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Abstract: Damage localization in GFRP (glass-fiber-reinforced polymer) composite plates is a crucial
research area in marine engineering. This study introduces a feedback-based damage index (DI)
combined with multi-label classification to enhance the accuracy of damage localization and address
scenarios involving multiple damages. The research begins with the creation of a modal database
for yachts’ GFRP composite plates using finite element modeling (FEM). A method for deriving a
feedback-weighted matrix, based on the accuracy of the DI, is then developed. Sensitivity analysis
reveals that the feedback DI is 50% more sensitive than the traditional DI, reducing false positives
and missed detections. The associated feedback-weighted matrix depends solely on the structural
shape, ensuring its transferability. To address the challenge for localizing multiple damages, a
multi-label classification approach is proposed. The synergy between the feedback optimization
and multi-label classification enables the rapid and precise localization of multiple damages in
GFRP composite plates. Modal testing on damaged GFRP plates confirms the enhanced accuracy
for combining the feedback DI with multi-label classification for pinpointing damage locations.
Compared with traditional methods, this feedback DI method improves sensitivity, while multi-label
classification effectively handles multiple damage scenarios, enhancing the overall efficiency of the
damage diagnosis. The effectiveness of the proposed methods is validated through experimentation,
offering robust theoretical support for composite plate damage diagnostics.

Keywords: GFRP; feedback optimization; multi-label classification; damage localization

1. Introduction

Compared with traditional metals, GFRP exhibits higher specific strength and stiff-
ness, excellent corrosion resistance, and superior fatigue performance [1,2]. Consequently,
GFRP is increasingly replacing traditional metals in structural applications and has had
widespread use in marine structures. During operation, these materials may sustain dam-
age due to factors such as fatigue loads, impacts from external objects, and environmental
conditions (e.g., humidity and temperature). Notably, even low-speed impacts can inflict
internal damage on GFRP structures, leading to matrix cracking, delamination, fiber frac-
ture, and other forms of damage. If such damage is not promptly detected, it could result
in catastrophic failure [3,4]. Therefore, the early detection of damage in GFRP structures
using non-destructive testing (NDT) methods is of paramount importance.

Traditional NDT techniques, such as ultrasonics [5,6], acoustic emission [7,8], and
thermal imaging [9], primarily focus on detecting material discontinuities, like cracks
and defects, to determine the presence of damage within or on the surface of structures.
However, these methods have notable limitations, including stringent requirements for the
testing environment, restrictions on the size of the structure that can be tested, and high
operational costs, rendering them less suitable for marine engineering applications [10]. In
contrast, vibration-based non-destructive diagnostic techniques offer significant benefits,
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such as the capability to globally assess large structures at a lower cost. Recent advance-
ments in control technology, signal processing, and algorithm development have further
enhanced the efficacy of vibration-based non-destructive diagnostic methods [11,12].

The technology of vibration-based non-destructive diagnosis primarily explores the
relationship between modal parameters and structural damage. The diagnostic theory
utilizing natural frequencies is relatively mature, as these frequencies are easily obtainable
and have been commonly researched from earlier studies. Cawley et al. [13] introduced
a diagnostic method based on the variation ratios of natural frequencies, demonstrating
through matrix perturbation theory that the ratio of the natural frequency changes in
any two orders before and after the damage is solely a function of the damage location.
Hearn [14] proposed using the natural frequency square variation ratio for diagnosing
structural damage locations. Wu et al. [15] investigated damage diagnosis in a cantilever
beam using natural frequencies and modal shapes. Despite being an overall indicator
of structural stiffness, natural frequencies exhibit low sensitivity, limiting their use for
damage diagnosis primarily to the localization of single damages in simple structures. The
diagnosis of multi-damaged structures using natural frequencies often leads to errors. The
diagnostic method based on modal shapes, typically combined with perturbation theory,
faces challenges when the area or degree of structural damage is minimal, resulting in
insignificant changes in modal shapes. Thus, modal shapes are generally used only to
confirm the presence of damage [16]. Modal strain energy (MSE) proves to be effective
for diagnosing structural damage using low-order incomplete modes. Seyedpoor [17] and
Lale Arefi [18] discussed a two-step MSE diagnosis approach for structural damage. Fu
et al. [19] applied the modal strain energy change ratio (MSECR) for identifying damage
locations in plate structures and proposed a method to mitigate the nearby effect, reducing
mislocalization. Wei et al. [20] optimized the damage-degree diagnosis using finite element
models and the strain energy method based on the response’s sensitivity. Although MSE
is highly practical, calculating a structure’s modal strain energy requires computing the
element stiffness matrix, which can impose a significant computational burden.

