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Abstract: With the development of Industry 4.0 and the implementation of the 14th Five-Year Plan,
intelligent manufacturing has become a significant trend in the steel industry, which can propel the
steel industry toward a more intelligent, efficient, and sustainable direction. At present, the operation
mode of unmanned warehouse area for slabs and coils has become relatively mature, while the
positioning accuracy requirement of bars is getting more stringent because they are stacked in the
warehouse area according to the stacking position and transferred by disk crane. Meanwhile, the
traditional laser ranging and line scanning method cannot meet the demand for precise positioning
of the whole bundle of bars. To deal with the problems above, this paper applies machine vision tech-
nology to the unmanned warehouse area of bars, proposing a binocular vision-based measurement
method. On the one hand, a 3D reconstruction model with sub-pixel interpolation is established to
improve the accuracy of 3D reconstruction in the warehouse area. On the other hand, a feature point
matching algorithm based on motion trend constraint is established by means of multi-sensor data
fusion, thus improving the accuracy of feature point matching. Finally, a high-precision unmanned
3D reconstruction of the bar stock area is completed.

Keywords: bar unmanned warehouse area; binocular vision; multisensory fusion; 3D reconstruction

1. Introduction

With the development of information technology such as the Internet of Things and
artificial intelligence, the steel industry is transforming into a smart manufacturing model
with the smart factory as the carrier as well as the intelligence of key manufacturing as
the core and is based on end-to-end data flow and supported by NetCom interconnection
technology. At present, unmanned warehouse areas have become a very representative
and important technology for smart factories. As the main lifting execution unit in the
unmanned warehouse area, the unmanned crane accurately identifies the position of the
crane and the location of materials in the warehouse through the crane and material
automatic positioning system. Then, the material can be accurately lifted and moved under
unmanned conditions. Therefore, the intelligent automatic positioning system for cranes
and materials is the basis for realizing unmanned cranes and warehouse areas, which
directly affects the operational accuracy of unmanned warehouse areas.

The positioning of the crane in the bar unmanned warehouse area mainly relies on the
Gray bus and the data feedback in real-time to the dispatching system through the PLC,
which is able to pinpoint the crane during the movement. In terms of material positioning
in the warehouse area, unlike the steel coil warehouse area, where each steel coil can
be located precisely through the fixed saddle, the bars in the warehouse area are tightly
stacked on a large scale. Therefore, the precise positioning of each bundle of bar is vital
during the lifting process. The traditional bar warehouse area uses laser ranging and line
scanning to locate the material, but this method can only obtain 2D contour information of
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the material in the warehouse area, and the lack of information in one dimension along
the width of the stack leads to incomplete measurement of the stack contour information.
As the steel materials in the bar unmanned warehouse area are stored in large quantities
and close piles, the above material positioning method often leads to accidents such as the
material falling due to the lack of suction force caused by the inaccurate disk position, the
disk crane being destroyed due to the exceeding number of bundles, the stack collapsing
during the palletizing and so on. Therefore, in order to solve the above problems, it is
necessary to use a more accurate method to realize the precise positioning of the material
in the bar unmanned warehouse area.

Therefore, in order to solve the above problems, this paper introduces machine vision
technology into the bar unmanned warehouse area and puts forward a binocular vision
detection method. On the basis of the subpixel interpolation stereo matching algorithm, the
IMU and camera information fusion method are used to improve the matching accuracy
of visual feature points and, finally, complete the 3D reconstruction of the bar unmanned
warehouse area.

2. Literature Review

In recent years, with the development of machine vision technology, binocular vision-
based inspection technology and applications have been widely used in various fields [1–5].
Simultaneous Localization and Mapping (SLAM) [6] based on binocular vision has under-
gone rapid development, too, which has attracted extensive attention from researchers.

