end of evolution, determine whether the accuracy meets the require-
ments, select the best fitness value, i.e., the optimal weight threshold, and then assign the
optimized weight threshold to the DBN; otherwise, return to step 4 to continue training.

The architecture of the DBN prediction model, enhanced through the use of the IGA, is
depicted in Figure 4. This architecture represents an iterative process, where the IGA–DBN
model achieves adaptive adjustments. These adjustments are facilitated by refining the Pc
and Pm within the GA and integrating it with the DBN, renowned for its superior feature
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extraction capabilities. The IGA’s primary role in this framework is to address the issue
of random initialization inherent in DBN weight parameters. It continually optimizes
the parameters of the DBN, and the performance feedback from the DBN model informs
subsequent rounds of IGA-guided parameter optimization. This synergistic combination
of the IGA with the DBN model significantly enhances the latter’s efficacy in handling
complex data processing tasks.
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4.3. Load Forecast Evaluation Indicators

In order to better measure the prediction effect of the IGA–DBN prediction model,
this paper utilizes three evaluation indexes to evaluate it, including Mean Absolute Error
(MAE), Root-Mean-Square Error (RMSE) and Mean Relative Percentage Error (MAPE). The
specific expressions are shown in Equations (12)–(14):

MAE =
1
N

N

∑
t=1

|yi − ya| (12)

RMSE =

√√√√ 1
N

N

∑
t=1

(yi − ya)
2 (13)

MAPE =
1
n

N

∑
i=1

∣∣∣∣yi − ya

yi

∣∣∣∣× 100% (14)

where N denotes the total number of selected samples, yi denotes the actual value of
electricity load, and ya denotes the predicted value.

5. Example Analysis
5.1. Data Processing

To validate the proposed method, this study utilizes some data from the 2017 UCI
Machine Learning Repository’s energy prediction dataset, encompassing around 145 days
of recordings at 10 min intervals [24]. In applying the IGA–DBN neural network, the
study confronts challenges related to the redundancy of input data and biases in com-
bined prediction, which complicates achieving optimal prediction accuracy in practical
engineering scenarios. A significant aspect of this research involves addressing the low
correlation between certain input and output datasets. To enhance the correlation strength,
a thorough analysis using SPSS software is conducted, emphasizing the significance of the
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Pearson correlation coefficient. This process aims to augment data correlation and discard
input variables with minimal correlation. Such an approach is designed to compensate for
the shortcomings of traditional prediction methods, which often suffer from prolonged
neural-network training times and diminished prediction accuracy due to low correlations
between input and output variables. Consequently, these measures are expected to substan-
tially improve the accuracy of the IGA–DBN model [25]. For training the IGA–DBN neural
network, this study utilized input data comprising 24 h periods across the first 50 days of
a 60-day span in July and August. The data from 25 to 30 August were designated vali-
dation analysis data. The selection of model input variables was informed by the Pearson
correlation coefficient analysis, as detailed in Table 3. This analysis categorized correlation
strengths into four ranges: weak ([0, 0.3]), medium ([0.3, 0.5]), strong ([0.5, 0.7]), and very
strong ([0.7, 1.0]). To enhance data stability and processing efficiency, variables within
the [0.7, 1.0] range, indicating a very strong correlation, were chosen for the simulation
analysis. Post-correlation analysis, as outlined in Table 3, four variables were excluded due
to weaker correlations: solar radiation intensity at time t and t − 1, wind speed at time
t, and barometric pressure at time t. Consequently, six variables demonstrated sufficient
correlation for inclusion as input parameters: outdoor dry-bulb temperature at times t − 1
and t, cooling load at times t − 1, t − 2, and t − 3, and relative humidity at time t. These
variables, demonstrating robust correlation, were integrated into the IGA–DBN neural
network, with the cold load at time t serving as the output variable.

Table 3. Correlation between input impact factors and cooling load at time t.

