
Citation: Bencherqui, A.; Tahiri, M.A.;

Karmouni, H.; Alfidi, M.; El Afou, Y.;

Qjidaa, H.; Sayyouri, M. Chaos-

Enhanced Archimede Algorithm for

Global Optimization of Real-World

Engineering Problems and Signal

Feature Extraction. Processes 2024, 12,

406. https://doi.org/10.3390/

pr12020406

Academic Editors: Weizhong Dai and

Olympia Roeva

Received: 23 November 2023

Revised: 10 January 2024

Accepted: 14 February 2024

Published: 18 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Chaos-Enhanced Archimede Algorithm for Global Optimization
of Real-World Engineering Problems and Signal
Feature Extraction
Ahmed Bencherqui 1, Mohamed Amine Tahiri 1 , Hicham Karmouni 1 , Mohammed Alfidi 1, Youssef El Afou 2,
Hassan Qjidaa 3 and Mhamed Sayyouri 1,*

1 Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences,
Sidi Mohamed Ben Abdellah-Fez University, Fez 30040, Morocco; ahmed.bencherqui@usmba.ac.ma (A.B.);
mohamedamine.tahiri@usmba.ac.ma (M.A.T.); hicham.karmouni@usmba.ac.ma (H.K.);
alfidi_mohammed@yahoo.fr (M.A.)

2 National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez 30040, Morocco;
Youssef.elafou@usmba.ac.ma

3 Laboratory of Electronic Signals and Systems of Information, Faculty of Science, Sidi Mohamed Ben
Abdellah-Fez University, Fez 30040, Morocco; qjidah@yahoo.fr

* Correspondence: mhamed.sayyouri@usmba.ac.ma; Tel.: +212-662224655

Abstract: Optimization algorithms play a crucial role in a wide range of fields, from designing
complex systems to solving mathematical and engineering problems. However, these algorithms
frequently face major challenges, such as convergence to local optima, which limits their ability to find
global, optimal solutions. To overcome these challenges, it has become imperative to explore more
efficient approaches by incorporating chaotic maps within these original algorithms. Incorporating
chaotic variables into the search process offers notable advantages, including the ability to avoid
local minima, diversify the search, and accelerate convergence toward optimal solutions. In this
study, we propose an improved Archimedean optimization algorithm called Chaotic_AO (CAO),
based on the use of ten distinct chaotic maps to replace pseudorandom sequences in the three
essential components of the classical Archimedean optimization algorithm: initialization, density and
volume update, and position update. This improvement aims to achieve a more appropriate balance
between the exploitation and exploration phases, offering a greater likelihood of discovering global
solutions. CAO performance was extensively validated through the exploration of three distinct
groups of problems. The first group, made up of twenty-three benchmark functions, served as an
initial reference. Group 2 comprises three crucial engineering problems: the design of a welded beam,
the modeling of a spring subjected to tension/compression stresses, and the planning of pressurized
tanks. Finally, the third group of problems is dedicated to evaluating the efficiency of the CAO
algorithm in the field of signal reconstruction, as well as 2D and 3D medical images. The results
obtained from these in-depth tests revealed the efficiency and reliability of the CAO algorithm in
terms of convergence speeds, and outstanding solution quality in most of the cases studied.

Keywords: Archimedean optimization algorithm; chaotic maps; optimization engineering problems;
artificial intelligence

1. Introduction

The exploration of problems characterized by high nonlinearities and multiplicities of
local optima is a major concern in the fields of computer science, artificial intelligence, and
machine learning. Traditional methods often face insurmountable challenges in regard to
solving complex, multimodal problems. In such cases, nature-inspired approaches stand
out by exploiting their ability to combine diversification and stochastic intensification to
achieve optimal solutions in these complex contexts [1,2]. In recent decades, a considerable
range of metaheuristic optimization algorithms has emerged as valuable alternatives for
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tackling these problems. These approaches have proven their effectiveness in finding
solutions to demanding computational challenges, and they continue to gain in importance
as the practical applications of artificial intelligence and machine learning multiply [3,4].

Two key features of metaheuristic methods are intensification and diversification,
which play a crucial role in the search for optimal solutions [5]. Intensification targets
the currently most promising solutions and selects the best-performing candidates, while
diversification enables the optimizer to explore the search space more efficiently, largely
through the use of randomization.

