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Abstract: Aiming at the problem that the energy consumption of the boiler system varies greatly
under the flexible peaking requirements of coal-fired units, an energy consumption prediction model
for the boiler system is established based on a Least-Squares Support Vector Machine (LSSVM). First,
the Mean Impact Value (MIV) algorithm is used to simplify the input characteristics of the model and
determine the key operating parameters that affect energy consumption. Secondly, the Snow Ablation
Optimizer (SAO) with tent map, adaptive t-distribution, and the opposites learning mechanism is
introduced to determine the parameters in the prediction model. On this basis, based on the operation
data of an ultra-supercritical coal-fired unit in Xinjiang, China, the boiler energy consumption dataset
under variable load is established based on the theory of fuel specific consumption. The proposed
prediction model is used to predict and analyze the boiler energy consumption, and a comparison is
made with other common prediction methods. The results show that compared with the LSSVM,
BP, and ELM prediction models, the average Relative Root Mean Squared Errors (aRRMSE) of the
LSSVM model using ISAO are reduced by 2.13%, 18.12%, and 40.3%, respectively. The prediction
model established in this paper has good accuracy. It can predict the energy consumption distribution
of the boiler system of the ultra-supercritical coal-fired unit under variable load more accurately.

Keywords: boiler system; least-squares support vector machine; mean impact value; prediction of
energy consumption; snow ablation optimizer

1. Introduction

The combination of practical engineering problems with data analysis and mechanism
interpretation has become increasingly popular with the rapid development of big data
analysis technology and intelligent machine learning algorithms [1,2]. In this context,
historical operation data of coal-fired units is particularly important for optimizing unit
operation and diagnosing unit status. Simple mechanism analysis can be misleading due
to experience, hence the need for a more comprehensive approach. Many researchers are
now focusing on the intersection of mechanism analysis, data mining, machine learning,
and other related disciplines. The operation, control, design, and transformation of the unit
are studied using extensive historical data.

Currently, numerous scholars have utilized machine learning and data mining tech-
niques in researching thermal power units. Yang et al. [3] proposed a soft-sensor model
for NOX concentration at the SCR outlet based on the gated cyclic unit neural network.
Yang et al. [4] conducted a study on the optimization of the collaborative recovery system
of flue gas waste heat and water in coal-fired units. Sun et al. [5] established an NOX
prediction model for coal-fired units using Bayesian optimization combined with random
forest, providing assistance for NOX emission control. Dai et al. [6] proposed a hierarchical
clustering retrieval strategy based on the fuzzy C-means clustering algorithm to construct
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an offline database; they also employed a multi-attribute decision-making method that com-
prehensively considered multiple objectives to extract optimal decision samples from the
database and then guide the load scheduling scheme of power plants. Blackburn et al. [7]
conducted dynamic optimization for variable load control of coal-fired units using the
particle swarm optimization algorithm and LSTM. Wang et al. [8] used clustering and
prediction algorithms to build a multi-objective regression model to predict and control
boiler efficiency, improve boiler combustion efficiency, and reduce NOx emissions.

In the study of unit energy consumption, researchers typically employ data analysis
and other methods to diagnose and optimize unit operation. Fu et al. [9] utilized the fuzzy
rough set attribute reduction method to reduce the main characteristic parameters that
affect unit energy consumption. They then established a sensitivity analysis model for
unit energy consumption using support vector machines. Cai [10] proposed an intelligent
algorithm that combines a generalized neural network and average influence value to
classify the factors that affect the energy consumption of units. They established an energy
consumption characteristic model for large coal-fired units. Xiao et al. [11] used RapidMiner,
a data mining platform, to establish a prediction model for exergic efficiency of the unit,
and explored the improvement space of exergic loss based on the random simulation
method, so as to obtain the best working conditions of the unit under various loads and
corresponding control index parameters during actual operation. Sun. [12] obtained the
nonlinear relationship between power supply coal consumption and various operation
control parameters by using a random forest algorithm, and combined with a genetic
algorithm, proposed the unit operation optimization strategy. Wan et al. [13] developed
a neural network-based model to predict steam flow at the outlet of cogeneration boilers.
Wang et al. [14] developed a hierarchical energy efficiency index system for unit economic
diagnosis. They analyzed the variation characteristics of key energy consumption indicators
on the boiler and turbine sides through mechanism research and actual data trends, thus
helping to analyze the causes of abnormal operation.