Compared to modal shapes and natural frequencies, modal curvature offers higher
sensitivity and requires fewer computations than MSE, presenting a wide scope for ap-
plication in structural damage diagnosis. Pandey [21] was the first to suggest the use of
modal curvature for damage diagnosis by calculating the modal curvature of a simply
supported beam from modal shapes and verifying the method’s accuracy. Abdel Wahab
and De Roeck [22] introduced a one-dimensional modal-curvature-based DI that could
enhance the accuracy of damage diagnosis, demonstrating its effectiveness with numerical
data from beam models. Long Viet Ho [23] expanded this approach to two-dimensional
models and defined the DI for plate structures. In conclusion, for large-scale structures, like
ships, NDT methods grounded in modal parameters are the most apt. Among these, the
modal-curvature-based technique stands out for its ability to diagnose multiple damages
and its minimal computational demand.

In recent years, machine-learning technology has emerged as a significant research
direction in the field of damage diagnosis [24]. Notably, multi-label classification technol-
ogy, with its capability to process complex data patterns, has demonstrated considerable
promise across various domains, including image recognition, text classification, and med-
ical diagnosis [25]. The adoption of this technology in damage diagnosis, particularly
for addressing complex damage patterns and interactions between damages, offers an
effective approach.

Recent research highlights that deep-learning technologies, such as convolutional
neural networks (CNNs) [26] and recurrent neural networks (RNNs) [27], excel in tackling
multi-label classification challenges. Their capacity to accurately capture and classify
complex data patterns positions them as particularly effective in multi-label classification
applications, thereby enhancing their utility and efficiency in the field of damage diagnosis.

For composite plates featuring multiple damage locations, traditional methods of
damage localization exhibit a lack of sensitivity, complicating the precise identification of



Processes 2024, 12, 414 3 of 26

damage sites. In response, this paper introduces a method termed “feedback optimization”.
This approach enhances sensitivity and accuracy in damage localization by analyzing
changes in modal parameters and integrating them with optimization algorithms. The in-
corporation of a weighting mechanism within feedback optimization facilitates the adaptive
adjustment of the DI calculation method, catering to diverse damage characteristics. This
significantly boosts the sensitivity and precision of damage localization in multi-damage
scenarios. Additionally, this paper investigates the integration of the feedback optimization
method with multi-label classification technology. This synergistic approach capitalizes on
the robust data processing capabilities of multi-label classification to concurrently detect
and pinpoint multiple damage sites within a structure. By combining these two methods,
not only the accuracy for identifying multiple damage points can be improved but also the
interactions between damages can be handled, thus providing a more comprehensive and
efficient solution for assessing the integrity of composite plates.

The paper is organized as follows: Section 2 establishes the connection between
the stiffness of the composite plate structures and damage through the failure criteria of
composite plates, laying the foundation for the creation of a damaged-composite-plate
database. Section 3 introduces the feedback DI and studies its accuracy, sensitivity, and
transferability. Section 4 proposes a scheme for diagnosing multiple damages using multi-
label classification and explores the advantages for combining multi-label classification
with the feedback DI. The experimental results and discussion are provided in Section 5.
Finally, the conclusions are drawn in Section 6.

2. Failure Analysis of GFRP

To explore diagnostic methods for damage in GFRP, an analysis of GFRP failure
is essential. This analysis, grounded in the fatigue damage mechanism of laminated
composites, entails making failure judgments for predominant fatigue failure modes, such
as matrix cracking, matrix yielding, matrix-fiber shearing, fiber breakage, fiber yielding, and
delamination. The fatigue failure criteria adopted in this study are outlined in Table 1 [28].

Table 1. Fatigue failure criteria.

Failure Mode Failure Criterion

Matrix tensile cracking for
(
σyy > 0 )

(
σyy
XT

)2
+
(

σxy
Sxy

)2
+
(

σyz
Syz

)2
≥ 1

Matrix compressive cracking for
(
σyy < 0 )

(
σyy
YT

)2
+
(

σxy
Sxy

)2
+
(

σxz
Sxz

)2
≥ 1

Fiber tensile failure for (σxx > 0 ) σxx
XT

≥ 1

Fiber compressive failure for (σxx < 0 ) σxx
XC

≥ 1

Fiber-matrix shear out for (σxx < 0 )
(

σxx
XC

)2
+
(

σxy
Sxy

)2
+
(

σxz
Sxz

)2
≥ 1

Delamination in tension for (σzz > 0 )
(

σzz
ZT

)2
+
(

σxz
Sxz

)2
+
(

σyz
Syz

)2
≥ 1

Delamination in compression for (σzz < 0 )
(

σzz
ZC

)2
+
(

σxz
Sxz

)2
+
(

σyz
Syz

)2
≥ 1

σij represents the stress components in the principal material direction of each element,
while XT and XC denote the tensile and compressive strengths in the fiber direction,
respectively. YT and YC correspond to the transverse tensile and compressive strengths,
respectively. ZT refers to the tensile strength in the thickness direction. Sxy is the shear
strength between the fiber and the transverse surface, Syz is the shear strength between the
transverse and thickness directions, and Sxz is the shear strength between the fiber and the
thickness direction. S f represents the shear strength considering the fiber’s failure, Smyz is
the shear strength for matrix cracking in the transverse and thickness directions, and Slyz is
the shear strength for delamination in the transverse and thickness directions. Once failure
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occurs in an element, the material properties of that element change, and the distribution
of stress among the elements is consequently altered.