Input Variable Correlation
Coefficient Input Variable Correlation

Coefficient

outdoor dry-bulb temperature at time t − 1 0.7789 solar radiation intensity at time t 0.4914
outdoor dry-bulb temperature at time t 0.7674 relative humidity at time t 0.7097

cold load at time t − 1 0.9585 cold load at time t − 2 0.8197
intensity of solar radiation at time t − 1 0.4345 cold load at time t − 3 0.7113

wind velocity at time t 0.0647 air pressure at time t 0.0245

In addition, since the input data are not of the same order of magnitude, this paper
uses Equation (15) deviation normalization to normalize the input data. The model output
values are back-normalized by Equation (16) to obtain the actual predicted values.

x′i =
(xi − xmin)

(xmax − xmin)
(15)

yi = ymin + oi(ymax − ymin) (16)

where xi is the original value of sample; xmin is the original sample minimum; xmax is
the original sample maximum; x′i is the normalized processing value; oi is the output
value, ymin is the output minimum, ymax is the output maximum, and yi is the output
reduced value.

5.2. IGA–DBN Predictive Model Validation Analysis

The implicit layers of the DBN network, the number of nodes in each layer, and the
settings of the relevant parameters play a crucial role in the effectiveness of the model
prediction. In this paper, a three-layer implicit layer design is used, and the total number of
layers in the network is five, with six input layer nodes and one output layer node. The
number of implicit layer nodes is determined according to Equation (17):

Nh =
NS

α × (Ni + No)
(17)
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where Ni is the number of neurons in the input layer; No is the number of neurons in
the output layer; NS is the number of samples in the training set; and α is an arbitrary
constant value that can be self-taken in [2–10]. Using a single RBM interval training test, the
DBN network structure can be obtained as 6-15-10-10-1. Its parameter settings are shown
in Table 4.

Table 4. Configuration of IGA–DBN prediction model parameters.

Parameters Configuration Parameters Configuration

network layers 5 layers DBN momentum 0.9
DBN learning rate 0.01 batch-size 50

weight decay 0.0001 iterations 100

Following the established model parameter configurations and the elimination of
low-correlation input data using SPSS, this study conducts predictions using test data
across six experimental models. These models include the traditional DBN model, CNN,
RNN, SVM, LSTM, and the method proposed in this paper. A detailed comparison of the
prediction results obtained from these models is presented in Figure 5.
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To demonstrate the superiority of the IGA-optimized DBN model over other predictive
models, this study establishes six experimental groups, encompassing traditional DBN
models, CNN, RNN, SVM, LSTM, and the methodology proposed in this paper. Compar-
ative analyses are conducted under uniform parameter settings, focusing on several key
aspects. These include prediction performance metrics such as accuracy, recall, precision,
and F1Score, as well as the model’s energy consumption and operational efficiency. Ad-
ditionally, load prediction evaluation metrics, namely MAE, RMSE, and MAPE, are also
assessed to provide a comprehensive evaluation of each model’s effectiveness.

5.2.1. Comparative Analysis of Predicted Performance

The performance metrics of the load forecasting model include accuracy, recall, preci-
sion and F1Score. The specific calculations are shown in Equations (18)–(21):

Accuracy =
TP + TN

TP + FN + TN + FP
(18)

Recall =
TP

TP + FN
(19)
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Precision =
TP

TP + FP
(20)

F1Score = (1 + β2)× Precision × Recall
(β2 × Precision) + Recall

(21)

where TP (True-Positive), indicates that the positive class is predicted to be positive;
TN (True-Negative), indicates that the negative sample is predicted to be negative; FP
(False-Positive), indicates that the negative class is predicted to be positive; and FN (False-
Negative), indicates that the positive class is predicted to be negative.

As illustrated in Figure 6, the optimized DBN model demonstrates the highest accuracy
across all data volumes, reaching a prediction accuracy of 0.9652 when the data volume is
200. This indicates that the optimization strategy effectively enhances the model’s predictive
performance. Compared to traditional DBN, CNN, RNN, LSTM, and SVM models, the
optimized DBN exhibits superior performance at all data levels, particularly showing
significant improvements over the traditional DBN model. In terms of recall, the optimized
DBN model achieves the highest recall rates across all data levels, indicating that the
optimization strategy effectively improves the model’s ability to identify positive samples.
Compared to traditional models of the same category, the optimized DBN model has a
stronger advantage in recall, especially when dealing with large datasets. For instance, the
recall rate of the optimized model reaches 0.9257 when the data volume is 200. Regarding
precision, the accuracy of all models increases with the volume of data, reflecting the
positive impact of increasing training data volume on enhancing model performance. The
precision of the optimized DBN outperforms other models, including traditional DBN,
CNN, RNN, LSTM, and SVM, benefiting from its advanced feature extraction capabilities
and the incorporation of a GA. When the data volume is 200, the precision of the optimized
model also reaches 0.9486. From the perspective of the F1Score, the optimized model
shows superior performance in both precision and recall, ensuring balanced and efficient
performance. Compared to other models, the optimized DBN maintains a lead in F1Score,
particularly showing a more pronounced performance improvement over the traditional
DBN model, with an F1Score that is on average 0.143 higher than traditional models. These
results highlight the applicability and superior performance of the optimized DBN model
across various dataset sizes, especially in scenarios requiring a balanced consideration of
precision and recall.