In many previous studies, researchers mainly used data analysis and other methods
to carry out unit diagnosis, operation optimization, and other aspects of the work, and the
accuracy of the research model will have a great impact on the effectiveness of the work.
Currently, the primary prediction models consist of the neural network and support vector
machine (SVM) [15]. The Least-Squares Support Vector Machine (LSSVM) model possesses
the strengths of both, including the strong generalization ability and global optimization of
SVM, while avoiding the issues of overfitting in neural networks and time-consuming training
in SVM [16]. However, setting the hyperparameters in the LSSVM model is often based on
experience, which can lead to problems such as low efficiency and a lack of precision. To
address this issue, it is necessary to use optimizers to obtain the best hyperparameters.

Since China announced the ‘30·60’ decarbonization goal, traditional coal-fired units
have increasingly participated in deep peak regulation to adapt to the intermittency and
volatility of new energy power generation. This has led to an increase in load adjustment
frequency and range during actual production. Exergy analysis reveals that the energy
consumption of the boiler, which is the part of the unit with the greatest energy loss, has
also changed significantly. To help staff in comprehending the operational status of a
coal-fired unit under flexible peak load balancing and to support the optimization of the
boiler system’s operation, this study focuses on a 660 MW coal-fired unit as the research
subject. A prediction model for the boiler system’s energy consumption and distribution
is established, and a prediction analysis of the boiler’s energy consumption is conducted.
The paper presents the main contributions as follows: (1) Construction of the boiler energy
consumption dataset using the theory of fuel specific consumption. The mean impact value
algorithm is used to extract eigenvalues, resulting in a more comprehensive model input
with a stronger correlation to boiler energy consumption compared to other manual input
specification methods. (2) The snow ablation algorithm was improved using tent map,
adaptive t-distribution, and the opposites learning mechanism to enhance its optimization
ability and speed. (3) By adjusting the model’s hyperparameters using an optimization
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algorithm instead of manually setting the hyperparameters, the prediction model can better
align with the operation of a specific unit, resulting in improved performance.

2. Improved Snow Ablation Optimizer
2.1. Snow Ablation Optimizer

The Snow Ablation Optimizer (SAO) is a kind of meta-heuristic algorithm. The source
of inspiration for it arises from the sublimation and melting behavior of snow, and it shows
strong performance in comparison with other optimizers [17]. The initial population is
generated using the following formula:

Xi,j = r ×
(
UBj − LBj

)
+ LBj (1)

where: i = 1, 2 . . . N; j = 1, 2, . . . Dim; N is the population number; Dim is the search space
dimension. UBj and LBj are the upper and lower limits of the j-dimensional, respectively.
r is the random number between 0 and 1.

There are two strategies for the algorithm to iterate:

(1) The exploitation phase

Instead of expanding with a highly decentralized feature in the solution space, search
agents are encouraged to exploit high-quality solutions around the current best solution
when the snow converts into liquid water by melting behavior. The algorithm updates
the regions where the optimal solution may exist based on the distribution of the current
solution. The mathematical expression for this process is as follows:

Xt+1 = m × Xb + BMt ⊗
(
θ1 × (Xb − Xt) + (1 − θ1)×

(
X − Xt

))
(2)

where: t is the number of current iterations; Xt+1 is the new individual based on Xt; Xb is
the best individual in the population obtained in the t-th iteration; BMt indicates a vector
including random numbers on the basis of Gaussian distribution denoting the Brownian
motion; X is the average of all individuals in the population; Xt is the individual in the
population obtained in the t-th iteration; m and θ1 are the algorithm parameters.

(2) The exploration phase

In the exploration phase, after snow or liquid water are formed into water vapor by
sublimation or evaporation, the water vapor moves in space without rules and explores
through irregular movement. Using the randomness and irregularity of Brownian motion in
the SAO algorithm makes it easier for individuals in the population to explore valuable and
potential areas in the exploration process. The mathematical expression for this is as follows:

Xt+1 = Et + BMt ⊗
(
θ2 × (Xb − Xt) + (1 − θ2)×

(
X − Xt

))
(3)

where: Et refers to the individual randomly selected between the top three individuals
with fitness values in the population and X; θ2 is an algorithm parameter.

2.2. Algorithm Improvement Strategy

The SAO algorithm has two defects. The first is that during the algorithm’s execu-
tion, the population is divided into two groups, each executing one of the two strategies
mentioned above. After each iteration, an individual executing the exploitation strategy is
randomly selected to switch to the exploration strategy. This means that the exploitation
phase ends after N/2 iterations. However, this processing method may not be conducive
to a comprehensive solution. Therefore, in this paper, when t ≤ (2/3)T, exploitation and
exploration occur in parallel, and the number of individuals is in a 1:2 ratio, and when
t ≤ (2/3)T, all individuals execute the exploration strategy. The second issue is that the
original algorithm completely discards the old individual after each iteration, yet the new
individual may be worse than the old one. Therefore, this paper compares the fitness of the
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old and new individuals, retains the better one, and improves the improved Snow Ablation
Optimizer (ISAO) using the following three methods.