Early researchers divided SLAM into visual SLAM and LIDAR SLAM according to
the different types of sensors used in SLAM technology, such as cameras and LIDAR [7].
Davision [8] constructed the first monocular vision SLAM system framework, MonoSLAM,
using sparse feature point-based vision front-end tracking and using the current frame
pose of the monocular camera and observed feature point information as back-end op-
timization variables. Subsequently, Klein [9] proposed PTAM, which uses two separate
tasks for parallel processing of split tracking and mapping while introducing the keyframe
mechanism to reduce the system computation, but it has problems such as small detection
scenes and easy loss of front-end target tracking. In order to solve the problem of SLAM
being insensitive to features, feature extraction and matching are used to ensure the accu-
racy of pose estimation in SLAM tracking. Mur-Artal [10,11] proposed the ORB-SLAM
and ORB-SLAM2 systems, which ensure the consistency of movement trajectories and
constructed maps by tracking targets and constructing maps. Then, the LSD-SLAM system
proposed by Engle [12] bit-pose estimation in the visual front-end by constructing image
gradient-based wayfinding points. In order to overcome the problem of front-end feature
point tracking failure caused by environmental factors during camera movement.

In recent years, Visual SLAM algorithms have witnessed significant advancements
and demonstrated stable and robust operation across various scenarios. However, chal-
lenges arise when low-quality images result from fast camera movements and varying
light conditions, limiting the effectiveness of current visual sensors [13]. To address this,
researchers have explored composite SLAM approaches such as VINS (IMU + visual) and
RTAB-MAP (LIDAR + visual). IMU sensors offer superior angular velocity measurement
accuracy and local position measurement accuracy compared to odometers. The IMU can
capture clear images of dynamic objects during fast camera movements, and the camera can
correct cumulative errors generated by the IMU during slow speeds [14]. The synergistic
combination of the two significantly enhances SLAM performance.

Furthermore, due to the affordability and ease of use of vision and IMU sensors, an
increasing number of scholars are directing their attention towards them [15]. Presently,
visual-inertial fusion methods can be categorized into tight coupling and loose coupling
based on whether image feature information is incorporated into the state vector [16]. In
loose coupling, the IMU and camera independently estimate their motion and then fuse
their pose estimates. In contrast, tight coupling involves initially fusing IMU and camera
states, then jointly constructing motion and observation equations, and finally performing
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state estimation [17]. OKVIS was proposed by [18,19] Leutenegger, which uses the IMU
measurement error and the visual reprojection error to construct the objective function,
and uses the graph optimization method to solve the objective and finally obtain the state
volume to be estimated, and the experimental results show that the system has higher
accuracy compared with the filter-based method.

With the development of SLAM technology, SLAM based on binocular vision has
gradually been widely used in various fields. Li [20] used multi-channel fusion SLAM
technology for road detection and positioning. Pai [21] used SLAM technology to build a
2D map and complete path planning. Shao [22] applied semantic SLAM to autonomous
indoor parking and achieved great results. Yan [23] presented a state-of-the-art real-time
localization and mapping system by SLAM to achieve precise pose estimation and dense
(3D) point cloud mapping in complex greenhouses.

Compared with the bar unmanned warehouse area, the above SLAM application
research environment is better, which means the graphic texture and feature points are
clear and easy to detect, so it has achieved good application results. In the bar unmanned
warehouse area, the bar as the detection target is characterized by too much texture and
a large number of repetitive textures, which leads to a large number of false matches in
feature point detection. Therefore, in order to solve this problem, this paper, on the basis of
the above research, adopts the feature point matching algorithm based on motion trend
constraint to complete the inter-frame feature point matching and uses the point cloud
splicing algorithm to finally get the accurate 3D position information of the bar unmanned
warehouse area, which provides the basis for the crane lifting. The field application shows
that this system can realize the synchronous positioning and map construction of unmanned
bar warehouse areas and provide an effective location basis for crane lifting, which has
good application prospects.