The damage process of GFRP can be categorized into two distinct phases: the gradual
degradation of the material properties, followed by an abrupt decline as follows:

(a) Gradual Degradation Model: For GFRP subjected to fatigue loads, the number of
cycles incrementally inflicts progressive damage on the constituents of the GFRP. This
sequential damage culminates in a gradual degradation in the material properties.
The following stiffness degradation model utilized in this investigation is detailed
in [29]:

E(n, σ, k) =

1 −
(

lgn − lg0.25
lgN f − lg0.25

)λ
1/γ(

E0 −
σ

ε f

)
+

σ

ε f
(1)

In the formula, E0 represents the initial stiffness, while λ and γ are curve-fitting
coefficients, which are independent of the stress. ε f denotes the average strain at failure,
as determined through fatigue testing. The fatigue life, N f , under the maximum fatigue
stress, σ, and stress ratio, k, can be calculated using the following equation [30]:

ln(a/ f )
ln[(1 − m)(c + m)]

= A + BlgN f

(
a =

σa

σt
, m =

σm

σt
, c =

σc

σt

)
(2)

σt and σc represent the tensile and compressive strengths, respectively. σa is the
amplitude of the fatigue load, and σm is the mean stress of the fatigue load. The coefficients
f , A, and B are fitting parameters obtained through fatigue testing.

(b) Abrupt Decline Model: Once damage accumulates beyond a certain threshold, the
material properties of the compromised elements exhibit an abrupt decline, mirroring
their diminished load-bearing capacity.

This phenomenon of stiffness reduction in GFRP is illustrated in Figure 1.
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Figure 1. The process of stiffness reduction in GFRP.

Notably, n/Nf represents the normalized fatigue life of the GFRP, and E/E0 represents
the normalized stiffness of the GFRP.

As depicted in Figure 1, the variations in the GFRP stiffness effectively mirror the
different stages of the damage that the GFRP undergoes. Assessing the stiffness of the GFRP
serves as an efficient non-destructive diagnostic technique for evaluating the GFRP’s condition.
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3. Damage Localization Based on the Feedback DI

The theory of the damage diagnosis based on the modal curvature [23] is as follows:
For a plate structure, the deflection field of the plate is given by w(x, y), where (x, y)

represents the two-dimensional position of the plate, and D(x, y) represents the flexural
stiffness of the plate. The modal curvature, which is the second derivative of the deflection
field, is expressed as follows:

C(x, y) = ∇2w(x, y) (3)

∇2 represents the Laplace operator, which denotes the second derivative of the deflec-
tion field in two-dimensional space.

Damage can cause local stiffness variations in the structure; if the flexural stiffness
at (x0, y0) changes to D′(x0, y0) then the deflection field, w′(x, y), at that location can be
expressed as follows:

w′(x, y) = w(x, y) + ∆w(x, y) (4)

∆w(x, y) represents the deflection variation caused by the stiffness change.
The modal curvature after the deflection variation can be expressed as follows:

C′(x, y) = ∇2(w(x, y) + ∆w(x, y))
= ∇2w(x, y) +∇2∆w(x, y)
= C(x, y) +∇2∆w(x, y)

(5)

The curvature is inversely proportional to the stiffness; the structural damage will
reduce the local stiffness and increase the local curvature.

The modal curvature’s DI can be obtained using the above theory. To identify the
modal slopes and modal curvatures, the first and second derivatives of the modal shapes
are computed, respectively. The slope is denoted as φ′, and the curvature is denoted as
φ′′ ; they are determined using the central finite difference method. This involves using
the displacement values of the modal shape in both the x-direction and y-direction for
each mode.

In the x-direction:  φ′
x(i, j) = φ(i+1,j)−φ(i−1,j)

2×lx
φ
′′
x (i, j) = φ(i+1,j)+φ(i−1,j)−2×φ(i,j)

l2
x

(6)

In the y-direction:  φ′
y(i, j) = φ(i,j+1)−φ(i,j−1)

2×ly

φ
′′
y (i, j) = φ(i,j+1)+φ(i,j−1)−2×φ(i,j)

l2
y

(7)

where lx is the distance between two successive points in the x-direction, ly is the distance
between two successive points in the y-direction, and φ(i, j) represents the displacement
value of modal shape at the ith point in the x-direction and the jth point in the y-direction.