5.2.2. Comparison of Model Energy Consumption and Operational Efficiency

As illustrated in Figure 7, the optimized deep-belief network (DBN) model demon-
strates the highest accuracy across all data volumes, reaching a prediction accuracy of
0.9652 when the data volume is 200. This indicates that the optimization strategy effectively
enhances the model’s predictive performance. Compared to traditional DBN, CNN, RNN,
LSTM, and SVM models, the optimized DBN exhibits superior performance at all data
levels, particularly showing significant improvements over the traditional DBN model. In
terms of recall, the optimized DBN model achieves the highest recall rates across all data
levels, indicating that the optimization strategy effectively improves the model’s ability
to identify positive samples. Compared to traditional models of the same category, the
optimized DBN model has a stronger advantage in recall, especially when dealing with
large datasets. For instance, the recall rate of the optimized model reaches 0.9257 when
the data volume is 200. Regarding precision, the accuracy of all models increases with
the volume of data, reflecting the positive impact of increasing training data volume on
enhancing model performance. The precision of the optimized DBN outperforms other
models, including traditional DBN, CNN, RNN, LSTM, and SVM, benefiting from its
advanced feature extraction capabilities and the incorporation of a GA. When the data
volume is 200, the precision of the optimized model also reaches 0.9486.
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Figure 6. Comparison of model prediction performance. (a) Accuracy; (b) Recall; (c) Precision;
(d) F1Score.
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5.2.3. Comparative Analysis of Load Forecast Evaluation Indicators

The comparison results of load forecast evaluation indexes for the six groups of ex-
perimental models are presented in Table 5. When longitudinally comparing different
models, it becomes evident that the error indicators associated with our approach consis-
tently outperform those of the remaining five prediction models. In comparison to the
five control groups, our prediction method exhibits notable improvements. Specifically,
it reduces the RMSE in prediction by 76.33% when compared to the CNN model, which
demonstrates the worst relative prediction performance, and by 37.97% when compared
to the SVM model, which exhibits the best relative prediction performance. Furthermore,
the MAE in prediction decreases by 76.78% compared to the CNN model and by 31.61%
compared to the traditional DBN model, which showcases the best relative prediction
performance. Additionally, the MAE in prediction experiences a reduction of 31.61%, and
the MAPE in prediction is 57.82% lower than the CNN model with the poorest relative
prediction performance and 36.42% lower than the LSTM model with the best relative
prediction performance. These improvements can be attributed to the characteristics of
each model. While the traditional DBN algorithm excels in global search performance, its
convergence performance does not guarantee reaching the global optimum, often resulting
in suboptimal results. The CNN and RNN models exhibit slower search speeds, lower
learning efficiency, and poorer feature extraction capabilities. On the other hand, the SVM
and LSTM models, while improving prediction accuracy in some cases, suffer from low
processing efficiency and high model complexity when dealing with large-scale datasets.
In contrast, our IGA dynamically adjusts the values of Pc and Pm, enhancing speed in the
early stages and accuracy in the later stages. This optimization maximizes the algorithm’s
respective strengths, significantly improving the classification performance of the DBN
model and yielding more accurate prediction results.

Table 5. Comparison of prediction errors.

Model RMSE MAE MAPE

traditional DBN 27.78 21.29 3.35%
CNN 50.44 62.71 5.05%
RNN 39.07 39.18 3.76%
SVM 19.25 22.49 4.14%