The ongoing evolution of the field of global optimization has seen the emergence of
several new metaheuristic algorithms, each bringing its own innovations for improving
computational efficiency, solving large-scale problems, and implementing robust optimiza-
tion codes. Among these newcomers, ABC (Artificial Bee Colony) has adopted an approach
that simulates the behavior of bees in their search for nectar [6]. Cuckoo search (CS) was
inspired by the brooding behavior of certain birds to explore the search space [7]. HS
(Harmony Search) introduced a notion of harmonious search inspired by music [8]. The
BA (Bat Algorithm) exploits bat behavior to optimize functions [9]. Other algorithms,
such as Genetic Algorithm (GA) [10–12], Chicken Swarm Optimization (CSO), Gray Wolf
Optimizer (GWO), Firefly Algorithm (FA), Whale Optimization Algorithm (WOA), and
Antlion Optimizer (ALO), also saw the light of day, each bringing their own perspective to
solving complex problems [13–18].

This diversity of approaches testifies to the richness and adaptability of metaheuristic
algorithms in the search for solutions to a variety of domains and problems. It also reflects
the scientific community’s ongoing commitment to exploring new avenues for pushing
back the boundaries of optimization.

Recently, a new population-based metaheuristic optimization algorithm called
Archimedes’ Optimization Algorithm (AO) was proposed [19], inspired by Archimedes’
Law from the field of physics. The operating principle of Archimedes’ optimization al-
gorithm (AO) is inspired by Archimedes’ famous law governing the buoyancy of bodies
immersed in a fluid. This fundamental law establishes a balance between the buoyant force
exerted by the fluid on an immersed object and the weight of that object. When we apply
this principle to AOA, the entities in the population are analogous to objects immersed
in the fluid. Each of these entities is characterized by a series of parameters, including
acceleration, density, and volume, which are key elements in determining whether an entity
will float or sink in the algorithm’s search space. The upward force, in the context of AO,
represents the ability of an entity to emerge as an optimal solution. It is equivalent to the
buoyancy of the entity, which is determined by the relationship between the weight of the
object (representing the quality of the solution) and the weight of the displaced fluid (which
can be interpreted as the potential of the solution). If the fluid displaced (the potential of
the solution) is less than the weight of the object (the quality of the solution), the entity (the
solution) will tend to ‘sink’, in the sense that it will not be retained as the optimal solution.
On the other hand, when the weight of the object (the quality of the solution) is equal to
the weight of the fluid displaced (the potential of the solution), the floating entity (solution)
is in equilibrium. Herein lies the central conception of AO: finding the equilibrium point
where a retained solution is in equilibrium, and where the net force of the fluid is zero.
Although the AO algorithm is effective for solving complex problems, it cannot always
overcome the pitfalls of the local optimum.

The phenomenon of chaos, characterized by its extreme sensitivity to initial conditions,
has long intrigued researchers and become a key component in the field of optimization.
Chaotic functions, often described as complex and unpredictable, vary irregularly over time,
and are particularly sensitive to these initial conditions [20–23]. This sensitivity to initial
values is an essential indicator of chaotic functions, as even a small, seemingly insignificant
change in these conditions can lead to significant variations that cannot be neglected. It
is in this context that metaheuristic algorithms have explored the potential offered by
chaotic functions to improve their performance. Chaotic functions have proven particularly
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effective in the search for solutions to problems of local or premature convergence. Chaotic
optimization methods have thus been adopted in many recent studies to break the vicious
cycle of optimization. In addition, these chaotic functions have added value to global
optimization algorithms by diversifying the search space. Chaotic theory has significant
potential for improving the performance of metaheuristic algorithms.

The integration of chaos-based enhancement within various global optimization al-
gorithms offers significant advantages. Consider, for example, its application within PSO,
where it has the potential to deliver substantial improvements. In the context of PSO,
chaos-based enhancement offers advantages in terms of increased diversification and ex-
ploration of the search space [24]. The chaotic properties of this approach play an essential
role in preventing premature convergence to local optima. By promoting particle diver-
sity, it enables a more exhaustive and dynamic exploration of the optimization landscape.
Similarly, the introduction of chaos-based improvement within Genetic Algorithms (GA)
opens up promising prospects [25]. It offers an opportunity to enhance genetic diversity
within populations, thus promoting more efficient exploration of the search space. This
diversification contributes to faster convergence towards optimal solutions by widening
the field of exploration of potential solutions. The application of chaos in ACO (Ant Colony
Optimization) mechanisms can significantly enhance the ability of ants to discover opti-
mal paths [26]. By introducing chaotic exploration, this approach stimulates the search
for alternative solutions, thus optimizing convergence towards quality solutions within
the ant network. In the case of Artificial Bee Algorithms (ABC), the use of chaos-based
enhancement can promote a more dynamic exploration of the search space [27]. This
dynamic approach overcomes the limitations of traditional methods, stimulating further
diversification of the solutions explored by the artificial bee colony.

