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Abstract: This article presents an adaptive neural network (ANN) control scheme based on a distur-
bance observer that can achieve trajectory tracking control of robotic manipulators under external
disturbances and dynamic model uncertainties. Firstly, an ANN controller based on full-state feed-
back is derived using the backstepping technique to achieve an online approximation of uncertainty.
The integral sliding mode surface with a position error is introduced into the controller, which reduces
the steady-state error of the system and enhances robustness. Then, a novel disturbance observer
is designed to estimate both the approximation errors of the ANN and external disturbances, and
to provide compensation for the controller, effectively suppressing the trajectory tracking errors
caused by approximation errors and disturbances. Subsequently, the Lyapunov stability theory is
utilized to demonstrate the stability of the developed control strategy and the boundedness of all
closed-loop signals. Finally, numerical simulations are used to confirm the efficacy of the proposed
control method.

Keywords: adaptive neural network control; full-state feedback control; disturbance observer; robotic
manipulator; backstepping sliding mode

1. Introduction

With the improvement of robot technology and automation levels, the research on
robot control systems has attracted widespread attention [1–5]. The robotic manipulator
can be regarded as a multivariable, strongly coupled, and uncertain nonlinear system,
which is susceptible to model parameter perturbations and unknown nonlinearities. In
recent years, adaptive neural networks (ANNs) have received increasing attention and have
been designed as approximation controllers for nonlinear uncertain systems. Furthermore,
ANN control methods have been successfully applied to the full-state feedback control and
output feedback control of nonlinear systems [6], the asymptotic stability of tracking errors
for aircraft and autonomous underwater vehicles [7,8], and robot motion control [9], etc.

Many control schemes have been successfully applied to robotic systems with complex
control problems. Based on the calculation torque control method, a linear model of
the robotic system was obtained, and a fractional order PID controller was designed to
improve the anti-interference ability of the tracking system [10]. However, PID controllers
do not meet the high-precision control requirements of robot systems with nonlinear and
time-varying characteristics. In [11,12], a robust control method was introduced into the
nonlinear mechanical system of constrained robots, but [12] can only guarantee that the
time-varying bounded constraints were satisfied. To achieve accuracy in tracking the
position of human hands, an adaptive impedance control was proposed by combining
nonlinear control theory with dynamic models to guarantee the safety of human–robot
interaction [13]. In [14], it uses saturation functions instead of sign functions and quasi-
sliding modes, and compared with the sign function with ideal switching characteristics,
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the input torque curve based on the saturation function is smoother and can weaken the
system’s chattering. A new sliding mode controller has been developed considering the
kinematic and dynamic models of nonlinear robots, which can meet the requirements
of motion speed and direction [15]. Although the above methods can meet the control
requirements, the uncertainty of the model and the external unknown disturbances remain
challenging issues.

In recent years, sliding mode control (SMC) has been widely used due to its strong
robustness to external disturbances and model uncertainties [14,16]. Furthermore, in order
to improve the adaptive control design of systems, neural network (NN) control and fuzzy
control have been studied due to their strong approximation ability. The adaptive fuzzy
SMC was studied for robots [17–19]. A fuzzy control design lacks systematicity and may
reduce the control accuracy of the system, while ANN control has a simple structure and
can approximate nonlinear functions with arbitrary precision. In [20], a comprehensive
description was given of a composite control strategy combining SMC and NNs, which
can be used to improve the tracking control of nonlinear robot systems. In [21,22], an
ANN scheme for the trajectory tracking control of robotic manipulators was designed,
and the barrier Lyapunov function was introduced to handle output error constraints/full
state constraints. Moreover, [21] used a RBFNN to approximate the lumped uncertainty
including external disturbances, and add an auxiliary system to the controller to reduce the
impact of input saturation. In [22], the effects of actuator saturation and time-varying delay
were eliminated. A neural network-based backstepping SMC method was studied, which
utilized backstepping SMC to compensate for input saturation and applied NN control to
approximate model uncertainty online [23]. Ref. [24] presented a neural network-based
SMC for n-link robots with an input dead zone and delay constraints. Furthermore, error
translation functions were added to the sliding surface to improve tracking accuracy, and
obstacle functions were used to solve state constraint problems. Ref. [25] designed an
ANN controller combined with symmetric barrier Lyapunov function, which utilizes the
continuous updating of network weights to approximate unknown nonlinear dynamics.
In addition, SMC was added to the backstepping design to eliminate the chattering phe-
nomenon of the system. From the above analysis, the method of combining ANNs with
SMC makes the system have strong anti-interference ability and robustness.