3. 3D Dimensional Measurement of Stack Based on Binocular Vision
3.1. Binocular Camera Joint Calibration

The joint calibration of binocular cameras is based on the completion of calibration
of both the left and right cameras separately. The process of binocular camera calibration
is as follows. Firstly, assume that there is a feature point P on the checkerboard whose
coordinate under the world coordinate system is Pw. The coordinate would be recorded by
the left and right cameras as PL = [XL, YL, ZL]

T , PR = [XR, YR, ZR]
T , respectively, and the

expression of the point P in the imaging model of the left and right cameras can be found
in Equation (1) as follows: {

PL = RLPW + TL
PR = RRPW + TR

(1)

By establishing a binocular stereo vision reference coordinate system with the left
camera coordinate system as the origin, the expression can be obtained as:

PR = RPL + T (2)

Combining Equations (1) and (2) yields the coordinate system conversion relationship
between the binocular cameras as:{

R = RRR−1
L

T = TR − RRR−1
L TL

(3)

3.2. Stereo Matching Algorithm Based on Sub-Pixel Interpolation

During the 3D reconstruction process, the pixel-level parallax is incapable of adapting
to the space that the depth changes continuously, especially in the scene with a large
inclination or a curved surface, and therefore cannot be applied to the 3D dimensional
measurement of bar stacks. Therefore, the accuracy of the stereo matching algorithm needs
to be improved from pixel level to sub-pixel level to make the parallax of the measurement
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surface in a natural smooth transition. The sub-pixel accuracy parallax value can be
obtained by curve fitting, which utilizes the neighboring parallax values and the cost
values of the best parallax value, measured by WTA in the cost space, as supplementary
information to calculate, as shown in Figure 1.
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Figure 1. Parallax sub-pixel difference.

For any pixel point (x, y), a quadratic curve can be fitted by extracting three sets of
data corresponding to it, which are (dmin−1, C(x, y, dmin−)), (dmin, C(x, y, dmin)), (dmin+1,
C(x, y, dmin+)). The extreme point of the fitted curve reveals the best sub-pixel difference for
that pixel point, and the expression is

d∗ = dmin − C(x, y, dmin+)− C(x, y, dmin−)

2(C(x, y, dmin+) + C(x, y, dmin−)− 2C(x, y, dmin))
(4)

where dmin is the best parallax obtained by WTA in the cost space; C(x, y, dmin) is the
best parallax corresponding to the pixel point (x, y); (dmin−1, C(x, y, dmin−)), (dmin+1,
C(x, y, dmin+)) are the corresponding parallax at the same pixel of the best parallax; d*

is the sub-pixel precision parallax calculated through the parallax post-processing process.
In order to obtain more accurate subpixel-level parallax values, this paper uses a high

interpolation method based on the cost space, as shown in Figure 2.
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Figure 2. Flow chart of the stereo matching algorithm.

It reconstructs the cost space C0 based on the initial parallax map D0, then utilizes
bilateral filtering on the cost space to smooth the image as well as to keep its edge features
for the purpose of dealing with the abrupt changes in the depth change region, to obtain the
cost space Ci

CW , and extracts the data needed for Equation (4) from the newly generated
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cost space, applies subpixel interpolation to updates the new depth estimates, and at last
feeds them back into the process until the final parallax map comes out.

The expression for constructing the cost space based on the initial parallax map is:

C(i)(x, y, d) = min(η ∗ L, (d − D(i)(x, y))2) (5)

where L is the search for parallax levels range; d is the candidate parallax; D(i)(x, y) is
the parallax corresponding to the L level; η is the scaling coefficient while dividing the
parallax levels.

As shown in Figure 3, the sub-pixel parallax 3D reconstruction result is verified
according to the actual collected images in the warehouse area. Due to the stratification
caused by the discontinuous depth of the pixel-level parallax 3D reconstruction, it could
not be applied to the region where the depth changes continuously. The 3D reconstructed
image becomes obviously smooth after the sub-pixel parallax post-processing, which, to
a certain extent, solves the inapplicability of binocular vision measurement to the region
with continuously changing depth of large field of view.
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Figure 3. Comparison of pixel and sub-pixel precision 3D reconstruction.

The method in this paper is also compared with SGBM [24] and CSCA [25] methods, as
shown in Table 1, to verify that the measurement obtained by this method has a significant
accuracy advantage under the long-range measurement conditions.

Table 1. 3D dimensional measurement results.