This encouraged us to use chaotic maps to further optimize the Archimedean Opti-
mization Algorithm (AO). In this study, we introduce a new chaos-enhanced Archimedean
optimization algorithm (CAO). Our approach consists of using chaotic map functions to
influence the generation of the random parameters of the AO algorithm. This integration
allows us to scan the search space more dynamically and to refine various aspects of the
algorithm. Thanks to this synergy, we have been able to achieve optimal fitness function
values with increased success. To achieve this, we incorporated ten distinct chaotic maps to
replace pseudorandom sequences in three AO components.

To evaluate the performance of the chaos-enhanced Archimedes optimization (CAO)
algorithm, we have undertaken exhaustive testing using three distinct problem groups,
each representing a set of specific challenges. The aim of this rigorous evaluation is to
demonstrate the robustness and effectiveness of the CAO algorithm. The first group
of problems consists of twenty-three benchmark functions (unimodal, multimodal, and
multimodal with fixed dimension). Group 2 comprises three engineering problems, namely,
the design of a welded beam, the design of a spring subjected to tension/compression
stresses, and the design of a pressure vessel. These practical problems test the CAO
algorithm’s ability to solve complex engineering optimization challenges. This evaluation
will determine the applicability of the CAO algorithm to real-world problems. The third
group of problems is dedicated to validating the CAO algorithm in the field of 2D and 3D
medical image and signal reconstruction. We use discrete orthogonal Meixner moments
(MMs) for this purpose. The aim of this series of tests is to demonstrate the CAO algorithm’s
ability to solve image and signal processing problems, with an emphasis on accuracy and
efficiency. To establish a meaningful comparison, we compare the performance of the CAO
algorithm with that of other optimization algorithms in the literature.

The main contributions of this work are summarized as follows:

(a) With the aim of achieving an optimal balance between exploitation and exploration
for the Archimedean optimization (AO) algorithm, we introduce a new Archimedean
optimization algorithm enhanced by chaotic maps (CAO).

(b) To assess the effectiveness of the CAO method, we conducted extensive experiments
using a set of twenty-three well-known numerical reference functions. In addition,
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the method was successfully applied to three real-world engineering problems, con-
firming its relevance in real-world contexts.

(c) As an innovative application, CAO is used to optimize the selection of Meixner
polynomial parameters, contributing to optimal reconstruction of medical signals and
images. This application demonstrates the versatility of the CAO method for solving
a variety of problems, from numerical optimization to medical image reconstruction.

The structure of the rest of this article is as follows: Section 3 looks at the presentation
of the mathematical models underlying the standard Archimedes optimization algorithm.
Section 4 is devoted to an examination of chaotic maps, while Section 5 explains in detail
the Archimedes chaotic algorithm we have developed. Section 6 is dedicated to evaluating
the performance of the proposed algorithm through a series of in-depth tests. Section 7
concludes our study.

2. Problem Formulation

In optimization problems, the task is often to find optimal solutions in a defined deci-
sion space. This formulation of the problem encompasses the effort to minimize a specific
objective function over a set of admissible solutions, where the limits of each coordinate
are precisely specified. Such a structured approach enables systematic exploration of the
decision space, ensuring that the solutions sought respect the prescribed constraints.

• Objective function
minF(x) = f (x1, x2, . . . , xn)

• Decision variables
X = (x1, x2, . . . , xn) ∈ Rn

• Bounds for each coordinate

ubi ≤ xi ≤ lbi f or i = 1, 2, . . . , n

where ubi and lbi are the specified lower and upper bounds for each coordinate xi,
and n is the number of variables.

This complete formulation encapsulates the optimization problem, clearly defining the
objective, decision variables, coordinate constraints, and decision space. It thus establishes
a formal basis for analyzing and solving the optimization problem.