Disturbance observers are widely used to handle uncertain disturbances in nonlinear
systems, typically combined with control methods. Uncertain nonlinear systems with
linear parameters can be solved by combining the NN control techniques that have been
presented recently with conventional adaptive control and backstepping control. Based
on the above research, it is necessary to combine disturbance observer technology with
NN control to solve the tracking control problem of nonlinear robot systems. A composite
controller combining the observer control method with a sliding mode control and a neural
network was designed to achieve control objectives for nonlinear systems [26–29]. In [26],
it introduces the use of optimization methods to obtain the optimal weights of the NN
observer, which reduces the workload of adjusting parameters. Then, the position and
speed of the robot were estimated using observers. This scheme makes the changes in
control inputs smoother. In [27,29], disturbance observers were utilized to handle unknown
models and disturbances, but [27] was not applicable in the presence of measurement
noise. To achieve the feedback control of gyroscope output, Ref. [30] developed ANNs
and disturbance observers to address the problems of nonlinear dynamics, environmental
fluctuations, and external disturbances. To enhance robustness, the SMC method was intro-
duced. An observer-based ANN impedance control method was studied for constrained
robotic manipulators [31], where the disturbance observer was used to eliminate unknown
disturbances and the ANN was employed to solve unknown dynamic models. Under
the action of the controller, the robot exhibits a given ideal impedance relationship in its
interaction with the outside world. In the above discussion, most control methods require a
large amount of online computation, and disturbance observers are only utilized to handle
external disturbances without fully considering the approximation errors of ANNs. Based
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on this, an ANN control strategy based on disturbance observer compensation is studied
in this paper. This article first uses an ANN controller to approximate model uncertainty.
We further design a new disturbance observer to simultaneously estimate approximation
errors and external disturbances, which is different from previous work. Subsequently, we
update this estimated value into the designed controller to provide compensation.

By combining the recently proposed neural network control methods with adaptive
control and backstepping techniques, uncertain nonlinear systems with linear parame-
ters can be solved. The main contributions of the algorithm proposed in this article are
as follows:

(1) A novel adaptive neural network controller combining a disturbance observer is
designed to simultaneously solve the uncertain parts of the model and environmental
disturbances. Compared to [6], an ANN controller is derived using backstepping
technology, and a sliding mode surface with an integral term is added to the virtual
control law. This reduces the steady-state errors of the system and enhances its
robustness without increasing its energy consumption.

(2) The bounded value of approximation error is introduced in the observer structure,
which can accurately estimate the approximation error of the ANN and ensure the
stability of the observer. When designing the observer, considering the online approx-
imation of uncertainty by the adaptive update law, the state equation of the system
is rewritten.

(3) Unlike [27,29,31], in addition to estimating external disturbances, the designed dis-
turbance observer can also handle the approximation errors of NNs. The uniform
boundedness of all signals in the closed-loop system is proved using the Lyapunov
stability theorem.

The rest of this article is constructed as follows: Section 2 introduces the description of
the problem and preparation. Section 3 provides a detailed process and stability analysis
of the control law design. The numerical simulation of a robotic manipulator with two
degrees is presented in Section 4. Finally, the conclusions of the research are drawn in
Section 5.

2. Preliminaries and Problem Description
2.1. Preliminaries

Notation 1. (·)T denotes the transpose matrix, |·| represents the absolute value, and ∥·∥ means
the Euclidean norm.

Lemma 1 ([32]). If there exists a continuous positive differentiable function V(x) that satisfies
κ1(∥x∥) < V(x) < κ2(∥x∥) ( κ1 and κ2 belong to class K functions) and has a bounded initial
condition, if

.
V(x) ≤ −ρV(x) + C , where ρ, C > 0 , then V(x) is bounded and the solution

x(t) is uniformly bounded.

Lemma 2 ([32]). Let Q ∈ Rn×n be a positive semi-definite symmetric matrix; therefore, all the
eigenvalues of Q are positive real numbers. There exists λmin∥x∥2 ≤ xTQx ≤ λmax∥x∥2 ,
∀x ∈ Rn , where λmin and λmax are the minimum and maximum eigenvalues of Q .