Measurement
Range (mm)

Target Size
(mm)

SGBM
(mm)

Error
(%)

CSCA
(mm)

Error
(%)

Proposed
Algorithm (mm)

Error
(%)

1800 90 89.413 0.65 91.324 1.47 91.703 1.89
2500 90 88.161 2.04 91.815 2.02 91.133 1.26
3000 90 91.858 2.06 89.978 4.01 93.608 1.34
3600 90 93.330 3.70 88.679 1.47 89.596 0.45
4500 90 95.212 5.79 88.420 1.76 88.912 1.21
5000 90 92.472 2.75 95.360 5.96 91.747 1.94
5600 90 92.228 2.48 87.991 2.23 88.991 1.12
8500 90 108.265 20.29 95.995 6.66 92.543 2.83

4. Vision-Based Multi-Bit Pose Measurement Technology for Bar Warehouse Area

Due to the large measurement range in the metallurgical warehouse area, the partial
3D information measured from a fixed viewpoint cannot meet the demand for 3D point
cloud reconstruction of the stack surface in the bar warehouse area of a large field of view.
Therefore, the motion structure is used, which is to extract and match the feature points
between adjacent images to solve the spatial transformation relationship and to add the
newly collected point cloud information to the original one to obtain the final field point
cloud information under a larger detection range. Take the feature detection of adjacent
two frames in the image sequence, and the matching to obtain correlation information as
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the prerequisite and foundation for the realization of visual front-end tracking, then the
number of correlation information obtained and the rate of correct matching would affect
the accuracy of detecting the carrier pose as well as motion state. With the research and
development of computer vision, some algorithms of feature point detection that can adapt
to different environments and can perform well under various working conditions have
been gradually derived, such as SIFT [26], SURF [27], ORB [28], etc.

4.1. Bar Warehouse Area Feature Point Detection

It is because the texture on the surface of the bars has a complex structure and re-
peats too much, and there are labels bound on the side of the bars that distinguish their
specifications and material numbers, which makes the feature measurement and matching
process more difficult. In order to verify and compare the measurement effect of several
feature point measurement algorithms in terms of bar images, the images of the side and
top surface of the stack in the bar warehouse area were collected and measured, and the
measurement result of each algorithm is shown in Figure 4.
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Among the measurement results of the above three feature point measurement algo-
rithms on the side surface of the bar stack, the SIFT obtains the largest number of feature
points. In terms of the measurement on the top surface, the number of feature points
measured is obviously sparse due to the long measurement distance (about 10 m). Thus,
the three feature measurements obtain a comparable number of feature points, while the
ORB spends the shortest time. The results of these feature measurement algorithms are
shown in Table 2.

Table 2. Comparison of feature point measurement results.

Side Surface of Bar Stack Top Surface of Bar Stack

Feature Point Type Number of
Measurements Time (ms) Number of

Measurements Time (ms)

SIFT 18972 7840 107 1980
SURF 8240 6070 36 2160
ORB 500 1580 41 1580
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4.2. Feature Point Matching Algorithm Based on Motion Trend Constraint

In order to complete the overall 3D reconstruction of the warehouse area, it is necessary
to match the feature points of the two adjacent frames collected by the moving camera.
During the initial matching process, the matching point pairs are usually filtered by setting
the Hamming distance. Assume that the binary descriptors of feature point A and feature
point B are D(A) and D(B), respectively, then the Hamming distance between them is
defined as:

H(A, B) =
N

∑
i=1

δ(D(A)i ̸= D(B)i) (6)

where δ( ) is an indicator function, which is 1 when the conditions in the brackets are true
(otherwise, it is 0). Equation (6) means that for each binary bit, if A and B have different
values at that position, increase the Hamming distance by 1. In feature point matching, the
feature point pair with a smaller Hamming distance is usually selected as the matching
point because a smaller Hamming distance indicates that the two binary descriptors are
more similar.