The slope and curvature of the modal shape of the pristine plate and damaged plate
can be calculated as follows:

θH(i, j) =
√

φ′2
x_H(i, j) + φ′2

y_H(i, j)

κH(i, j) =
√

φ′′ 2
x_H(i, j) + φ′′ 2

y_H(i, j)

θD(i, j) =
√

φ′2
x_D(i, j) + φ′2

y_D(i, j)

κD(i, j) =
√

φ′′ 2
x_D(i, j) + φ′′ 2

y_D(i, j)

(8)

where θ and κ imply the slope and curvature of modal shape of the whole plate, respectively;
subscript H denotes the pristine plate; and subscript D denotes the damaged plate.
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Then, the differences between the modal shapes, ∆φ, and derivatives, ∆θ and ∆κ , of
the pristine and damaged plates are calculated as follows:

∆θ(i, j) = |θD(i, j)| − |θH(i, j)|
∆κ(i, j) = κD(i, j)− κH(i, j)
∆φ(i, j) = φD(i, j)− φH(i, j)
∆φ2(i, j) = φ2

D(i, j)− φ2
H(i, j)

(9)

The parameters in Formula (7) are used to calculate the DI at all the nodes on the plate
as follows:

DI =
∣∣∣(|∆κ| × ∆φ2

)
−
(

∆θ2 × ∆φ
)∣∣∣× ∆κ (10)

The normalized form of the DI is calculated based on the mean and standard deviation
for all the nodes on the plate as follows:

DI =

{
0, DI ≤ 0
DI−mean(DI)

std(DI) , DI > 0
(11)

Each mode can obtain a DI, and the DI can be obtained by linearly adding all the DIs
as follows:

TotalDI =
n

∑
mode=1

DImode (12)

The DI is a matrix that represents the rate of change in the structural modal curvature,
with each element corresponding to the rate of change in the modal curvature at the location
of the structure’s modal shape. When the individual elements in the DI matrix increase, it
indicates a significant change in the modal curvature at the corresponding location of the
structure. According to Equations (3)–(5), damage is likely to have occurred at that location.

3.1. Research on the Accuracy of DI Based on Statistical Methods

Most studies on damage diagnosis rely on a restricted set of simulations and ex-
periments to validate their algorithms. To investigate the accuracy of the DI, a compre-
hensive structural damage database for composite plates was developed using the finite
element method.

The geometric configuration of the composite plate is rectangular, measuring 0.5 m
in length and 0.4 m in width. The plate is constructed from ply materials, including PVC
foam and epoxy e-glass wet, with its ply design detailed in Table 2. As depicted in Figure 2,
the plate is segmented into 20 square sections, each with a dimension of 0.1 m on a side,
which are further subdivided into four quadrants for the purpose of the curvature analysis.
The plate is subjected to free-boundary conditions. The database comprises 12,600 damage
models, formulated based on fatigue failure criteria. These models encapsulate various
stages of damage in GFRP, including 5400 models for single-layer damage, 5400 for double-
layer damage, and 1800 models representing complete damage.

Table 2. Ply design of GFRP composite plate.

Layer Material Angle Thickness Density Poisson’s Ratio Young’s Modulus Shear Modulus

1 PVC Foam
(80 kg/m3) 0◦ 12 mm 80 kg/m3 0.3 0.1 GPa 0.04 GPa

2
Epoxy

E-Glass Wet
±45◦ 1.2 mm 1850 kg/m3

0.28 35 GPa 4.7 GPa

0.28 9 GPa 4.7 GPa

0.4 9 GPa 3.5 GPa
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For the finite element model, S4R shell elements were used with a mesh size of
0.05 m × 0.05 m rectangles. This modeling approach was determined based on two key
considerations: (1) Modal analysis does not require an overly detailed mesh division, and
(2) a significant number of finite element model calculations must be performed. Balancing
these factors enabled us to efficiently conduct our analyses while maintaining the integrity
of our results.

The modal shapes for all the models within the database are determined using the
FEM. Any rigid body modal shapes are excluded from consideration. The 12 modal shapes
of the pristine composite plate are depicted in Figure 3.

The DIs for all the damaged composite plates in the database are calculated using
Formulas (6)–(12). The DI is deemed as being accurate for the damage localization of
the given damaged modal shape when the maximum value of the DI coincides with the
damaged part. By statistically analyzing the damage localization results from all the models
in the database, the accuracy of the DI is presented in Table 3.

Table 3. The accuracy of the DI.