(1) Tent map

The generation rule for the initial population has a significant impact on the efficiency
of the intelligent optimization algorithm. A uniformly distributed population in the initial
stage of the algorithm can expand the search range of the algorithm, leading to improved
convergence speed and solving accuracy. To ensure a more comprehensive and balanced
initial population, a tent map is used in this paper [18], which is defined as follows:

p(n+1) =

{
pn/τ , pn ≤ τ
(1−pn)
(1−τ)

, pn > τ
(4)

where pn and p(n+1) are tent sequence values from the tent map and they are used to
replace r in Formula (1); τ is the threshold with a value of 0.7. The random number r used
in Formula (1) is replaced by the generated tent sequence values.

(2) Adaptive t-distribution

The adaptive t-distribution’s probability density function is given by [19]:

p(x) =
Γ
(

n+1
2

)
√

nπΓ
( n

2
) ×

(
1 +

x2

n

) n+1
2

(5)

When n equals 1, p(n) ∼ C(0, 1), it is a Cauchy distribution. As n increases, the
t-distribution approaches normality. When n → ∞ , p(n) → N(0, 1) , it is approximate
Gaussian distribution. This paper uses the adaptive t-distribution and its mutation opera-
tors λ to update the potential regional locations of the optimal solution determined by the
exploitation strategy. This improves the algorithm’s global search ability. The variable n
represents the current iteration number t, and the formula for updating the position is as
follows:

X′
t = Xt + λptXt (6)

where: X′
t is the updated individual; λ = 1 − t/(T − 1). With the increase of the number of

iterations, its effect of controlling variation becomes weaker.

(3) Opposites learning mechanism

During the algorithm’s exploration stage, the opposites learning mechanism [20] was
used to prevent local optimization. After each iteration, the optimal and worst solutions were
selected, and their corresponding opposite solutions were calculated. The better solution was
then retained. The opposite solution Xop

t was obtained from the following formula:

Xop
t =

LB + UB
2

+
LB + UB

2θ
− Xt

θ
(7)

In this paper, θ = 1, and the above formula is standard opposites learning.

(4) Quick search strategy

After implementing the aforementioned strategies, the algorithm’s optimization ability
was enhanced, albeit at a slight cost to its speed. Consequently, this paper employs the
following formula to update the exploration stage, with the aim of bringing the entire
population closer to the optimal solution and improving the algorithm’s efficiency.

X′
t = X + r ×

(
X − Xt

)
(8)

2.3. ISAO Optimization Ability Test

To test the effectiveness of ISAO, this paper selected several test functions from the
CEC2017 standard function test library for optimization ability testing. Table 1 displays
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the expressions of the test functions and their corresponding parameters. ISAO was
compared with commonly used optimizers such as AO [21], GSA [22], GWO [23], WOA [24],
AVOA [25], and DBO [26]. Each function was tested 30 times, and the results were averaged.

Table 1. Test functions form CEC2017.

Test Function Dimension Search Range Optimal Solution

Shifted and Rotated Zakharov Function 10 [−100, 100] 300
Shifted and Rotated Non-Continuous

Rastrigin’s Function 10 [−100, 100] 800

Hybrid Function 3 3 [−100, 100] 1300
Hybrid Function 6 5 [−100, 100] 1800

Composition Function 3 4 [−100, 100] 2300
Composition Function 9 3 [−100, 100] 2900

Table 2 shows that ISAO outperforms SAO and other algorithms in multiple test
functions, achieving a significantly lower optimal value and demonstrating better ability
to escape local optima. Figure 1 displays the iterative graph of fitness values for different
algorithms. Although the graph shows that ISAO is not the fastest of all optimizers in
terms of optimization speed, it requires fewer iterations to achieve convergence compared
to SAO, as seen in graphs (a), (c), and (d). In general, the ISAO algorithm has advantages
in terms of convergence speed and optimization ability.

Table 2. Comparison of different optimizers.