However, lots of mismatches are generated due to a large number of similar or repeated
textures in the images. As shown in Figure 5, a great number of false matches can be seen in
the images, which are generated through the three feature detection algorithms, respectively.
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Any mismatch would lead to calculation errors in the position and posture of the
adjacent images. Thus, in order to eliminate the mismatch and to take the long measurement
distance in the metallurgical warehouse area as well as the large amount of repetitive texture
information in the bar stack into consideration, a feature point mismatch elimination
strategy combining RANSAC algorithm and motion constraints is designed.

The RANSAC algorithm, in an iterative manner, is applied to estimate the optimal
homography matrix H from a set of observation data, including outliers, and then to
preliminarily reject the mismatched pairs of points from the matched images. Its expression
Es for constructing the optimal solution function is:

Es = argmin

(
n

∑
i=1

((
xi

′ − h11xi + h12yi + h13

h31xi + h32yi + h33

)2
+

(
yi

′ − h21xi + h22yi + h23

h31xi + h32yi + h33

)2
))

(7)

For images of bar stacks that have repetitive textures, the RANSAC algorithm can only
reject a small number of mismatched feature points. Due to the strong correlation between
feature point matching and vision system pose transformation, the inertial measurement
module (IMU) is used to solve the value of vision system pose transformation in real-time.
However, the error would increase non-linearly over long periods of operation because of
the zero point offset and the accumulated error. In this paper, the binocular camera and IMU
are combined to form an inertial vision navigation system, and then the inertial information
and visual information could be mutually complementary to reduce the limitations of single
sensor detection and, therefore, the reliability of the whole system could be improved. The
system adopts a strap-down carrying mode and realizes the inertial navigation function
with the help of a computer. The structure of the inertial vision navigation system is shown
in Figure 6.
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The inertial measurement module mainly consists of an accelerometer and gyroscope.
It obtains the structural motion trend through the two modules, supplements the camera
dynamic information, and uses the structural motion trend as a constraint to filter the
feature points of the two frames of images. As shown in Figure 7, it is the feature point
matching process based on motion trend constraints.

The specific steps are as follows:

1. System Calibration

During the measurement process, the IMU sensor might generate zero offset, Gaussian
white noise, and random noise due to factors such as internal mechanical and temperature
changes. Therefore, the optimal value should be obtained after calibration compensation
and back-end optimization.
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First, the calibration coefficient is obtained through joint calibration of the camera
and IMU. This joint calibration uses the caliber [29] method to obtain the system param-
eters. This method calculates the calibration data by minimizing the objective function
(Equation (8)).

N

∑
n=1

M

∑
m=1

∥Jnm −
⌢
J
(
Tc,i, Tg,i, gω, d, ba(t), bg(t), ηa(t), ηg(t)

)
∥ (8)

where N is the number of calibration images; M is the number of landmarks; Tc,i is the
transformation between the camera and the IMU; Tg,i is the pose of the IMU; gw is the
gravity direction; d is the offset between camera time and IMU time; ã(t), w̃(t) are measure-
ments of the accelerometer and gyroscope; a(t), w(t) are real values of the accelerometer
and gyroscope; ba(t), bg(t) are zero offsets of the accelerometer and gyroscope; ηa(t), ηg(t)
are gaussian white noises.

2. Establish an IMU measurement model.

The joint calibration coefficients are obtained through the joint calibration of the camera
and IMU, and the measurement model of the inertial model is established according to the
calibration coefficients as follows.

ã(t) = a(t) + ba(t) + ηa(t) (9)

w̃(t) = w(t) + bg(t) + ηg(t) (10)

3. Establish IMU kinematics model.

After obtaining the measurements from the accelerometer and gyroscope of the in-
ertial module, the IMU kinematic model could be used to calculate the spatial position
transformation in the interval [t, t + ∆t], and the calculation model can be expressed as:

R(t + ∆t) = R(t)Exp((w̃(t)− bg(t)− ηgd(t))∆t)
v(t + ∆t) = v(t) + g∆t + R(t)(ã(t)− ba(t)− ηad(t))∆t
p(t + ∆t) = p(t) + v(t)∆t + 1

2 g∆t2 + 1
2 R(t)(ã(t)− ba(t)− ηad(t))∆t2

(11)

where R is the relative rotation angle, V is velocity, and P is the position.
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4. Eliminate mismatched feature points using the inertia model.