Definition 1 ([33]). Semi-globally uniformly bounded (SGUB): Consider a generalized nonlinear
system

.
ψ = f (ψ, t) , ψ ∈ Rn , t ≥ t0 . For any compact set Ωi and initial state ψ(t0 ) ∈ Ωi

, if there is a constant µ > 0 and a time constant T(ξ, ψ(t0)) , it satisfies ∥ψ(t)∥ ≤ µ ,
∀t ≥ t0 + T(ξ, ψ(t0)) . We define the system state ψ(t) as SGUB.
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2.2. Neural Networks

Any continuous function fi(Z) can be approximated by a neural network, which can
be represented as

fi(Z) : Rq → R,
fi(Z) = WT

i Si(Z), i = 1, 2, . . . , n
(1)

where Z = [Z1, . . . , Zq]
T is the input of NNs, Wi = [ω1, . . . , ωn]

T is the weight vector, and
N > 1 denotes the number of nodes in the NN, Si(Z) = [S1(Z), . . . , SN(Z)]T represents
the basis function vector.

According to the definition [6], we know that there exists an optimal weight
W∗

i =
[
W∗

i , . . . , W∗
n
]
∈ RN×n, and given the function fi(Z) on the compact set Z ∈ Ω ⊂ Rq,

it can be approximated with arbitrary accuracy through the output of the NNs.

fi(Z) = W∗T
i Si(Z) + εi(Z), i = 1, 2, . . . , n (2)

where εi(Z) = [ε1(Z), . . . , εn(Z)]T is the approximation error, which is bounded and
satisfies |εi(Z)| ≤ εi, ∀Z ∈ Ω, where εi is an unknown positive constant. And W∗

i satisfies

W∗
i := arg min

Wi∈RN

{
sup
Z∈Ω

∣∣ fi(Z)− WT
i Si(Z)

∣∣}.

The selected Gaussian function is represented as

Si(Z) = exp

(
−∥(z − µi)∥2

ηi
2

)
, i = 1, . . . , N (3)

where µi and ηi are the center position and width of the i-th neuron, respectively.

Remark 1. According to the expression of W∗
i , which is defined as the value Wi that mini-

mizes |εi(Z)| , the selection of parameters in Gaussian functions will have an impact on εi(Z) .
Considering the optimal weight W∗

i , we can obtain
∣∣∣ fi(Z)− f̂i(Z, W∗)

∣∣∣ = |εi(Z)| ≤ εi .

2.3. Problem Description

The dynamics of an n-link rigid robotic manipulator are as follows [6].

M(q)
..
q + C(q,

.
q)

.
q + G(q) = τ(t)− JT(q) f (t) (4)

where q ∈ Rn represents the position vector, M(q) ∈ Rn×n is the inertia matrix of the robotic
manipulator, which is positively definite and symmetric, C

(
q,

.
q
) .
q ∈ Rn×n, G(q) ∈ Rn

denotes the Coriolis-centripetal torque and the gravity vector, respectively. τ(t) ∈ Rn

denotes the control input torque of the system. J(q) f (t) is the product of the Jacobian
matrix and the external forces exerted by humans and the environment.

Property 1 ([6]).
.

M(q)− 2C
(
q,

.
q
)

is a skew-symmetric matrix.

Assumption 1. The nonlinear term f (t) is supposed to be constrained, bounded and slowly varying,
it satisfies ∥ f (t)∥ ≤ f , where f is a positive constant.

Let x1 = q = [x11, . . . , x1n]
T and x2 =

.
q = [x21, . . . , x2n]

T , and the integrated system
can be rewritten as{ .

x1 = x2.
x2 = M−1(x1)

(
τ − JT(x1) f (t)− C(x1, x2)x2 − G(x1)

) (5)

The control objective is to design a controller that enables the system variable q to
accurately track the set desired trajectory xd(t) = [qd1(t), . . . , qdn(t)]

T while ensuring that
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the error of constraint converges to the zero domain. The desired trajectory xd(t) is bounded
and differentiable. In the following, we abbreviate M(x1) as M, C(x1, x2) as C, and G(x1)
as G.