Test Function Optimizers Optimal Fitness Optimizers Optimal Fitness

F3

ISAO 300.000 DBO 710.895
SAO 326.937 GSA 9790.301
AO 3199.818 GWO 5257.905

AVOA 309.023 WOA 1465.277

F8

ISAO 807.057 DBO 832.833
SAO 815.919 GSA 830.844
AO 837.849 GWO 812.931

AVOA 815.919 WOA 857.138

F13

ISAO 3452.194 DBO 6783.287
SAO 3492.485 GSA 8377.862
AO 16,804.696 GWO 17,089.842

AVOA 28,475.712 WOA 11,839.759

F18

ISAO 6365.220 DBO 38,942.046
SAO 38,069.597 GSA 15,188.760
AO 19,341.321 GWO 21,467.438

AVOA 30,375.804 WOA 17,808.072

F23

ISAO 2607.639 DBO 2640.688
SAO 2619.127 GSA 2833.831
AO 2673.621 GWO 2620.237

AVOA 2644.219 WOA 2631.444

F29

ISAO 3169.441 DBO 3247.289
SAO 3196.178 GSA 3422.736
AO 3349.266 GWO 3183.158

AVOA 3310.118 WOA 3501.046
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Figure 1. Fitness values of different algorithms. labels (a–f) display the fitness value iteration curves of
different optimization algorithms applied to the test functions F3, F8, F13, F18, F23, and F29, respectively.

3. Boiler Energy Consumption Prediction Model
3.1. Mean Impact Value

The selection of input features has a direct impact on the accuracy and computational
efficiency of the model. Currently, the Mean Impact Value (MIV) algorithm is considered
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one of the best methods for achieving data dimensionality reduction when combined with
neural networks [27–29]. The MIV algorithm measures the importance of independent
variables to the dependent variable by comparing the absolute value of the MIV of each
feature. The positive and negative values of the variable indicate a positive or negative
correlation between the independent and dependent variables, respectively.

Since the MIV algorithm needs to be combined with a neural network to realize feature
screening, a back propagation neural network (BP) was selected in this paper. Firstly, a
BP model was constructed using the training samples. Secondly, each feature in the training
sample was increased or decreased by 10% on the original basis to form two new training
samples. Finally, the BP model was used to predict and calculate the new sample data.
The MIV value of the feature on the output was obtained by arithmetically averaging the
difference between the two results, which reflects the influence of the feature on the output
after proportional increase or decrease. Figure 2 displays the specific flow chart.
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3.2. Least-Squares Support Vector Machine

Suykens et al. [30,31] developed the Least-Squares Support Vector Machine (LSSVM)
by transforming the solution of the original quadratic programming problem into the
solution of linear equations. The mathematical theory is presented below.

For nonlinear regression samples {xi, yi} (i = 1, 2, 3, . . ., n; xi ∈ Rn), a mapping function
is introduced to map them to a high-dimensional space for linear regression. In this space,
LSSVM is expressed as:

y = ωT φ(x) + b (9)

where: ωT is the weight vector; b is the offset quantity.
The function and constraints are objective and clearly stated: minJ(ω, ζ) = 1

2 ωTω + 1
2 γ

n
∑

i=1
ζ2

i

s.t.yi = ωT φ(xi) + b + ζi

(10)

where: ζi is the relaxation variable; γ is a regularization parameter.
Introducing the Lagrange multiplier α = [α1, . . ., αn], we obtain:

L(ω, ζ, b, α) = J −
n

∑
i=1

αi

[
ωT φ(xi) + b + ζi − yi

]
(11)

The partial derivative of Formula (11) is obtained and solved, and the kernel function
K
(

xi, xj
)
= φ(xi)

T φ
(

xj
)

is introduced. The expression for the regression function of the
LSSVM model can be obtained as follows:

yi =
n

∑
j=1

αiK
(
xi, xj

)
+ b (12)
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3.3. MIV-ISAO-LSSVM

Literature [32] investigated the effectiveness of different kernel functions when used in
conjunction with the LSSVM model for wind power prediction. The results indicated that the
radial basis function (RBF) produced the lowest prediction errors. This paper selected RBF as
the kernel function for the prediction model. The mathematical expression is as follows:

K
(
xi, xj

)
= e−

∥xi−xj∥
2

2σ2 (13)

The prediction model based on the RBF kernel function requires optimization of two
hyperparameters: the kernel function parameter σ and the regularization parameter γ. The
search area for σ and γ are set as [0.1, 1000] and [0.01, 100], respectively.