Equation (11) represents the spatial pose change of the system from moment t to t + ∆t.
Therefore, after the system calibration is completed, the relative rotation angle R, velocity
V, and position P of the IMU carrier at the moment t + ∆t can be calculated based on the
moment t. R, V, and P is the motion constraint. The matched feature points are verified
based on the calculated pose as follows:

F(t + ∆t) = f (R, V, P)F(t) (12)

where f ( ) is the state transition function. The feature point pairs that do not conform to
Equation (12) are mismatched feature points that are different from the pose changes, and
they are eliminated to retain the correctly matched feature points.

Finally, the precise matching of adjacent image feature points is completed through
the above steps. As shown in Figures 8 and 9, it is the matching result of feature points
between adjacent images that are completely consistent under several algorithms.
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Figure 9. Matching point pair images of bar stack top surface after filtering.

According to the random consistent check results of several feature point detection
methods under both side and top acquisition angles of the bar pile, it can be seen that all
three feature detection methods fit the conformance. However, there are differences in the
final results of the three feature detection algorithms, as shown in Table 3.

Table 3. Comparison of feature point matching results after filtering.

Side Surface of Bar Stack Top Surface of Bar Stack

Feature Point
Type

Number of
Initial Matching

Point Pairs

Number of
Matching Point

Pairs after Filtering
Time (ms)

Number of
Initial Matching

Point Pairs

Number of
Matching Point

Pairs after Filtering
Time (ms)

SIFT 2823 837 12,050 107 4 1930
SURF 534 208 6630 69 17 2170
ORB 59 28 2620 41 20 1750

It is found that the three measurement methods could obtain enough matching point
pairs on the side of the bar stack and are visually consistent, but in terms of shooting at the
top of the stack, the SIFT method cannot obtain a sufficient number of correct matching
pairs and thus cannot meet the demand for long-distance detection of the bar stack, while
the ORB has the advantages on both the measurement speed and the number of matching
point pairs obtained from the top, compared with the SURF. Therefore, this paper chooses
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the ORB feature point measurement methods hereinafter, as they are the most stable
and accurate.

4.3. Bar Library Multi-Position Point Cloud Stitching Algorithm

In order to get the complete 3D position data of the warehouse area, the point cloud of
each frame image needs to be stitched together. The ICP problem is constructed on the basis
of the congruent matching point pairs between frames and the two sets of corresponding
3D points obtained by the spatial depth information calculated by the binocular vision
detection system to solve the image stitching problem.

Construct the source image point cloud data P = {p1, p2 . . . pn} and the target image
point cloud data Q = {q1, q2 . . . qn}, and the points in the two sets of data correspond to
each other. To obtain an optimal Euclidean transformation R, t, which makes ∀i, pi = Rqi + t.
By constructing the error term of a single point ei and the ensemble error term of the whole
point cloud Ei, the least squares problem is constructed and then solved by using the SVD
decomposition. The error term is defined as:

ei = pi − (Rqi + t) (13)

Ei = min
R,t

1
2

n

∑
i=1

∥pi − (Rqi + t)∥2
2 (14)

Define the center of mass p′, q′ of the set of points P and Q as:

p′ =
1
n

n

∑
i=1

(pi) (15)

q′ =
1
n

n

∑
i=1

(qi) (16)

The error term is integrated and decomposed into three parts, as shown in Equation
(17), where the first term is only related to the rotation matrix R, and after it is solved, t can
be solved by making the second term zero.

Ei =
1
2

n
∑

i=1
∥pi − Rqi − t − p′ + Rq′ + p′Rq′∥2

= 1
2

n
∑

i=1
∥(pi − p′ − R(q − q′)) + (p′ − Rq′ − t)∥2

= 1
2

n
∑

i=1
(∥(pi − p′ − R(q − q′))∥2 + ∥p′ − Rq′ − t∥2

+2(pi − p′ − R(q − q′))T(p′ − Rq′ − t))

(17)

Combining Equations (15)–(17) yields the rotational error term in decentered coordi-
nates p′′ and q′′ as

ER =
1
2

n

∑
i=1

∥p′′ − Rq′′ ∥2 = −tr

(
R

n

∑
i=1

q′′ p′′ T

)
(18)

Constructive the matrix W and conduct SVD decomposition to it. Additionally, solve
the spatial rotation matrix R, combining which with the Equation (13). Then, the displace-
ment vector t could be solved.