3. The Standard Archimedes Optimization Algorithm

The Archimedean Optimization Algorithm (AO) is a physics-inspired metaheuristic
optimization algorithm that has emerged recently, and its operating principle is inspired by
Archimedes’ law of physics [28]. AO is a population-based algorithm where the individuals
in the population are immersed objectives. AO starts a review process using an initial
population of individuals endowed with random accelerations, densities, and volumes.
The evaluation process begins with the suitability of this preliminary population and then
continues through iterations until the end condition is reached. During each iteration,
the density and volume of everyone are updated. Based on its interaction with other
neighboring individuals, the acceleration of everyone is revised. The updated volume,
density, and acceleration values determine the new position of everyone. AO has the
distinct advantage of achieving a harmonious balance between exploration and exploitation,
making it well suited to engineering optimization problems [29,30].

The main steps of the Archimedean Optimization (AO) algorithm are described below:
Step 1: Initialize the positions (X(i)), volume (Vt(i)), density (Dt(i)), and acceleration

(acci) of all objects.
X(i) = lbi + rand × (ubi − lbi) (1)

Vt(i) = rand (2)

Dt(i) = rand (3)
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acci = lbi + rand × (ubi − lbi) (4)

where lbi and ubi are the lower and upper bounds of the search-space, respectively.
Step 2: Update the densities (Dt(i)) and volumes (Vt(i)) of an object i using the

following equation:

Dt+1(i) = Dt(i) + rand1 × (Dbest − Dt(i))
Vt+1(i) = Vt(i) + rand2 × (Vbest − Vt(i))

(5)

where Vbest and Dbest are the best volume and best density, respectively, thus far.
Step 3: Calculation of the density factor and transfer operator.
When two objects first collide, they attempt to attain a stable state after some time has

passed, and TF is used in the AO to do this. The shift from exploration to exploitation in
the search process is accomplished by utilizing the following formula:

TF = exp
(

t − tmax

tmax

)
(6)

Similarly, the density factor dt+1 decreases over time, allowing one to concentrate in a
favorable area.

dt+1 = exp
(

tmax − t
tmax

)
−
(

t
tmax

)
(7)

where t represents the iteration number and tmax denotes the maximum iterations.
Step 4: Exploration phase
If TF ≤ 0.5 (objects are colliding), for t + 1, the update of the object’s acceleration is

performed using Equation (8).

acct+1(i) =
Dmr + Vmr × accmr

Dt+1(i)× Vt+1(i)
(8)

where Dmr and Vmr denote the density and volume of the random material, respectively.
Step 5: Exploitation phase
If TF > 0.5 (objects are not colliding), for t + 1, the update of the object’s acceleration is

performed using Equation (9).

acct+1(i) =
Dbest + Vbest × accbest

Dt+1(i)× Vt+1(i)
(9)

Step 6: Normalize the acceleration.
The normalized acceleration is calculated using:

acct+1(i)norm = u
acct+1(i)− min(acc)
max(acc)− min(acc)

+ l (10)

where l = 0.1 and u = 0.9 are the normalization ranges, and min(acc) is the minimum
acceleration value while max(acc) is the maximum acceleration value.

Step 7: Update the position.
The calculation of the object’s position t + 1 is determined by the following equation:

Xt+1(i) =
{

Xt(i) + C1 × rand3 × acct+1(i)norm × d × (Xrand − Xt(i)), TF ≤ 0.5
Xbest + F × C2 × rand4 × acct+1(i)norm × d × (T × Xbest − Xt(i)), otherwise

(11)

T increases with time and is directly proportional to the transfer operator defined by:

T = C3 × TF (12)
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F is the flag used to change the direction of movement using Equation (13).

F =

{
+1 i f P ≤ 0.5
−1 i f P > 0.5

(13)

where P = 2 × rand − C4.
Step 8: Evaluation
Select the object’s position that exhibits the best fitness value upon evaluating each

object.
The global optimization algorithms use random variables to explore the search space,

commonly in the form of a uniform distribution (rand). However, this use of random
variables frequently leads to local optima, thus limiting search efficiency. This is why we
suggest using sequences generated by chaotic maps to determine the values of parameters,
which, in the AO algorithm, were of a random nature. The integration of chaotic variables
into the search process represents a significant advance over an entirely random approach.
The advantages inherent in this approach are substantial, and chaotic maps, which we will
detail in the next section, play a key role in the search for optimal solutions.