To evaluate the model’s performance comprehensively, this paper adopted the av-
erage Relative Root Mean Squared Error (aRRMSE) [33,34] as the fitness function of the
optimizers. aRRMSE measures the mean square error of the model’s prediction results on
all target outputs relative to the sample mean of the test set. The smaller it is, the better the
performance of the model on the test set. The formula for calculating aRRMSE is as follows:

aRRMSE =
1
q

q

∑
j=1

√√√√√√∑N
i=1

(
y(j)

i − ŷ(j)
i

)2

∑N
i=1

(
y(j)

i − y(j)
)2 (14)

where q represents the number of output targets of the model, and N represents the number
of samples. The variable y(j)

i represents the actual value of target j corresponding to test set

sample i, while ŷ(j)
i represents the predicted value of target j corresponding to sample i of

the test set. Finally, y(j) represents the average value of the actual value of target j in all
sample points of the test set.

After determining the optimization parameters and fitness function, the ISAO algo-
rithm was used to establish the LSSVM prediction model, as shown in Figure 3.

The model operates as follows:

(1) Clean the dataset and select features;
(2) Specify the number of algorithm populations, set the maximum number of iterations,

and generate initial populations using the tent map;
(3) Compare the fitness values of all individuals in the population, determine the three

individuals with the smallest fitness values, and calculate the average of all individuals
in the population X;

(4) Perform population iteration. The exploitation stage follows Formulas (2) and (6), while
the exploration stage follows Formulas (3) and (8). The fitness values of both old and new
individuals are compared, and only those with lower fitness values are kept;

(5) During the later stage of the algorithm, Formula (7) is used to generate opposing
individuals, and their fitness values are also compared.

(6) Upon completion of the final iteration, the optimal individual’s ‘σ’ and ‘γ’ values are
extracted and used to train the LSSVM, resulting in an LSSVM prediction model that
has been optimized by the ISAO algorithm.
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to sample i of the test set. Finally, ( )jy  represents the average value of the actual value of 
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4. Example Analysis
4.1. Data Preprocessing
4.1.1. Data Source

The study is based on the operating data of a 660 MW ultra-supercritical coal-fired unit in
Xinjiang, China, for the whole month of July 2022. The data collection interval is 5 min and
the load range is 25–97% (the highest load is 640.77 MW and the lowest load is 164 MW). The
dataset contains 166 characteristics and a total of 8929 sample points, some of which are shown
in Table 3. It should be noted that the data presented in the table are a simplified version of the
actual data collected. For instance, the table only shows one measuring point for the steam
temperature before the reheater desuperheater, whereas there are actually six measuring points;
the data presented in the table are the arithmetic average of these six points.

Table 3. The original dataset.

Time Load
(MW)

Main Steam
Pressure (MPa)

Main Steam
Temperature (◦C)

Main Steam
Flow Rate (t·h−1) . . . Steam Temperature before

Reheater Desuperheater (◦C)
Steam Temperature at the

Inlet of Final Reheater (◦C)

01/07/2022
00:00:00 606.41 27.81 584.20 1757.49 . . . 481.47 469.63

01/07/2022
00:05:00 607.06 27.84 584.28 1759.91 . . . 481.43 470.82

01/07/2022
00:10:00 604.98 27.76 583.70 1749.93 . . . 480.62 473.70

01/07/2022
00:15:00 605.52 27.77 583.87 1752.29 . . . 480.87 473.65

01/07/2022
00:20:00 604.50 27.74 583.38 1748.92 . . . 480.40 472.55

. . . . . . . . . . . . . . . . . . . . . . . .
01/08/2022

0:00:00 605.87 26.57 580.73 2001.80 . . . 479.83 476.47
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4.1.2. Calculating the Energy Consumption of the Boiler System

According to the theory of fuel specific consumption [35,36], assuming that the output
power of the unit is P and the amount of fuel consumed is B, exergy is embodied in ep and
e f , respectively, and the sum of irreversible loss of chemical energy to electrical energy is
∑ Ii, we can obtain:

Be f = Pep + ∑ Ii (15)

Divide the left and right by P · e f to obtain the unit consumption analysis model of
power generation:

b = bmin + ∑ bi (16)

where b = B/P is the actual power consumption of the unit; ep is the exergy of electrical
energy of 1 kW·h/(kW·h); e f is the exergy of standard coal of 7000 Kcal, and bmin = ep/e f is
the theoretical power generation unit consumption of 123 g/(kW·h). This means that without
any energy loss, 123 g of standard coal can produce 1 kW·h of electricity; bi = Ii/

(
P·e f

)
is the

additional energy consumption of the unit corresponding to the irreversible loss of the i-th link
or equipment.