W =
n

∑
i=1

q′′ p′′ T = U ∑ VT (19)

R = UVT (20)
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By the methods above, the images of the bar warehouse area are collected and point-
cloud fused. The acquisition and point cloud fusion effect of the visual odometer image of
multi-position is shown in Figure 10.

Processes 2024, 12, x FOR PEER REVIEW 13 of 18 
 

 

2

1

2

1

2 2

1

1
' ' '

2

1
     = ( ' ( ')) ( ' ' )

2

1
= ( ( ' ( ')) ' '

2

+2( ' ( ')) ( ' ' ))

n

i i i

i

n

i

i

n

i

i

T

i

E p Rq t p Rq p Rq

p p R q q p Rq t

p p R q q p Rq t

p p R q q p Rq t

=

=

=

= − − − + + −

− − − + − −

− − − + − −

− − − − −







 (17) 

Combining Equations (15)–(17) yields the rotational error term in decentered coordi-

nates p and q  as 

2

1 1

1
'' '' '' ''

2

n n
T

R

i i

E p Rq tr R q p
= =

 
= − = −  

 
   (18) 

Constructive the matrix W and conduct SVD decomposition to it. Additionally, solve 

the spatial rotation matrix R, combining which with the Equation (13). Then, the displace-

ment vector t could be solved. 

1

n
T T

i

W q p U V
=

 = =   (19) 

TR UV=  (20) 

By the methods above, the images of the bar warehouse area are collected and point-

cloud fused. The acquisition and point cloud fusion effect of the visual odometer image 

of multi-position is shown in Figure 10. 

  

(a) Visual odometer source image (b) Visual odometer target image 

  

(c) 3D reconstruction image after fusion (d) Post-differential point cloud after fusion 

Figure 10. Point cloud registration based on multi-position visual pose estimation.

After the visual odometry solves the spatial transformation relationship of the camera
at different locations, the 3D information of the target image could be added to the source
image in an incremental way. As shown in Figure 10, two images acquired at different
locations are stitched together by the point cloud and displayed in a differential color
image. The two common imaging areas overlap partially in the stitched point cloud image,
while the separate imaging areas of both the target image and the original image also
remain. Therefore, a more complete scene and material pile point cloud information could
be obtained.

5. Fields Test and Application

The measurement device was applied in the unmanned bar warehouse area in a factory
to verify the measurement accuracy by means of 3D reconstruction of the bar stack. A
binocular camera was set up on an unmanned crane, and continuous sequences of images
of the warehouse area were collected with the movement of the crane, organizing into a
sequence of 100 images from the images of the whole 35 m bar stack. Then, by fitting the
visual coordinate system to the warehouse area coordinate system, the spatial information
measurement results that are consistent with the crane laser scanning coordinate system
were formed. Consequently, a complete 3D point cloud image of the stack surface was
plotted (Figure 11).
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Figure 11. Point cloud image of bar stack in unmanned warehouse area.

In order to verify the reconstruction accuracy of the vision system, the 2D contour data
of the stack was selected, which was collected by the vision system at the same position as
the crane laser scanning. Additionally, the median of the redundant points of the splicing
position was calculated, and the cubic polynomial interpolation method was used to no
data points in the data post-processing stage to form the bar stack contour data with the
same length of the crane laser scanning, and finally, the two sets of data were filtered. The
comparison of the 2D contour of the stack measured by the vision system and the crane
laser scanning system is shown in Figure 12.
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Figure 12. Bar stack contours from Binocular vision and crane laser scanning.
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Under the premise of using the crane laser scanning results as standard data, it can
be found from Figure 12 that the binocular vision-based bar stack contour measurement
method used in this paper can obtain bar stack contours that are relatively consistent, and
the visual scanning results are in gully areas also perform well. Compared with the laser
scanning results, the mean absolute error of the visual scanning result is 9.82 mm, the mean
relative error is 0.26%, the maximum absolute error is 17.73 mm, and the maximum relative
error is 0.47%. The scene of the bar warehouse area is large, and the above data shows that
the reconstruction of the bar warehouse area based on binocular vision has high accuracy.