4. Chaotic Maps

In recent years, chaos theory has made significant advances and has been successfully
exploited in a variety of scientific fields. Promising applications include image and signal
encryption, feature selection, and parameter optimization. Chaotic maps, in particular, have
proven highly useful, possessing three fundamental characteristics: sensitivity to initial
conditions, randomness, and dynamics. These unique properties have enabled chaotic
maps to be incorporated into several renowned optimization algorithms, including moth
flame optimization (MFO), firefly algorithm (FA), artificial bee colony (ABC), biogeography-
based optimization (BBO), particle swarm optimization (PSO), and gray wolf optimizer
(GWO). This fusion of chaos theory with optimization algorithms has paved the way for
more efficient solutions and better performance, both in solving complex problems and in
improving engineering processes [31–33]. Chaotic maps have added an extra dimension
to the search for solutions by introducing an element of dynamics and unpredictability,
which has proved beneficial in escaping local minima and improving the quality of the
solutions found.

In this subsection, we outline ten one-dimensional chaotic maps of particular relevance
to optimization algorithms used to generate chaotic sequences, as detailed in Table 1 and
illustrated in Figure 1. It is important to note that the initial point can be chosen arbitrarily,
in the range 0 to 1 (or according to the specific scope of the chaotic map in question). The
use of these dynamic values is of paramount importance, as it contributes significantly to
improving the search capability of the AO.
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Table 1. Chaotic maps.

Maps Name Function Range

Map of Chebyshev xk+1 = cos(k cos−1(xk)) (−1, 1)

Circular map xk+1 = xk + b − ( a
2π ) sin(2πxk)mod(1) (0, 1)

Gauss map xk+1 =

{
0 xk = 0

1
xk

mod(1) otherwise
(0, 1)

Iterative map xk+1 = sin( aπ
xk
), a = 0.7 (−1, 1)

Logistic map xk+1 = axk(1 − xk), a = 4 (0, 1)

Piecewise map
xk+1 =



xk
p 0 ≤ xk ≤ p

xk−p
0.5−p P ≤ xk ≤ 1/2

1−p−xk
0.5−p 1/2 ≤ xk ≤ 1 − p

1−xk
p 1 − p ≤ xk ≤ 1

(0, 1)

Sine map xk+1 = a
4 sin(πxk), a = 4 (0, 1)

Singer map xk+1 = µ(7.86xk − 23.31x2
k + 28.75x3

k − 13.302875x4
k), µ = 1.07 (0, 1)

Sinusoidal map xk+1 = ax2
k sin(πxk), a = 2.3 (0, 1)

Tent map xk+1 =

{ xk
0.7 , xk < 0.7

10
3 (1 − xk), xk ≥ 0.7

(0, 1)

The idea behind this method is based on three key principles: (i) Introduction of a
chaotic state into the optimization variables using a similar support approach. (ii) Extension
of the range of chaotic movements to encompass the interval of optimization variables.
(iii) Use of chaotic sequences to enhance the efficiency of the search process.

By combining these principles, it becomes possible to inject an element of controlled
chaos into the optimization variables, explore a wider range of potential solutions, and
thus improve search efficiency in a well-controlled way. This innovative approach offers
promising prospects for the optimization of complex problems, in particular by widening
the range of solutions explored and enabling a more diversified and efficient search.

5. Proposed Chaotic-Archimede Optimization Algorithm (CAO)

In the classic configuration of the Archimedean optimization algorithm, an initial set
of random solutions originates in the extent of the search space. This set of solutions is then
subjected to a series of updating equations, each contributing to the distinct exploration
and exploitation of the search space. The exploration equations are responsible for guiding
the solutions to various regions of the search space, seeking to exhaustively explore the
different possibilities. In contrast, exploitation equations steer solutions towards the best
solution identified so far, while probing the surroundings of this optimal solution. However,
it is crucial to note that these equations have a random component, meaning that solutions
mutate at random intervals and in random directions This random nature of the equations
underlines the sensitivity to random parameters, which exert a substantial influence on the
quality of the solutions obtained and, by extension, on the final results of the algorithm. A
judicious modification of these random parameters could therefore play a decisive role in
optimizing the overall process, potentially leading to more robust and accurate solutions.