Remark 2. In actual operation, robotic manipulators are easily affected by parameter perturbations
and external disturbances, so it is necessary to consider the uncertainty of C

(
q,

.
q
) .
q and G(q) in

their models. The forces that interact between the robot and its surroundings are mostly responsible
for the external disturbances of the model. Due to the extremely short duration of the interaction
force, it does not affect the system’s overall convergence; rather, it solely influences the estimated
value or tracking error of the disturbance during the operating time. The force f (t) is bounded
because of the constraints imposed by the robot’s physical structure. The above Assumption 1 is
reasonable. We reasonably assume that the model errors, desired trajectories, and disturbances are
limited because the joint angles and velocities of the robotic manipulator are bounded.

3. Main Results
3.1. Controller Design

In this section, an ANN full-state feedback control strategy for nonlinear robotic
systems is proposed to handle uncertainty. Subsequently, under the action of the newly
designed observer, disturbances and approximation errors are resolved, which is different
from existing research. The block diagram of the tracking control scheme is depicted in
Figure 1.
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Figure 1. Block diagram of ANN control.

To begin with, we define the generalized tracking errors z1(t) and z2(t) as

z1(t) = [z11(t), . . . , z1n(t)]
T = x1(t)− xd(t)

= [x11(t)− qd1(t), . . . , x1n(t)− qdn(t)]
T (6)

z2(t) = [z21(t), . . . , z2n(t)]
T = x2(t)− α(t)

= [x21(t)− α1(t), . . . , x2n(t)− αn(t)]
T (7)

where α(t) = [α1(t), α2(t), . . . , αn(t)]
T is the virtual controller to be introduced, which will

be provided below.
The linear sliding surface can be designed as

S1(t) = z1(t) + K1

∫ t

0
z1(t)dt (8)

Design the virtual controller α as

α = −K1z1 − KsS1 +
.
xd (9)
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where K1 and Ks are positive-definite diagonal matrices, and we have

.
z1 = z2 + α − .

xd = z2 − K1z1 − KsS1 (10)

According to (5) and (9), the derivative of z2 is

.
z2 = M−1

(
τ − JT f (t)− Cx2 − G

)
− .

α (11)

Then, the time derivative of S1(t) is

.
S1 =

.
z1 + K1z1 = z2 + α − .

xd + K1z1 (12)

A model-based controller τ0 is designed as

τ0 = −S1 − K2z2 + JT f (t) + Cα + G + M
.
α (13)

where K2 is the positive-definite diagonal matrix.
The Lyapunov function candidate V1 is chosen as

V1 =
1
2

ST
1 S1 +

1
2

zT
2 Mz2 (14)

Differentiating V1 yields

.
V1 = −ST

1 KsS1 + ST
1 z2 +

1
2 zT

2

( .
M − 2C

)
z2 + zT

2
(
τ0 − JT f (t)− Cα − G − M

.
α
)

= −ST
1 KsS1 + ST

1 z2 + zT
2
(
τ0 − JT f (t)− Cα − G − M

.
α
) (15)

Remark 3. According to Property 1 and the definition of skew-symmetric matrices, we have
1
2 zT

2

( .
M − 2C

)
z2 = 0 . By substituting (13) into (15), we have

.
V1 = −ST

1 KsS1 − zT
2 K2z2 , and

the sliding mode surface S1(t) will converge to zero, that is, S1(t) = 0 . Subsequently, according to
(12), we have

.
S1 =

.
z1 + K1z1 = 0 , and the tracking error z1 will converge to zero.

A robotic manipulator is a nonlinear and complex system. In actual control processes,
it is difficult to obtain accurate dynamic models, and uncertainty exists in C(x1, x2), G(x1),
and f (t). In the actual operation process, the model-based controller τ0 designed in (13)
may not be able to achieve the control objectives. Therefore, ANNs are introduced to
compensate for unknown dynamic model parameters and improve tracking accuracy. The
ANN controller τ is designed as

τ = −S1 − K2z2 + JT f (t) + ŴTS(Z) + M(x1)
.
α(t) (16)

where S(Z) is the radial basis function, and Z =
[

xT
1 , xT

2 , αT ,
.
α

T
]

are the input variables of

the NN. Ŵ and W∗ are the estimated and optimal weights of the NN, and the error between
them is defined as W̃ = Ŵ − W∗. The optimal weight is constructed for the convenience of
derivation and analysis, and ŴTS(Z) is utilized to estimate W∗TS(Z),

C(x1, x2)α(t) + G(x1) = W∗TS(Z)− ε(Z) (17)

where ε(Z) ∈ Rn is the approximation error.