Correct Accuracy

DI 9126 72.43%

A DI indicative of incorrect damage localization is illustrated in Figure 4. In the
figure, the red square represents the predetermined damage location, whereas the peak
of the DI, marking the identified damage location, is situated adjacent to the red area,
potentially resulting in a misdiagnosis. This scenario serves as a typical example and
could be addressed by augmenting the number of nodes; however, this adjustment would
excessively complicate the damage localization process.

3.2. Feedback Optimization Method for the Modal Curvature’s DI

To enhance the precision of the damage localization in composite plates via the DI,
each order of the DI was analyzed individually. The accuracy of the damage localization
was determined for each order of the DI across all the models. The localization accuracy
for the composite plates at each order is depicted in Figure 5.
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ure, the red square represents the predetermined damage location, whereas the peak of 
the DI, marking the identified damage location, is situated adjacent to the red area, poten-
tially resulting in a misdiagnosis. This scenario serves as a typical example and could be 
addressed by augmenting the number of nodes; however, this adjustment would exces-
sively complicate the damage localization process. 
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Figure 5 illustrates that certain orders of the DI have a minimal impact on the accuracy
of the damage localization, leading to a reduction in the overall accuracy. Notably, the
highest accuracy attained through the application of the 9th order of the DI is merely 80.4%.
Consequently, additional research is warranted to explore how the position of the damage
influences the accuracy of the damage localization.

The distribution of the accuracy across each order is depicted in Figure 6. It is evident
that the location of the damage significantly affects the efficacy of the damage localization.
This variation in effectiveness is attributed to the presence of different boundary conditions
in various regions of a structure, as illustrated in Figure 7. Such disparate boundary
conditions result in distinct dynamic responses in different areas.

The analysis of the results presented in Figure 6 reveals that various orders of the DI
possess differing levels of accuracy at different damage locations. For instance, the 3rd
order DI demonstrates high accuracy for damage located in the middle of the composite
plate but performs suboptimally for damage situated at the corners. In contrast, the 5th
order DI achieves greater accuracy for corner damages. Adhering to this pattern, employing
a reasoned weighted calculation for the DI can markedly enhance the DIs precision.

Figure 6 illustrates the accuracy of the DI at various damage locations across different
orders. Given that the accuracy of the damage localization correlates with the weight of the
DI, the weight assigned to the DI can be determined based on the accuracy of the damage
localization. Figure 8 presents the flowchart for computing the feedback-weighted matrix
for the DI. In Figure 8, i is the modal order, j is the model number, k is the number of damage
locations, m is the highest modal order of the model, n is the number of models, DI_peak is
the number of elements where the maximum value of the DI is located, CORR is the number
of correct diagnoses, and ACC is the diagnostic accuracy. The principle for calculating the
feedback-weighted matrix is as follows: Based on the damaged-composite-plate database,
the accuracy of the DI for all the damage locations in the composite plate’s structure is
statistically analyzed. The accuracy is then used as a weight to alter the distribution of the
DI, achieving the purpose of the feedback optimization.
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To upsample the accuracy matrix into a feedback-weighted matrix using a transpose
convolution, a three-dimensional transpose convolutional kernel is defined as follows:

K =

1 1 1
1 1 1
1 1 1

 (13)

Then, the accuracy matrix is upsampled into the feedback-weighted matrix as follows:

Weight(i, j) = ∑
m

∑
n

K(m, n) ∗ Acc(i + m, j + n) (14)

FeedbackDI = Weight·DI (15)

where m and n represent the row and column indices of the transpose convolutional
kernel, respectively. The center of the transpose convolutional kernel is aligned with the
corresponding position in the accuracy matrix.

The process of the feedback optimization was applied to the DI, resulting in an
enhanced version known as the feedback DI. The models contained within the composite-
plate database underwent damage localization using this feedback DI, with the outcomes
detailed in Table 4. When compared to the data presented in Table 3, the accuracy of the
damage localization in the composite plate significantly increased from 72.43% to 92.56%
following the implementation of the feedback optimization.

Table 4. The accuracy of the feedback DI.

Correct Accuracy

Feedback DI 11,662 92.56%

3.3. Sensitivity Analysis of the DI

Sensitivity, as defined by Formula (16), primarily gauges the distinctiveness of the DI at
the site of the damage within the overall DI matrix. A higher DI value at the location of the
damage indicates a greater sensitivity of the DI, which, in turn, enhances the effectiveness of
the damage localization. Sensitivity serves as a metric to assess the capability of a technique
to accurately identify structural damage. Low sensitivity in a damage diagnosis technique
may lead to errors during the diagnostic process. Missed detections could compromise the
safety and reliability of the structure, posing a significant risk. Conversely, false positives
can result in unnecessary expenditures. Subsequently, the sensitivity of both the DI and
feedback DI in the damage diagnosis performance will be compared.