LSTM 25.38 29.93 3.73%
methodology of this paper 11.94 14.56 2.13%

5.3. Validation Analysis of Ice-Storage Air Conditioner Operation Optimization Based on
IGA–DBN Prediction Model

To validate the superiority of the combined IGA-optimized DBN model in comparison
to other prediction models within the context of ice-storage and cold air conditioner opera-
tion optimization, this study leverages the cooling-load data from six experimental models,
including the traditional DBN model, CNN, RNN, SVM, LSTM, and the methodology
described in this paper. The dataset covers the cooling-load profiles for 24 August. The
obtained prediction results are then integrated with the 24 h electricity consumption data
for two typical operation modes of ice-storage air conditioners on the same day: ice-storage
priority operation and unit priority operation. Additionally, a comprehensive comparative
analysis of operating costs for the ice-storage air conditioner on 25 August is conducted,
taking into account the latest industrial and commercial time-of-day tariffs applicable in
Shanghai, China. Specific details regarding the time-sharing tariff table and electricity
consumption are provided in Tables 6 and 7, respectively.
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Table 6. Shanghai, China time-of-use electricity pricing.

Period Time Price/RMB/kWh

valley 22 h-next day 6 h 0.45

flat
6–8 h

0.7215–18 h
21–22 h

peak 8–15 h
0.8518–21 h

Table 7. Electricity consumption on August 18th–24th.

Time Ice-Storage Priority Mode of Operation Unit Priority Mode of Operation

18 August 19,620.25 kW 17,025.45 kW
19 August 20,123.56 kW 18,456.89 kW
20 August 21,003.54 kW 18,962.54 kW
21 August 18,649.56 kW 15,957.68 kW
22 August 19,756.58 kW 16,759.12 kW
23 August 20,695.74 kW 19,542.02 kW
24 August 18,243.35 kW 15,285.79 kW

Under the premise of ensuring safe operation and meeting the load requirements,
to save as much as possible on operating costs, the daily operating cost of ice-storage air
conditioning is calculated as shown in Equation (22):

MinF =
24

∑
i=0

Q(i)× Fee(i) i = 1, 2, · · · , 24 (22)

where F is the electricity cost required for air conditioning for the whole day; Q(i) is the
power consumption of the unit at the i-th moment; Fee(i) is the electricity price at the i-th
moment. The operating costs of the two typical operation modes of the ice-storage air
conditioner on the day of 25 August can be obtained, as shown in Table 8.

Table 8. Operating costs for two typical modes of operation for air conditioning (RMB).

Time Model Ice-Storage Priority Mode of Operation Unit Priority Mode of Operation

25 August

actual value 14,491.68 11,853.17
traditional DBN 13,980.53 12,597.22

CNN 15,896.32 12,336.79
RNN 15,994.16 12,401.35
SVM 15,102.12 12,469.69

LSTM 14,033.85 11,241.56
methodology of this paper 14,120.17 12,197.87

26 August

actual value 15,798.98 12,593.01
traditional DBN 15,376.58 12,269.54

CNN 16,126.21 13,259.47
RNN 16,200.59 13,293.74
SVM 15,292.02 12,197.59

LSTM 16,019.78 13,057.15
methodology of this paper 15,584.36 12,378.54

27 August

actual value 14,972.62 12,035.94
traditional DBN 14,473.04 11,598.65

CNN 15,705.56 12,600.41
RNN 15,794.61 12,596.92
SVM 15,690.31 12,455.64

LSTM 14,394.24 11,894.77
methodology of this paper 14,659.44 12,199.47
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As indicated in Table 8, a longitudinal comparison reveals that the forecasting method
presented in this study demonstrates more accurate performance in calculating the opera-
tional cost parameters under two typical operating modes of ice-storage air conditioning.
From 25 to 27 August, the actual operational costs for the ice-storage priority mode were
RMB 14,491.68, RMB 15,798.98, and RMB 14,972.62, respectively, while for the unit priority
mode, the costs were RMB 11,853.17, RMB 12,593.01, and RMB 12,035.94, respectively. The
forecasting method calculated the operational costs for the ice-storage priority mode over
these three days as RMB 14,120.17, RMB 15,584.36, and RMB 14,659.44, respectively, with an
average error of 2.36%. Compared to the other five control groups, the accuracy improved
by an average of 27.59%. For the unit priority mode, the calculated operational costs were
RMB 12,191.87, RMB 12,378.54, and RMB 12,199.47, respectively, with an average error of
2.71%, achieving an average accuracy improvement of 25.49% compared to the control
groups. As discussed, the operational cost calculations derived from the cooling-load
forecasts using the IGA–DBN composite prediction model are more accurate, highlighting
its significance in optimizing the operation of ice-storage air conditioning systems.