The weight adaptive law
.

Ŵi of NNs is designed as

.
Ŵi = −Γi

(
S(Z)z2,i + σiŴ

)
(18)
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where σi is a small positive constant used to improve robustness, and Γi is a positive definite
gain matrix.

Remark 4. Due to the boundedness of x1 , x2 , xd , and
.
xd , it can be concluded that the

sliding mode surface S1(t) and virtual control α given in (8) and (9) are bounded. Considering
that the NN ŴTS(Z) is bounded, the adaptive controller τ in (16) is also bounded. It is worth
mentioning that if the value of one of C(x1, x2) and G(x1) is precisely known, we can exclude
this term from (17) and rewrite this part in (16).

To handle the approximation error and time-varying disturbance of the ANN in (16), a
new disturbance observer is proposed to accurately estimate ε(Z) and JT f (t). Firstly, based
on the research in the previous chapter, the state Equation (5) can be rewritten as{ .

x1 = x2.
x2 = M−1(x1)

(
τ − ŴTS(Z)

)
+ M−1(x1)ϖ

(19)

where ϖ = −JT f (t) − ε(Z) represents the external disturbances of the system and the
approximation errors of ANNs.

Remark 5. While ensuring the convergence of z2 , according to (7), (16), and (17), we
have C(x1, x2)x2 + G(x1) ≈ C(x1, x2)α(t) + G(x1) = ŴTS(Z) + ε(Z) . x2 exists in model
uncertainty, and the ANN control processes it first to make the tracking error z2 = x2 − α con-
verge to the small neighborhood of zero. Therefore, when designing the observer, we can reasonably
approximate x2 as .

Then, the disturbance observer is designed as

.
ϖ̂ = l(x)

(
M(x1)

.
x2 + ŴTS(Z) + ε − τ − ϖ̂

)
(20)

where l(x) = diag{l11, l12, . . . , l1n} > 0 is a nonlinear gain matrix, to simplify the derivation,
l(x) is designed as a linear function vector. ϖ̂ is the estimated observation value of ϖ. The
designed disturbance observer (20) may not complete the control goal, and this is because
it requires angular acceleration signals of the state, and system instability may result from
obtaining acceleration signals by differentiating velocity signals. Therefore, this article has
designed the following three steps to solve the above problems.

Step 1. Construct auxiliary functions and define the internal state variables of the
observer as

γ = ϖ − h(x) (21)

where γ ∈ Rn is the internal state variable of the observer, and h(x) ∈ Rn represents the
function vector to be designed. To avoid introducing acceleration signals, the gain matrix
l(x) and the h(x) of the disturbance observer have the following relationship:

l(x)M(x1)
.
x2 =

dh(x)
dx

(22)

Step 2. Design disturbance observer structure. According to (20)–(22), we have

.
γ̂ = l(x)

(
ŴTS(Z) + ε − τ − γ̂ − h(x)

)
(23)

We can obtain a disturbance observer without acceleration as{
ϖ̂ = γ̂ + h(x)
.
γ̂ = l(x)

(
ŴTS(Z) + ε − τ − γ̂ − h(x)

) (24)
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Remark 6. In the design process of the disturbance observer, in order to ensure the stability
of the observer structure, an approximation error bounded value ε is added. Based on prior
knowledge, we know that |ε(Z)| ≤ ε , ∀Z ∈ Ω . The disturbance observer designed in [29] is
.

ϖ̂
′
= l(x)

(
M(x1)

.
x2 + C(x1, x2)x2 + G(x1)− τ − ϖ̂′) , which only estimates and compensates

for external friction without considering the approximation error ε(Z) . Unlike in [29], the observer
designed in this article can simultaneously process ε(Z) and f (t) .

Step 3. We define the observation error of the disturbance observer as

ϖ̃ = ϖ − ϖ̂ (25)

According to (22)–(25), the derivative of ϖ̃ is

.
ϖ̃ =

.
ϖ −

.
ϖ̂

=
.