Using the above theory, we calculated the irreversible loss of each piece of boiler
equipment, such as the economizer, water wall, low temperature superheater, platen
superheater, final superheater, low temperature reheater, final reheater, and air preheater.
Then, we calculated the energy consumption of each piece of equipment and summed them
up to obtain the integral boiler energy consumption. Some of the calculation results are
shown in Table 4.

Table 4. Energy consumption of boiler system equipment.

Time Economizer
/(g·(kW·h)−1)

Water Wall
/(g·(kW·h)−1)

Low Temperature
Superheater /(g·(kW·h)−1)

Platen Superheater
/(g·(kW·h)−1) . . . Integral Boiler System

/(g·(kW·h)−1)

01/07/2022
00:00:00 7.367 60.757 19.311 8.059 . . . 152.218

01/07/2022
00:05:00 7.420 60.980 19.211 7.949 . . . 152.463

01/07/2022
00:10:00 7.500 61.840 19.136 7.791 . . . 152.946

01/07/2022
00:15:00 7.487 61.817 19.274 7.615 . . . 152.883

01/07/2022
00:20:00 7.499 61.782 19.293 7.478 . . . 152.732

. . . . . . . . . . . . . . . . . . . . .
01/08/2022

00:00:00 7.164 60.084 19.708 9.086 149.170

Using the water wall as an example, the calculation results include both the irreversible loss of heat transfer and
the irreversible loss of chemical energy from coal converted into heat energy.

Figure 4 presents a schematic diagram of the energy consumption of the boiler system at
different loads. The average energy consumption of the unit, based on 872 sample points with
over 95% load, was approximately 142.72 g/(kW·h). When the load was below 40%, the energy
consumption began to rise significantly. The load dropped below 30% for 44 sample points,
and the average energy consumption was about 178.28 g/(kW·h), which was an increase of
29.56 g/(kW·h) compared to 95% load or above, representing an increase of about 20.7%.

Additionally, 141 sample points within the load range of 626–628 were selected, that is,
the unit was operating close to 95% load. The boiler system’s minimum energy consumption
within the range was then statistically obtained to be 140.21 g/(kW·h), while the maximum
was 149.86 g/(kW·h), resulting in a difference of 9.65 g/(kW·h). These results indicate a
significant variation in energy consumption for the target unit’s boiler system, highlighting
a considerable potential for energy savings.
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Figure 4. Coal consumption change chart of the unit boiler system.

4.1.3. Removing Outliers

The accuracy of the measuring instrument and means affects the unit’s data, leading to
potential errors. These errors can increase model inaccuracies and weaken the effectiveness
of data mining. Therefore, it is crucial to clean abnormal data before establishing an
energy consumption prediction model. For instance, it was discovered that the coal feed
measurement point of a coal mill was not 0 when the mill was shut down, but instead of
being a small value. To rectify such clearly erroneous data, it was artificially modified to 0.
In addition, using the unit operating at 606–607 MW as an example, there are 730 samples
in this range. Figure 5 shows the distribution of energy consumption of the boiler system
under this condition. It was discovered that the energy consumption of the boiler system
differed due to the difference in its operating state and regulation mode, despite having a
similar unit operating load. However, it can be assumed that the energy consumption of
the boiler system follows a normal distribution under the same working conditions, with
particularly high or low energy consumption being rare cases.

Figure 5. Probability distribution of boiler energy consumption.

Based on the analyses above, the 3-sigma criterion was selected for outlier detection in
this paper. First, the dataset was arranged in descending order according to the load order,
and the interval was divided into intervals of 50 samples; then, the mean e and standard
deviation µ of each interval were calculated, and the samples that were not in the range
(e − 3µ, e + 3µ) were recorded as outliers; finally, to ensure continuity and coherence of the
dataset, the Lagrange interpolation method was used to calculate a new value based on the
two samples preceding and following the outlier. The outlier was then replaced with this
new value. Taking the main steam flow rate and main steam pressure as an example, their
distribution with unit load before and after data processing is shown in Figure 6. It can be
seen that after clearing outliers, the distribution of data was more stable and concentrated,
which is more in line with the actual trend.
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4.2. Feature Selection
4.2.1. Data Standardization

There are various types of measurement data for thermal power units, such as pressure,
temperature, flow rate, and other parameters. To eliminate the influence of different data dimen-
sions and numerical sizes before establishing the prediction model, this paper used extreme
value standardization to process the dataset. The formula for this process is given below:

x′ij =
xij − xmin

j

xmax
j − xmin

j
(17)

where: x′ij is the standardized data; xij is the j-th characteristic variable value of the i-th
sample data; xmin

ij is the minimum value of the j-th characteristic variable; xmax
ij is the

maximum value of the j-th characteristic variable.