6. Conclusions

To address the challenges posed by the low correlation between input and output
data and the suboptimal prediction accuracy of traditional DBN models in predicting the
cold load of ice-storage air conditioners, this paper introduces an innovative prediction
approach. The proposed method combines the use of SPSS data processing software with
an IGA–DBN neural network, offering a comprehensive solution to enhance prediction
accuracy. The feasibility and effectiveness of this optimized model are rigorously tested
and validated through a series of experiments. The research results show that:

1. Using SPSS data analysis software, we conduct an in-depth analysis of the correlation
between input and output data. Leveraging the characteristics of the DBN, we
employ an IGA to optimize the selection of initial weights and thresholds for the
DBN. This approach mitigates the limitations of traditional DBN neural networks,
which often suffer from suboptimal initial value selection. By harnessing the nonlinear
generalized mapping capabilities of neural networks, our optimized DBN model not
only converges more rapidly but also exhibits the ability to escape local optima.

2. The optimized DBN model demonstrates superior performance when compared to
both the traditional DBN model and the other four models in terms of prediction
accuracy, recall, precision, and F1Score. These advantages are particularly pronounced
when handling large datasets. Furthermore, in terms of model energy consumption,
the optimized DBN model exhibits a remarkable efficiency advantage over the other
models, resulting in an average energy saving of approximately 14.3%. Additionally,
the optimized DBN model boasts the shortest running time, showcasing its remarkable
computational efficiency optimization.

3. When operating the ice-storage air conditioner in both ice-storage priority mode
and unit priority operation mode, the operational cost calculated based on the cold-
load prediction results from the IGA–DBN prediction model consistently exhibits
greater accuracy compared to alternative prediction methods. This enhanced accuracy
contributes significantly to further research efforts aimed at optimizing the operation
of ice-storage air conditioners.

Author Contributions: Conceptualization, M.G.; methodology, M.W.; software, R.L.; formal analysis,
E.W.; investigation, F.F.; resources, L.L.; writing—original draft preparation, Z.M.; writing—review
and editing, Z.F. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the project “Research on Modeling and Control Strategy
for Cold and Heat Storage Type Air Conditioning Load (52090R230002)” from State Grid Shanghai
Economic Research Institute.



Processes 2024, 12, 523 20 of 21

Data Availability Statement: Data are unavailable due to privacy reasons.

Conflicts of Interest: Authors Mingxing Guo, Ran Lv, Fei Fei, Enqi Wu and Li Lan are employed by
the company State Grid Shanghai Economic Research Institute. The remaining authors declare that
the research was conducted in the absence of any commercial or financial relationships that could be
construed as potential conflicts of interest.

References
1. Zhang, W.; Yu, J.; Zhao, A.; Zhou, X. Predictive model of cooling load for ice storage air-conditioning system by using GBDT.

Energy Rep. 2021, 7, 1588–1597. [CrossRef]
2. Yu, J.; Wang, Y.; Chen, X. Research on Operation Optimization of Ice Storage Air Conditioning System Based on Particle Swarm

Optimization. J. Xi’an Univ. Archit. Technol. Nat. Sci. Ed. 2018, 50, 148–154.
3. Hu, J.; Zheng, W.; Zhang, S.; Li, H.; Liu, Z.; Zhang, G.; Yang, X. Thermal load prediction and operation optimization of office

building with a zone-level artificial neural network and rule-based control. Appl. Energy 2021, 300, 117429. [CrossRef]
4. Yu, J.; Jin, W.; Zhao, A.; Ren, Y.; Zhou, M.; Huang, X.; Yang, X. Cold Load Prediction Model Based on Improved PSO-BP Algorithm.

J. Syst. Simul. 2021, 33, 54–61.
5. Wei, Y.; Zhang, X.; Shi, Y.; Xia, L.; Pan, S.; Wu, J.; Han, M.; Zhao, X. A review of data-driven approaches for prediction and

classification of building energy consumption. Renew. Sustain. Energy Rev. 2018, 82, 1027–1047. [CrossRef]
6. Lv, H.; Wang, W.; Zhao, B.; Zhang, Y.; Guo, Q.; Hu, W. Short-term Substation Load Forecast Based on Wide & Deep-LSTM Model.