ϖ − .
γ − dh(x)

dx
= l(x)ϖ̂ − l(x)

(
ŴTS(Z) + ε − τ

)
− l(x)M

.
x2

= l(x)ϖ̂ − l(x)
(
ŴTS(Z) + ε − τ

)
− l(x)

(
τ − ŴTS(Z) + ϖ

)
= −l(x)ϖ̃ − l(x)ε

(26)

It is difficult to obtain prior knowledge of disturbance differentiation in practical
situations. We assume that the characteristic change of ϖ with respect to the disturbance
observer is slow, there is

.
ϖ = 0.

The design of an ANN controller τ based on the disturbance observer is as follows

τ = −S1 − K2z2 + ŴTS(Z) + M(x1)
.
α(t)− ϖ̂ (27)

Theorem 1. For the robot system described in (4), under the action of the adaptive neural network
controller (27), all state variables can be measured and globally stable. For the initial compact
set Ω0 , where

(
x1(0), x2(0), ϖ̂(0), Ŵi(0), S1(0)

)
∈ Ω0 , the error signals z1 , z2 , ϖ̃ ,

and W̃ and the sliding mode vector S1 will always be in the compact sets Ωz1 , Ωz2 , Ωϖ̃ , ΩW ,
and ΩS1 :

Ωz1 =
{
∥z1∥ ≤

√
D
}

Ωz2 =
{
∥z2∥ ≤

√
D

λmin(M)

}
Ωϖ̃ =

{
∥ϖ̃∥ ≤

√
D
}

ΩW =

{∥∥∥W̃
∥∥∥ ≤

√
D

λmin(Γ−1)

}
ΩS1 =

{
∥S1∥ ≤

√
D
}

(28)

where D = 2(V2(0) + C/ρ) , ρ and C are constants and satisfy ρ > 0 and C > 0 .

Proof. A Lyapunov function V2 is constructed as follows:

V2 =
1
2

ST
1 S1 +

1
2

zT
2 Mz2 +

1
2

n

∑
i=1

W̃T
i Γ−1

i W̃i +
1
2

ϖ̃Tϖ̃ (29)
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By substituting (18), (19), (26), and (27) into the derivative of V2, we can obtain

.
V2 = −ST

1 KsS1 + ST
1 z2 + zT

2
[
τ − ŴTS(Z) + ϖ − M

.
α
]

+
n
∑

i=1
W̃T

i Γ−1
i

.
W̃i + ϖ̃T

.
ϖ̃

≤ −ST
1 KsS1 + ST

1 z2 + zT
2 [−S1 − K2z2 + ϖ − ϖ̃]

+
n
∑

i=1
W̃T

i Γ−1
i

.
Ŵi + ϖ̃T

.
ϖ̃

≤ −ST
1 KsS1 − zT

2 K2z2 − zT
2 ϖ̃

−
n
∑

i=1
W̃T

i σiŴi + ϖ̃T(−l(x)ϖ̃ − l(x)ε)

≤ −ST
1 KsS1 − zT

2

(
K2 − 1

2 I
)

z2 −
n
∑

i=1

σi
2

∥∥∥W̃i

∥∥∥2

+
n
∑

i=1

σi
2

∥∥W∗
i

∥∥2 − ϖ̃T
(

1
2 l(x)− 1

2 I
)

ϖ̃ + 1
2 l(x)∥ε∥2

≤ −ρV2 + C

(30)

where

ρ = min

2λmin(Ks),
2λmin

(
K2 − 1

2 I
)

λmax(M)
, min

 σi

λmax

(
Γ−1

i

)
, λmin(l(x)− I)

 (31)

C =
n

∑
i=1

σi
2
∥W∗

i ∥
2 +

1
2

l(x)∥ε∥2 (32)

Through the above analysis, we can prove that signals z1, z2, ϖ̃, W̃, and S1 are semi-
globally uniformly bounded.

By multiplying the left and right ends of the Equation (30) by eρt and integrating them
on [0, t], we can obtain

.
V2eρt ≤ −ρV2eρt + Ceρt

d
dt
(
V2eρt) ≤ Ceρt

V2eρt ≤ C
ρ eρt +

(
V2(0)− C

ρ

)
V2 ≤

(
V2(0)− C

ρ

)
e−ρt + C

ρ ≤ V2(0) + C
ρ

(33)

Then, we have
1
2
∥z1∥2 ≤ V2(0) +

C
ρ

(34)

From the above analysis, it can be found that z1 converges to the compact set Ωz1 , and
similarly, it can be proven that z2, ϖ̃, W̃, and S1 converge to the compact sets Ωz2 , Ωϖ̃ , ΩW ,
and ΩS1 , respectively.