4.2.2. Feature Selection Result

The MIV algorithm can be used to obtain the MIV value of each input feature for each
output. However, since this paper studies a multi-input and multi-output prediction model, the
MIV value of each feature for all outputs can be summed to obtain the MIV value of the feature
for the entire output. To ensure the objectivity of the research results, 10-fold cross-validation
was used for calculation, and the results were averaged.

As shown in Table 5, after taking the absolute value of MIV for each feature, they
were arranged in order of size. We were able to obtain the percentage of “sum of current
feature’s MIV” in “sum of all features’ MIV”, that is, the correlation degree of all variables
from the first feature to the current feature with the model output. In order to ensure the
model was more accurate, a threshold of 90% was selected, and the number of features in
the filtered dataset was reduced by 50% from 166 to 74.

Table 5. MIV values for each feature.

Features Absolute Value of MIV Sum of Current Feature’s MIV Percentage

main steam flow rate 1.4531 1.4531 0.1209
steam pressure at the outlet of final reheater 0.8112 2.2643 0.1884

feed water flow rate 0.7240 2.9883 0.2487
main steam pressure 0.5148 3.5031 0.2916

feed water temperature 0.4650 3.9681 0.3303
. . . . . . . . . . . .

flame intensity of furnace D 0.0002 12.0154 1.0000

There is a strong correlation between the features of a coal-fired unit. To simplify the
dataset, we used Spearman correlation to screen 74 features obtained for the second time.
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The threshold was set at 0.95, and redundant features were removed, resulting in a final
dataset of 26 features, and the features of the processed dataset are shown in Table 6.

Table 6. Model input features after filtering.

Number Feature Number Feature Number Feature

1 main steam flow rate 10
steam temperature

at the outlet of
platen superheater

19 flue gas temperature at the
outlet of air preheater

2 main steam pressure 11 oil supply master pipe
flow rate 20 integrated temperature of

cold end of air preheater

3
steam temperature
at the outlet of low

temperature superheater
12

water pressure
at the inlet of low

temperature economizer
21 coal–water ratio

4 steam temperature at the
outlet of separator 13

the outlet air temperature
at the outlet of secondary

air heater
22 separator

wall temperature

5 steam temperature at the
inlet of final superheater 14 steam temperature at the

outlet of final reheater 23 SO2 concentration at the
inlet of chimney

6 total boiler air volume 15 steam temperature at the
inlet of final reheater 24 wind pressure at the

outlet of mill

7 steam temperature at the
outlet of final superheater 16

temperature of primary
air at the outlet of

air preheater
25

flue gas temperature
at the outlet of low

temperature superheater

8 intermediate superheating 17
the temperature

of the steam before the
reheater desuperheater

26
flue gas temperature

at the inlet of low
temperature superheater

9 water temperature at the
outlet of condenser 18

steam temperature
at the inlet of low

temperature reheater

4.3. Model Prediction Results

The multi-objective prediction model MIV-ISAO-LSSVM was established by randomly
dividing the training and test sets in an 8:2 ratio. In addition to the aRRMSE mentioned
earlier, Mean Absolute Error (MAE) was also used to evaluate the model’s performance for
each output [33], which represents the average absolute error between the predicted and
true values of the test set. The formula for calculating MAE is as follows:

MAE =
1
N

N

∑
i=1

∣∣∣y(j)
i − ŷ(j)

i

∣∣∣ (18)

where N represents the number of samples. The variable y(j)
i represents the actual value

of target j corresponding to test set sample i, while ŷ(j)
i represents the predicted value of

target j corresponding to sample i of the test set.
To verify the effect of the LSSVM prediction model optimized by the ISAO algorithm,

we established LSSVM, BP, and ELM prediction models based on the same training and test
sets. For LSSVM, we set the hyperparameters σ and γ to 30 and 50, respectively, while BP
and ELM had a hidden layer containing seven nodes. We also used optimization algorithms
such as PSO, SSA, and WOA to optimize the LSSVM model. The three algorithms and the
ISAO algorithm were set to T = 50 and N = 20.