Power Syst. Technol. 2020, 44, 428–436.
7. Ou, Y.; Li, Z. Transformer fault diagnosis technology based on sample expansion and feature selection and SVM optimized by

IGWO. Power Syst. Prot. Control. 2023, 51, 11–20.
8. Liu, Y.; Zhao, Q. Ultra-short-term Power Load Forecasting Based on Cluster Empirical Mode Decomposition of CNN-LSTM.

Power Syst. Technol. 2021, 45, 4444–4451.
9. Zhao, J.; Zhang, C.; Liu, C.; Zhou, H.; Ou, Y.; Song, Q. Recurrent Neural Networks with Recursive Least Squares. Acta Autom. Sin.

2022, 48, 2050–2061.
10. Hong, Y.; Adib, B.; Huiyi, T.; Chew, T.; Taehoon, H.; Mohd, H.; Yee, V.; Mohamad, N.; Yuwen, Z.; Keng, Y. Particle dispersion

for indoor air quality control considering air change approach: A novel accelerated CFD-DNN prediction. Energy Build. 2024,
306, 113938.

11. Kong, X.; Zheng, F.; Zhijun, E.; Cao, J.; Wang, X. Short-term Load Forecasting Based on Deep Belief Network. Electr. Power Syst.
Autom. Electr. Power Syst. 2018, 42, 133–139.

12. Gong, H.; Rallabandi, V.; McIntyre, M.L.; Hossain, E.; Ionel, D.M. Peak reduction and long term load forecasting for large
residential communities including smart homes with energy storage. IEEE Access 2021, 9, 19345–19355. [CrossRef]

13. Yao, Y.; Shekhar, D.K. State of the art review on model predictive control (MPC) in Heating Ventilation and Air-conditioning
(HVAC) field. Build. Environ. 2021, 200, 107952. [CrossRef]

14. Liu, Z.; Cui, Y.; Wang, J.; Yue, C.; Agbodjan, Y.S.; Yang, Y. Multi-objective optimization of multi-energy complementary integrated
energy systems considering load prediction and renewable energy production un-certainties. Energy 2022, 254, 124399. [CrossRef]

15. Gao, Z.; Yu, J.; Zhao, A.; Hu, Q.; Yang, S. A hybrid method of cooling load forecasting for large commercial building based on
extreme learning machine. Energy 2022, 238, 122073. [CrossRef]

16. Wu, L.; Wang, X.; Shang, X.; Yang, Y.; Huo, Q.; Hu, Q. Control Strategy for Ice Storage Air Conditioning under Different Load
Operations Throughout the Year. Proc. CSU-EPSA 2020, 32, 98–104.

17. Wei, J. A Dissertation Submitted to Chongqing University in Partial Fulfillment of the Requirement for the Master’s Degree
of Engineering. Chongqing University, 2022. Available online: https://vpn.hhu.edu.cn/portal/?redirect_uri=kns.cnki.net/k
cms2/article/abstract?v=tJ8vF22QX-pPmZ8XLJ9oWAsu6XyMY-yeE-Lz-gQ-7XZMAYNLf6jw9-9QduSMc8CkB_7hKDhIOV
KrCVpZv-ZosPT842tLxbDsu6nJlgh3NZH6sAhIgWW7Ygg2PsAZ-GaL&uniplatform=NZKPT&language=CHS (accessed on
1 June 2022).

18. Dedinec, A.; Filiposka, S.; Dedinec, A.; Kocarev, L. Deep belief network based electricity load fore-casting: An analysis of
Macedonian case. Energy 2016, 115, 1688–1700. [CrossRef]

19. Zhong, T.; Qu, J.; Fang, X.; Li, H.; Wang, Z. The intermittent fault diagnosis of analog circuits based on EEMD-DBN. Neurocomput-
ing 2021, 436, 74–91. [CrossRef]

20. Chen, A.; Fu, Y.; Zheng, X.; Lu, G. An efficient network behavior anomaly detection using a hybrid DBN-LSTM network. Comput.
Secur. 2022, 114, 102600. [CrossRef]

21. Wang, Q.; Gao, X.; Wu, B.; Hu, Z.; Wan, K. Survey on restricted Boltzmann machine and its variants. Syst. Eng. Electron. 2024,
1–28. Available online: http://kns.cnki.net/kcms/detail/11.2422.TN.20231214.0012.002.html (accessed on 4 January 2024).