Sensitivity =
n

∑
i=1

max(DIi)/sum(DIi)

n
(16)

The subscript i represents the model number, n represents the total number of models,
max represents the maximum value in the matrix, and sum represents the total of the matrix
elements. The models in the composite-plate database are used to compare the sensitivity
between the DI and the feedback DI, as shown in Table 5.

Table 5. The sensitivity of the DI.

DI Feedback DI

Sensitivity 0.1973 0.3055

The sensitivity of the feedback DI is observed to be 50% higher than that of the
traditional DI. To further dissect the distinctions between the two methodologies, a damage
model was selected for a detailed analysis. The results for both the DI and the feedback DI
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were plotted and are presented in Figure 9, offering a visual comparison to highlight the
enhanced sensitivity and diagnostic capability of the feedback DI approach.
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Figure 9. The DI and the feedback DI of a damaged composite plate.

In Figure 9, the regions enclosed by the red squares denote the damaged areas.
Figure 9a displays the DI, while Figure 9b showcases the feedback DI. In comparison
with the peak of the DI, that of the feedback DI more accurately aligns with the damaged
area. This attribute significantly reduces the risk for misdiagnosing damage and offers
substantial benefits in the assessment of structures with multiple damages. Figure 10 fur-
ther illustrates the DI and feedback DI for a model featuring multiple damages, providing
insights into their comparative diagnostic capabilities.
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Figure 10. The DI and the feedback DI of a multi-damaged composite plate.

The model depicted in Figure 10 represents a scenario with dual damage sites, the
regions enclosed by the red squares denote the damaged areas, both of equal severity.
Figure 10a illustrates the DI, and Figure 10b presents the feedback DI. In Figure 10a, the
disproportionate amplitude of the DI could result in one damage site being overlooked.
Conversely, in Figure 10b, the feedback DI successfully identifies the locations of both
damage sites, demonstrating its superior diagnostic accuracy and effectiveness in detecting
multiple damages within a structure.

These research findings indicate that the feedback DI, compared with the traditional DI,
exhibits enhanced sensitivity. This increased sensitivity translates to improved performance,
notably in minimizing instances of missed detections and false positives, thereby offering a
more reliable approach to damage diagnosis in structures.
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3.4. Transferability of the Feedback DI

The calculation of the feedback DI necessitates the computation of the feedback-
weighted matrix, which relies on a structural damage database. However, creating a com-
prehensive structural damage database may not always be feasible. To tackle this challenge,
forthcoming research will explore the transferability of the feedback-weighted matrix.

The DI is derived from the structural modal shapes, typically dimensionless parame-
ters that are normalized. Consequently, modal shapes are predominantly influenced by the
structure’s geometry and boundary conditions. Thus, the feedback-weighted matrix can be
utilized for structures that share similar geometric and boundary conditions, indicating that
the feedback-weighted matrix possesses transferability regarding both structural dimen-
sions and material properties. This enables broader applicability across different structural
assessments without necessitating individualized calibrations for each unique case.

The transferability of the feedback-weighted matrix across different structural sizes is
set to be demonstrated. A new database for a GFRP composite plate is created using the
FEM, maintaining consistency in the material and layer design with the original database,
as detailed in Table 1, but with the dimensions increased tenfold to result in a rectangle
measuring 5 m in length and 4 m in width. This database comprises 5400 variations
of single-layer damage models. The feedback-weighted matrix derived from the small-
scale plate is applied to calculate the feedback DI for the large-scale plate’s database,
with its accuracy presented in Table 6. Despite the substantial alteration in the structural
dimensions, the feedback-weighted matrix remains applicable, showcasing its potential for
use in diverse structural assessments without the need for recalibration to accommodate
size variations.

Table 6. The accuracy of the large-scale plate’s damage location.

Correct Accuracy

DI 3626 67.15%

Feedback DI 5164 95.63%

The applicability of the feedback-weighted matrix to structures with varying material
properties will also be explored. A database for a carbon-fiber-composite plate was devel-
oped using the FEM, featuring the ply design outlined in Table 7 and dimensions of 0.5 m
in length and 0.4 m in width. This database includes 5400 damage models. Utilizing the
feedback-weighted matrix derived from the GFRP composite plate, the feedback DI for the
carbon-fiber-composite plate’s database was computed, with its accuracy detailed in Table 8.
Despite the alteration in the material’s properties, the feedback-weighted matrix proved to
be adaptable, illustrating its versatility across different composite materials without the
necessity for adjustments based on material characteristics.

Table 7. Ply design of carbon-fiber-composite plate.

Layer Material Angle Thickness

1
Carbon fiber

±45◦ 1.2 mm

2 ±45◦ 1.2 mm

Table 8. Accuracy of carbon-fiber-composite plate’s damage location.