The proof is completed. □

3.2. Design Procedure

The design procedure of this scheme is summarized as follows:

1. Rewrite the system into the form of (5) using (4).
2. Set xd = [0.14 sin(0.5t); 0.14 cos(0.5t)] in (6) and choose K1, K2, KS > 0.
3. Determine S1(t) and α from (8) and (9), and design τ0 as the structure in (13), so that

(15) satisfies
.

V1 < 0.
4. Reconstruct C(x1, x2)α(t) and G(x1) in (13) to obtain the form of (16), and select

appropriate values for Γi and σi in (18).
5. Build the system in the form of (19) using (5) and (17).
6. Choose l(x) > 0, and rebuild ϖ̂ form (24).
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7. Feedback the value of ϖ̂ in (24) to (16) to obtain the structure of (27).

4. Simulations

In this section, to illustrate the efficacy of the proposed control, simulation experiments
were carried out on a robotic manipulator with two rotating joints in the vertical plane, as
Figure 2 displays [22].

Processes 2024, 12, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 2. Schematic diagram of a dual-joint robot manipulator. im  and il  are the weight and 

length of the link i , respectively. cil  represents the distance between the center of mass of link 

− 1i  and joint i , = 1,2i . 

The position vector is defined as =   1 2

T
q q q . According to reference [22], the cor-

relation matrixes of dynamics equations are given below: 

 
=  
 

11 12

21 22

( )
M M

M q
M M

 (35)

 
=  
 

 11 12

21 22

( , )
C C

C q q
C C

 (36)

=   11 21( )
T

G q G G  (37)

 − + + − +
=  + + + 

1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

( sin sin( )) sin( )
( )

cos cos( ) cos( )
l q l q q l q q

J q
l q l q q l q q

 (38)

with 

Figure 2. Schematic diagram of a dual-joint robot manipulator. mi and li are the weight and length of
the link i, respectively. lci represents the distance between the center of mass of link i − 1 and joint i,
i = 1, 2.

The position vector is defined as q =
[
q1 q2

]T . According to reference [22], the
correlation matrixes of dynamics equations are given below:

M(q) =
[

M11 M12
M21 M22

]
(35)

C(q,
.
q) =

[
C11 C12
C21 C22

]
(36)

G(q) =
[
G11 G21

]T (37)

J(q) =
[
−(l1 sin q1 + l2 sin(q1 + q2)) −l2 sin(q1 + q2)

l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
(38)

with
M11 = m1lc1

2 + m2(l12 + lc2
2 + 2l1lc2 cos q2) + I1 + I2

M12 = m2(lc2
2 + l1lc2 cos q2) + I2

M21 = m2(lc2
2 + l1lc2 cos q2) + I2

M22 = m2lc2
2 I2

C11 = −m2l1lc2
.
q2 sin q2

C12 = −m2l1lc2(
.
q1 +

.
q2) sin q2

C21 = m2l1lc2
.
q1 sin q2

C22 = 0
G11 = (m1lc2 + m2l1)g cos q1 + m2lc2g cos(q1 + q2)
G21 = m2lc2g cos(q1 + q2)



Processes 2024, 12, 499 11 of 16

The parameter selection for the robot is m1 = 2.00 kg, m2 = 0.85 kg, l1 = 0.35 m,
l2 = 0.31 m, I1 = 0.25m1l2

1 kgm2, and I2 = 0.25m2l2
2 kgm2.

The initial conditions set in the simulation are as follows{
q1(0) = 0.1, q2(0) = 0.2
.
q1(0) =

.
q2(0) = 0

(39)

The setting of the reference path is the same as [6], xd1 = 0.14 sin(0.5t), xd2 =
0.14 cos(0.5t). Select system disturbance as f (t) = [sin(t) + 1; 2 cos(t) + 0.5]. The parame-
ters of the controller in the experiment are set as K1 = diag[30, 30], K2 = diag[30, 30], Ks = 5.
The neural network parameters are selected as follows: Γ1 = 0.1I256×256, Γ2 = 0.1I256×256,
σ1 = 0.2, and σ2 = 0.2, the initial weights Ŵ1,i = 0, Ŵ2,i = 0, (i = 1, 2, . . . 256), the number
of nodes is N = 256, and the width of the NN is η = 10. The gain matrix of the disturbance
observer is selected as l(x) = [0.01 0; 0 0.1]−1M−1(x1). We set the simulation time to 40 s.
The controller design for comparison is τ = −z1 −K2z2 − sgn

(
zT

2
)
⊙ JT(x1) f + ŴTS(Z) [6].