22. Wang, S.; He, K.; Zhou, J.; Ma, J.; Liu, T.; Xin, Q.; Li, H. Transformer modeling method based on modified J-A model and improved
genetic algorithm. Electr. Power Autom. Equip. 2024, 1–11. [CrossRef]

23. Zhu, H.; Shen, L. Decoupling control of outer rotor coreless bearingless permanent magnet synchronous generator based
on LS-SVM inverse system optimized by the improved genetic algorithm. Proc. CSEE 2024, 1–10. Available online: http:
//kns.cnki.net/kcms/detail/11.2107.TM.20230525.1050.006.html (accessed on 4 January 2024).

https://doi.org/10.1016/j.egyr.2021.03.017
https://doi.org/10.1016/j.apenergy.2021.117429
https://doi.org/10.1016/j.rser.2017.09.108
https://doi.org/10.1109/ACCESS.2021.3052994
https://doi.org/10.1016/j.buildenv.2021.107952
https://doi.org/10.1016/j.energy.2022.124399
https://doi.org/10.1016/j.energy.2021.122073
https://vpn.hhu.edu.cn/portal/?redirect_uri=kns.cnki.net/kcms2/article/abstract?v=tJ8vF22QX-pPmZ8XLJ9oWAsu6XyMY-yeE-Lz-gQ-7XZMAYNLf6jw9-9QduSMc8CkB_7hKDhIOVKrCVpZv-ZosPT842tLxbDsu6nJlgh3NZH6sAhIgWW7Ygg2PsAZ-GaL&uniplatform=NZKPT&language=CHS
https://vpn.hhu.edu.cn/portal/?redirect_uri=kns.cnki.net/kcms2/article/abstract?v=tJ8vF22QX-pPmZ8XLJ9oWAsu6XyMY-yeE-Lz-gQ-7XZMAYNLf6jw9-9QduSMc8CkB_7hKDhIOVKrCVpZv-ZosPT842tLxbDsu6nJlgh3NZH6sAhIgWW7Ygg2PsAZ-GaL&uniplatform=NZKPT&language=CHS
https://vpn.hhu.edu.cn/portal/?redirect_uri=kns.cnki.net/kcms2/article/abstract?v=tJ8vF22QX-pPmZ8XLJ9oWAsu6XyMY-yeE-Lz-gQ-7XZMAYNLf6jw9-9QduSMc8CkB_7hKDhIOVKrCVpZv-ZosPT842tLxbDsu6nJlgh3NZH6sAhIgWW7Ygg2PsAZ-GaL&uniplatform=NZKPT&language=CHS
https://doi.org/10.1016/j.energy.2016.07.090
https://doi.org/10.1016/j.neucom.2021.01.001
https://doi.org/10.1016/j.cose.2021.102600
http://kns.cnki.net/kcms/detail/11.2422.TN.20231214.0012.002.html
https://doi.org/10.16081/j.epae.202309025
http://kns.cnki.net/kcms/detail/11.2107.TM.20230525.1050.006.html
http://kns.cnki.net/kcms/detail/11.2107.TM.20230525.1050.006.html


Processes 2024, 12, 523 21 of 21

24. Candanedo, L. Appliances Energy Prediction; UCI Machine Learning Repository: Irvine, CA, USA, 2017. [CrossRef]
25. Yang, X.; Yu, J.; Guo, C.; Hua, Y.; Zhao, A. Dynamic Load Forecasting Model of Ice Storage Air Conditioning Based on Improved

PSO-BP Neural Network. J. Civ. Environ. Eng. 2019, 41, 168–174.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.24432/C5VC8G

	Introduction 
	Ice-Storage Air Conditioning Cold-Load Prediction and Operation Optimization Process 
	Analysis of the Working Principle and Operation Mode of Ice-Storage Air Conditioner 
	Working Principle of Ice-Storage Air Conditioning 
	Mode of Operation of Ice-Storage Air Conditioners 

	Improved DBN Ice-Storage Air Conditioner Prediction Modeling 
	The DBN Model 
	IGA–DBN Neural-Network Prediction Model 
	Load Forecast Evaluation Indicators 

	Example Analysis 
	Data Processing 
	IGA–DBN Predictive Model Validation Analysis 
	Comparative Analysis of Predicted Performance 
	Comparison of Model Energy Consumption and Operational Efficiency 
	Comparative Analysis of Load Forecast Evaluation Indicators 

	Validation Analysis of Ice-Storage Air Conditioner Operation Optimization Based on IGA–DBN Prediction Model 

	Conclusions 
	References