The reconstruction of warehouse areas based on binocular vision primarily addresses
the dimensional deficiencies caused by the current laser scanning, which leads to lifting is-
sues. It also establishes a data foundation for subsequent unmanned warehouse operations.
Therefore, this paper compares the proposed method with the traditional laser scanning
approach. With the premise of using crane laser scanning results as the reference data, the
results are presented in Table 4.

Table 4. Comparison results between laser scanning and binocular vision.

MAE (mm) MRE
Maximum
Absolute

Error (mm)

Maximum
Relative Error Bar Dimension Method Unit Distance

(mm)
Frequency

(Hz)

Laser scanning 0 0 0 0 2D Single Point Scan 10 2
Binocular vision 9.82 0.26% 17.73 0.47% 3D Face Scan 9.56 30

From Table 4, it can be observed that the use of binocular vision in the unmanned
warehouse for bar materials ensures synchronized positioning and map construction while
maintaining the data accuracy of the original laser scanning method. Simultaneously, it
enhances data dimensions, obtaining the 3D profile of stack positions, thereby improving
the accuracy of overhead crane hoisting. Furthermore, the adoption of high-frequency
surface scanning facilitates the capture of a greater number of data points in the warehouse
map, meeting on-site application requirements and demonstrating promising practicality
and value.

6. Conclusions

(1) In order to overcome the inadequacy of the existing contour detection methods of
the stack in the bar warehouse area, a 3D dimension detection method of stack based on
binocular vision and IMU is proposed. It obtains the 3D information of the stack position
by constructing a three-dimensional point cloud image of the stack with a binocular camera
to ensure the accurate positioning of the crane during lifting.

(2) A stereo matching algorithm based on subpixel interpolation is proposed to solve
the interpolation using the neighboring parallax value and the corresponding surrogate
value of the best parallax value, which is obtained by WTA in the cost space, as supplemen-
tary information, so as to improve the accuracy of 3D reconstruction. After verifying using
the acquisition images of the warehouse area, it can be found that the images have been
greatly improved compared with those before subpixel processing, which, to a certain ex-
tent, solves the adaptation problem of binocular vision detection applied in the continuous
transformation region with a large field of view depth.

(3) In order to solve the feature point mismatching problem caused by the consistent
texture in the warehouse area, a feature point matching algorithm based on the motion
trend constraint is proposed; then, by solving the system positional change with IMU, the
mismatched feature points are eliminated, and finally, the fused image of the warehouse
area point cloud could be obtained.

(4) The field application results show that the binocular vision-based bar stacking
measurement method proposed in this paper could reconstruct the three-dimensional image
of the warehouse area and obtain the three-dimensional contour of the stack. Compared
with the traditional detection method, it has a higher data dimension to improve the lifting
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accuracy, and it can meet the field demand in terms of processing speed as well as detection
accuracy, which has good application value and promotion prospects.

(5) The system proposed in this paper changes the current situation of lack of laser
scanning dimensions in the bar warehouse area, making the bar warehouse area more
intelligent, helping to improve the work efficiency of steel enterprises, and providing a
solid data foundation for automatic hoisting in bar unmanned warehouse areas.

(6) This paper realized a 3-D reconstruction of the bar unmanned warehouse area
based on binocular vision and obtained certain research conclusions and results. However,
further questions need to be solved in future work. For the problem of the impact of
complex environmental factors in the bar warehouse area on system robustness, more in-
depth research is needed, and sensors need to give full play to their respective advantages
to achieve multi-information fusion 3-D reconstruction of the reservoir area.
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