Although not yet mathematically proven, various studies converge towards the con-
clusion that the integration of chaotic maps significantly improves the performance of
metaheuristic optimization algorithms, as developed by many researchers [34,35]. For
example, Wang et al. in [34] demonstrated the performance improvement of the Remora
optimization algorithm (ROA) based solely on chaotic tent mapping. Similarly, Wang et al.
in [35] introduced the Levy operator to help the crystal structure algorithm (CryStAl) to
effectively free itself from the attraction of the local optimal value.
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However, in the context of this study, our aim is to take advantage of ten chaotic maps,
thus opening up several perspectives for improving the performance of our proposed
algorithm, specifically in terms of avoiding local optimum, rather than being limited to the
use of a single chaotic map or operator.

This study presents the development of a new algorithm called the Chaos-Enhanced
Archimedean Optimization (CAO) algorithm. The introduction of chaotic variables into
the AO search process confers significant advantages over a purely random approach.
More specifically, the ergodic properties of chaotic maps are exploited to increase search
efficiency by bypassing local minima.

In the CAO, chaotic sequences are generated by ten distinct types of chaotic maps,
namely Chebyshev, circular, Gaussian, iterative, logistic, patchy, sinusoidal, Singer, sinu-
soidal, and tent, as illustrated in Table 1. These sequences replace the random sequences
of the original AO in three crucial components of the optimization algorithm, namely
initialization, density and volume updating, and position updating. This integration en-
hances the AO algorithm’s ability to bypass local optima, thus increasing the probability of
converging to the global optimum in a limited number of iterations.

Each chaotic map is tested independently in each of these components. The pseu-
docode of the CAO algorithm is shown in Algorithm 1, while Figure 2 illustrates the
CAO flowchart. In this algorithm, cc(i) represents a chaotic sequence generated by a
specific chaotic map. The results obtained in this study show that chaotic maps increase
the performance of optimization methods.
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Algorithm 1. pseudo code of CAO

1 Initialization (N, tmax, C1, C2, C3 and C4).
2 Initialize chaotic value cc(i).
3 for i = 1:n
4 for j = 1: n
5 cc(i) = chaotic(cc(i));
6 X(i) = lbi + cc(i)× (ubi − lbi);
7 Vt(i) = cc(i);
8 Dt(i) = cc(i);
9 acc(i) = lbi + cc(i)× (ubi − lbi);
10 end
11 end
12 Evaluate the initial population and select the one with the best fitness value.
13 t (iteration counter) = 1
14 While t < tmax do
15 for each object i do
16 for j = 1: n
17 //Update density and volume of each object.
18 cc(i) = chaotic(cc(i));

19
Dt+1(i) = Dt(i) + cc(i)× (Dbest − Dt(i))
Vt+1(i) = Vt(i) + cc(i)× (Vbest − Vt(i))

;

20 end
21 //Update transfer and density decreasing factors TF and dt+1.

22 TF = exp
(

t−tmax
tmax

)
; dt+1 = exp

(
tmax−t

tmax

)
−
(

t
tmax

)
;

23 if TF ≤ 0.5 then ---//Exploration phase
24 //Update acceleration and normalize acceleration.
25 acct+1(i)norm = u acct+1(i)−min(acc)

max(acc)−min(acc) + l;
26 for i = 1:n
27 cc(i) = chaotic(cc(i));
28 Xt+1(i) = Xt(i) + C1 × cc(i)× acct+1(i)norm × dt+1 × (Xrand − Xt(i));
29 end
30 else ---//Exploitation phase
31 //Update acceleration and normalize acceleration.
32 acct+1(i)norm = u acct+1(i)−min(acc)

max(acc)−min(acc) + l;
33 for i = 1:n
34 cc(i) = chaotic(cc(i));
35 P = 2 × cc(i)− C4;
36 Xt+1(i) = Xbest + F × C2 × cc(i)× acct+1(i)norm × dt+1 × (T × Xbest − Xt(i));
37 end
38 end
39 end while
40 Evaluate each object and select the one with the best fitness value.
41 t = t + 1
42 Return

(a) Utilization of chaotic maps in initializing the population

Since AO adopts the traditional initialization method, the randomness and diversity of
the initial population cannot be guaranteed. In contrast to traditional initialization methods,
the use of chaotic for initialization significantly preserves population diversity.