Correct Accuracy

DI 3386 62.70%

Feedback DI 5198 96.26%
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These research findings highlight the feedback-weighted matrix’s transferability across
structures with fundamentally similar shapes. Consequently, the complexity associated
with employing the feedback DI can be mitigated by creating a database encompassing
shapes that are commonly utilized and computing their corresponding weighted matrices.
This approach streamlines the application of the feedback DI across various structural
assessments, enhancing its practicality and ease of use in the field of damage diagnosis.

4. Multi-Damage Localization Based on Multi-Label Classification

Typically, it cannot be guaranteed that there is only a single point of damage in a GFRP
composite plate. Single-label classification algorithms are not capable for addressing the
problem of damage localization for multiple damages. Therefore, this paper adopts the
INSDIF algorithm [31], transforming the damage localization of the GFRP composite plate
to a multi-label classification problem. This enables the localization of multiple damages in
a GFRP composite plate.

X = Rd denotes an input space, and Y = {1, 2, · · · , Q} denotes a finite set of possible
labels. Given a multi-label training set, S = {(x1, y1), (x2, y2), · · · , (xN , yN)}, where xi ∈ X
is a single instance, and yi ⊆ Y is the label set associated with xi, the goal of multi-label
learning is to learn a function, h : X → 2Y , from S, which predicts a set of labels for an
unseen example.

First, for each class, Cl , the k nearest neighbors of instances xi that belong to this
class are determined using the KNN algorithm. Typically, the KNN method employs the
traditional Euclidean distance formula for calculating distances, which inherently assigns
an equal weight to each attribute. However, this can result in neighbor distances being
dominated by a large number of irrelevant attributes. This paper introduces attribute
weighting to the distance calculation. A matrix, W, is defined to describe the similarity
between an instance and its neighbors as follows:

Wi(z) =

 1
Zi

exp
(
− ∥xi−xz∥2

2σ2

)
, z ∈ Ni

0, otherwise
(17)

Zi = ∑
z∈Ni

exp

(
−∥xi − xz∥2

2σ2

)
, ∑

z
Wi(z) = 1 (18)

Ni are the k nearest neighbors of instances xi, ∥·∥ is the Euclidean distance operator,
and σ is used to estimate the average distance between instances.

The average vector, vil , is calculated as follows by taking the average of the k nearest
neighbors of instance xi belonging to class Cl :

vil =

(
∑

xi∈Nil

wi(z)xi

)
|Nil |

(19)

where vil can be regarded as a profile-style vector approximating the common characteris-
tics of class Cl . Actually, this kind of prototype vector has already shown its effectiveness in
solving text categorization problems. After acquiring the prototype vectors, each example,
xi, is re-represented by a bag of instances, Bi, where each instance in Bi is just the difference
between xi and one prototype vector as follows:

Bi = {xi − vil |l ∈ Y } (20)

In this way, each example is transformed to a bag for which the size equals the number
of possible classes.

The n instance bags transformed through the category-weighting method are taken as
input, yielding Q values as output. For each output, yl , there exists y ∈ l. The first layer
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utilizes the KNN algorithm to divide the training set into M mutually exclusive subsets.
The second layer corresponds to the weight matrix, W =

[
wjl

]
M×T

, where wjl is the weight

connecting Cj to the output, yl .
To assess the efficacy for employing multi-label classification for damage localization

in GFRP composite plates, three distinct damage databases were developed using the
FEM. These databases pertain to composite plates measuring 0.5 m in length and 0.4 m
in width, adhering to the ply configurations detailed in Table 9. This setup facilitates a
comprehensive analysis of multi-label classification’s potential in pinpointing damage
across various scenarios within GFRP composite structures.

Table 9. Ply design of composite plate.

Layer Material Angle Scope Resin Content Thickness

1 E-glass Warp-Knitted Fabric ±45◦ Overall 60% 1.2 mm

2 M80-12 mm PVC Foam ±45◦ Overall 12 mm

3 E-glass Warp-Knitted Fabric ±45◦ Overall 60% 1.2 mm

4 E-glass Warp-Knitted Fabric ±45◦ Overall 60% 1.2 mm

The three databases include a single-damage database, a double-damage database,
and a triple-damage database, containing 3240, 10,260, and 6840 models, respectively. For
multi-label classification, 70% of the models from each database are designated as the
training set, while the remaining models serve as the test set. Inputs for the classification
process comprise the modal shapes, DI, and feedback DI of the models, with the damage
locations acting as labels for both training and validation purposes. The outcomes of
this classification process are illustrated in Figure 11, showcasing the effectiveness for
using these parameters for accurately identifying and localizing damage within GFRP
composite plates.
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Modal shapes serve as the foundational data of the model, with the DI representing
a damage characteristic derived from these modal shapes, and the feedback DI acting as
an enhanced version of this characteristic through optimization. Figure 11 demonstrates
that as the number of damage locations increases, the accuracy of the damage localization
tends to decrease. Nonetheless, data pre-processing can markedly enhance the accuracy
for localizing damage. Among the methods that were tested, the feedback DI achieves the
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highest accuracy in the multi-label classification, indicating its effectiveness in refining the
processes of damage identification and localization in composite plates.