The results of the simulation are depicted in Figures 3–10. Figures 3 and 4 show
the trajectory tracking and errors of the two joints. Both methods can guarantee that the
tracking error converges to the small neighborhood of zero in a short period of time. After
the system reaches a stable state, the tracking error of joint 1 is z11 ≈ −9.0 × 10−6, and the
tracking error of joint 2 is z12 ≈ −1.2 × 10−5, which is a relatively small value, reflecting
the superiority of the proposed method. We can see that the two control algorithms have
a significant difference in their position tracking performance. Compared to the method
in [6], the tracking errors of z11 and z12 triggered by the presented control have a higher
accuracy. On the one hand, this is attributed to the integral sliding mode surface with
the positional error in the adaptive controller (27), which effectively reduces the system’s
steady-state error. On the other hand, approximate errors can be accurately estimated and
compensated by the designed disturbance observer. The velocity-tracking curve is plotted
in Figure 5. The control inputs are given in Figure 6. The blue and green lines denote
the control input of joint 1, while the red and blue lines denote the control input of joint
2. We can see that even with model uncertainties and disturbances, the inputs of both
control methods are smooth and without chatter. Within (0, 0.1) seconds, the compared
amplitude is greater than the proposed amplitude, indicating that the compared controller
needs to consume more energy during the initial tracking stage. In addition, the preset
initial position q(0) is not at the expected position qd(0), which leads to a large initial
input value, but it can ensure that the system quickly achieves the desired control effect.
Through the further analysis of Figures 3, 4 and 6, it can be concluded that the developed
controller improves its tracking accuracy without increasing its energy consumption, which
also reflects the superiority of the presented ANN control scheme. The adaptive weights
of Ŵ1 and Ŵ2 are presented in Figure 7. This indicates that the proposed adaptation
weights can converge to a positive constant in a short time and achieve a reasonably
stable state faster than [6], which also demonstrates the boundedness of the adaptation
weights. Figure 8 shows the approximation errors of the two control strategies. It is
evident that the presented method has a smaller error and can converge to near zero within
0.3 s. The true value ϖi and the observed value ϖ̂i are shown in Figures 9 and 10. The
designed disturbance observer (24) can accurately estimate the approximation errors ε(Z)
and external disturbances JT f (t), perform real-time compensation on the control input (27),
and achieve the expected tracking effect after 0.5 s. This also verifies that the proposed
adaptive neural network control algorithm based on the disturbance observer can achieve
a good tracking control response in this paper.



Processes 2024, 12, 499 12 of 16

Processes 2024, 12, x FOR PEER REVIEW 13 of 18 
 

 

input value, but it can ensure that the system quickly achieves the desired control effect. 
Through the further analysis of Figures 3, 4 and 6, it can be concluded that the developed 
controller improves its tracking accuracy without increasing its energy consumption, 
which also reflects the superiority of the presented ANN control scheme. The adaptive 
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5. Conclusions

An ANN control strategy based on a disturbance observer was developed for the
trajectory tracking control of robotic manipulators while considering the dynamic model
uncertainties and external disturbances. It has been demonstrated that the proposed control
method can ensure the error signal of the closed-loop system is bounded based on the
Lyapunov stability theory. An ANN controller based on full-state feedback was designed,
which approximates the model uncertainty online and compensates for the controller by
adjusting the adaptive update law. When using backstepping technology to derive the
controller, an integral sliding mode surface was added to reduce the steady-state error of the
system. Then, the state equation of the system was redefined to guarantee the rationality of
the observer structure. The bounded values of approximation errors are considered in the
observer, which makes the structural design more rational and ensures the overall stability
of the system. Furthermore, a disturbance observer was used for the first time to achieve
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the accurate estimation of both approximation errors and environmental disturbances, and
compensation was provided to the controller to improve tracking performance. Our future
work will concentrate on the tracking control of robots with state constraints and unknown
time-varying delays.
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