Table 7 shows the evaluation results of the prediction models. The aRRMSE of the
ISAO-LSSVM model have reduced by 2.13%, 18.12%, and 40.3% compared to the LSSVM,
BP, and ELM prediction models, respectively. This suggests that an optimization algorithm
can be more effective in determining hyperparameters that align with the actual conditions
of the research unit, resulting in better prediction model results than artificially set hyper-
parameters. Upon comparing the LSSVM prediction model before and after optimization,



Processes 2024, 12, 422 14 of 16

it was discovered that the optimized model had a higher MAE value in the index of air
preheater energy consumption. This indicates a larger deviation in its prediction of air pre-
heater energy consumption. This is due to the optimization algorithm’s aim of improving
the model’s overall performance, rather than focusing on a single output index.

Table 7. Evaluation results of different algorithms.

Evaluation Index ISAO-LSSVM LSSVM BP ELM PSO-LSSVM SSA-LSSVM WOA-LSSVM

aRRMSE 0.2747 0.2807 0.3355 0.4605 0.2747 0.2747 0.2747

MAE

integral boiler 1.0690 1.0811 1.3469 1.6693 1.0689 1.0689 1.0689
economizer 0.1435 0.1516 0.2177 0.2231 0.1435 0.1435 0.1435
water wall 0.6044 0.6105 0.8596 1.1897 0.6044 0.6044 0.6044

low temperature superheater 0.2072 0.2029 0.2578 0.5851 0.2072 0.2072 0.2072
platen superheater 0.1319 0.1335 0.1413 0.2895 0.1319 0.1319 0.1319
final superheater 0.0778 0.0821 0.0988 0.1604 0.0778 0.0778 0.0778

low temperature reheater 0.1169 0.1203 0.1433 0.2060 0.1169 0.1169 0.1169
final reheater 0.0747 0.0752 0.1418 0.1475 0.0747 0.0747 0.0747
air preheater 0.1772 0.1737 0.2108 0.2892 0.1772 0.1772 0.1772

The number of iterations where the optimal
value is found 6 / / / 20 14 19

The LSSVM prediction model optimized by the four algorithms had the same performance
in the evaluation index. The model hyperparameters determined by different optimization
algorithms are basically the same; the values of σ and γ determined by ISAO, PSO, SSA,
and WOA are 37.7441 and 13.1996, 37.8332 and 13.2014, 37.7441 and 13.1996, and 37.7347
and 13.1998, respectively. Based on the research problem presented in this paper, it has been
found that the choice of optimization algorithm has minimal impact on the effectiveness of the
prediction model. However, the ISAO algorithm requires the least number of iterations to find
the optimal value, which can effectively reduce computing costs.

5. Conclusions

This paper proposes a boiler system energy consumption prediction model based
on the LSSVM algorithm to help analyze the change in energy consumption of ultra-
supercritical coal-fired units in the Xinjiang region under flexible peaking demand. The
SAO algorithm has been improved to enhance the prediction ability of the original LSSVM
algorithm. Additionally, the MIV algorithm has been introduced to optimize the model
input and ensure comprehensive input information. This results in accurate prediction of
the boiler system’s energy consumption. The improved algorithm and model have been
verified using historical operation data from the target unit.

(1) Using the single consumption analysis method, we calculated and analyzed the energy
consumption distribution of the boiler system in the target unit based on field measurement
data under variable load conditions. The results indicate that when the load of the target
unit is reduced to less than 30%, the energy consumption of the boiler system increases by
approximately 20.7% compared to its consumption under 95% load operation.

(2) Compared to other optimization algorithms, the strategy proposed in this study
improves the convergence speed of the ISAO algorithm. Although the performances
of LSSVM prediction models obtained by different optimization algorithms are similar,
the ISAO algorithm can efficiently and accurately obtain the hyperparameters of
LSSVM for boiler system energy consumption.

(3) A MIV-ISAO-LSSVM model was developed to predict the energy consumption of
ultra-supercritical coal-fired boilers under various load conditions. The MIV algorithm
reduces the number of dataset features from 166 to 26. This greatly simplifies the
model and identifies the main factors that affect the energy consumption of the boiler
system. The hyperparameters of the LSSVM model are obtained through the ISAO
optimization algorithm. The model demonstrated superior accuracy, reliability, and
applicability compared to other models.
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The approach to modelling in this paper can be applied to other boilers, but it should
be noted that different boilers have different structures or equipment, so the inputs and
outputs of the model will be different from those in this paper. The historical data used to
train the model for predicting boiler system energy consumption should cover the entire
range of working conditions as much as possible. The number of samples should also
be maximized to improve the accuracy and applicability of the model across all working
conditions. In the future, we aim to integrate the prediction model presented in this
paper with boiler control to offer parameter guidance for optimizing boiler operation and
achieving low-energy operation without compromising the boiler’s normal output.
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