5. Experiment

This section aims to validate the proposed method for damage localization in GFRP
composite plates via experimental testing. The test specimen is a GFRP composite plate,
custom-manufactured by a yacht factory and measuring 0.5 m in length and 0.4 m in width.
The ply configuration of the specimen adheres to the specifications detailed in Table 9,
ensuring consistency with the theoretical and computational aspects of the research for a
comprehensive assessment of the method’s practical applicability and effectiveness.

The experiment was conducted using a Simcenter Testlab, and the modal testing
process is shown in Figure 12. The test equipment is outlined in Table 10.
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Table 10. Test equipment.

Apparatus Version Producer Sensitivity

Single-Axis Accelerometer 333B30 PCB 10 mV/(m/s2)

PC Notebook Workstation DELL -

DAQ System LMS SCADAS SIEMENS -

Hammer INV9311 Coinv 2.8 N/pc

The experimental method was impact testing with free-boundary conditions, the test
method was the moving hammer method, the bandwidth was 1000 Hz, and the resolution
was 0.5 Hz. Four PCB accelerometers were used to ensure that no mode was hidden during
the testing process. The experimental setup photograph is shown in Figure 13. The test
samples included a pristine composite plate and a composite plate damaged during the
manufacturing process. The damaged area and damage design are shown in Figure 14.

The visible damages in red circles depicted in Figure 14 were intentionally introduced
during the lamination process of the composite plates. By strategically leaving bubbles
at specific locations, voids were created within the laminate structure as the resin cured.
These voids subsequently led to delamination, serving as the specific type of defect studied
in our experiments. The modal shapes of the pristine and damaged plates can be obtained
through experiments and are shown in Table 11.

The DI for the damaged plate is determined from the modal shapes of both the
undamaged (pristine) and damaged plates. This DI undergoes optimization through
the application of the feedback-weighted matrix, resulting in the feedback DI. The opti-
mized feedback DI, showcasing the enhanced ability to pinpoint and quantify damage,
is illustrated in Figure 15, providing a visual representation of the damage localization
improvements achieved through this feedback optimization process. The regions enclosed
by the red squares denote the damaged areas, feedback DI accurately indicates the area
of damage.
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The feedback DI is input to the multi-label classification model trained by the finite
element model’s dataset, resulting in a damage location vector. This damage location vector
is then converted back to the following matrix:

0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 0 0 0 0

 (21)

Each element in the matrix represents different positions on the GFRP composite
plate. In the matrix, 1 indicates a damaged location, while 0 represents a pristine location.
In reference to Figure 13, it can be observed that the matrix accurately accomplishes the
damage localization of the tested damaged GFRP composite plate.

6. Conclusions

In response to the current challenge for rapidly and accurately localizing multiple
damages in GFRP composite plates, a damage localization method combining feedback
optimization with multi-label classification was proposed. Compared with traditional
modal methods and machine-learning approaches, feedback optimization significantly
enhances the sensitivity of the damage localization, while multi-label classification resolves
the issue for diagnosing damage at multiple locations. Through theoretical analysis and
experimental verification, the following conclusions have been drawn:

(1) A single-damage database for GFRP composite plates was established based on the
fatigue failure criteria, and the accuracy of the DI was studied using the database.
The study showed that the damage localization accuracy of the DI was only 72.43%.
Feedback optimization was proposed, and the accuracy of the feedback DI reached
92.56%, which significantly improved the accuracy compared with that of the DI. A
sensitivity index was proposed. Compared with the DI, the feedback DI exhibited
lower probabilities of false detections and missed detections; additionally, the feedback
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DI is transferable. The feedback-weighted matrix is only related to the structural shape
and is not affected by structural dimensions or material parameters. This characteristic
facilitates the use of the feedback DI;

(2) A method for using multi-label classification was proposed to solve the problem of the
multi-damage localization. The INSDIF algorithm was applied to the damage local-
ization of the GFRP composite plates. A multi-damage database for GFRP composite
plates was established to validate this method. The results showed that the combina-
tion of the feedback optimization and the multi-label classification method can rapidly
and accurately accomplish the multi-damage localization of GFRP composite plates;

(3) The effectiveness of the feedback DI and multi-label classification was verified through
experiments using a GFRP composite plate customized by a yacht factory. The
experimental results showed that the feedback DI and multi-label classification can
effectively locate damage in GFRP composite plates.
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