However, in our chaotic optimization algorithm (CAO), we make an innovative choice
by using chaotic sequences cc(i) instead of simple random generation rand (0, 1). These
chaotic sequences are used to initialize the position, volume, density, and acceleration of all
objects, according to the following formulas:

X(i) = lbi + cc(i)× (ubi − lbi) (14)
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Vt(i) = cc(i) (15)

Dt(i) = cc(i) (16)

acc(i) = lbi + cc(i)× (ubi − lbi) (17)

In order to verify the rationality of this method, we compared the initial value gener-
ated by the chaotic map with that generated by traditional initialization, and the results
are shown in Figure 3. As this figure shows, the initial value generated by the chaotic map
is more extensive than that generated by the uniform random distribution, and it is not
difficult to observe that the initial positions obtained on the basis of initialization by chaotic
mapping are more uniformly distributed in the search space. Consequently, the former
can improve the ergodicity of the initial value and accelerate the convergence speed of
the algorithm.

Processes 2024, 12, x FOR PEER REVIEW 11 of 39 
 

 

( ) ( ) ( )i i iacc i lb cc i ub lb= +  −  (17) 

In order to verify the rationality of this method, we compared the initial value gener-

ated by the chaotic map with that generated by traditional initialization, and the results 

are shown in Figure 3. As this figure shows, the initial value generated by the chaotic map 

is more extensive than that generated by the uniform random distribution, and it is not 

difficult to observe that the initial positions obtained on the basis of initialization by cha-

otic mapping are more uniformly distributed in the search space. Consequently, the for-

mer can improve the ergodicity of the initial value and accelerate the convergence speed 

of the algorithm. 

 

Figure 3. Initial value by utilizing both a chaotic map and a uniform random distribution. 

(b) Chaotic maps applied to update density and volume 

The density and volume of object i are updated at iteration t + 1 according to Equation 

(5). In this equation, the parameters rand1 and rand2 are essential to the AO algorithm, and 

their values are usually randomly generated from the interval [0, 1]. However, a signifi-

cant innovation in our approach is the use of chaotic maps to generate these parameters. 

Instead of using random values at each iteration to determine the optimal points, we adopt 

a more sophisticated method using chaotic maps to assign values to rand1 and rand2. This 

innovative approach promises substantial improvements in the search for optimal solu-

tions. The density and volume of object i for iteration t + 1 are updated using the following 

equation: 

1

1

( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ( ))

t t best t

t t best t

D i D i cc i D D i

V i V i cc i V V i

+

+

= +  −

= +  −
 (18) 

(c) Chaotic maps applied to update position 

In the standard optimization algorithm (AO), the position of objects i is updated in 

accordance with Equation (11). It is important to note that the values rand3 and rand4, 

needed in this equation, are usually randomly generated in the interval [0, 1]. However, 

in our chaotic optimization algorithm (CAO), we introduce a crucial innovation: instead 

of relying on random values at each iteration, we use chaotic maps to determine these 

parameters. This innovative approach promises to open up new perspectives in improv-

ing algorithm efficiency and finding optimal solutions. The calculation of the new position 

of object i is determined by the following equation: 

Figure 3. Initial value by utilizing both a chaotic map and a uniform random distribution.

(b) Chaotic maps applied to update density and volume

The density and volume of object i are updated at iteration t + 1 according to Equation (5).
In this equation, the parameters rand1 and rand2 are essential to the AO algorithm, and
their values are usually randomly generated from the interval [0, 1]. However, a significant
innovation in our approach is the use of chaotic maps to generate these parameters. Instead
of using random values at each iteration to determine the optimal points, we adopt a more
sophisticated method using chaotic maps to assign values to rand1 and rand2. This innova-
tive approach promises substantial improvements in the search for optimal solutions. The
density and volume of object i for iteration t + 1 are updated using the following equation:

Dt+1(i) = Dt(i) + cc(i)× (Dbest − Dt(i))
Vt+1(i) = Vt(i) + cc(i)× (Vbest − Vt(i))

(18)

(c) Chaotic maps applied to update position

In the standard optimization algorithm (AO), the position of objects i is updated in
accordance with Equation (11). It is important to note that the values rand3 and rand4,
needed in this equation, are usually randomly generated in the interval [0, 1]. However,
in our chaotic optimization algorithm (CAO), we introduce a crucial innovation: instead
of relying on random values at each iteration, we use chaotic maps to determine these
parameters. This innovative approach promises to open up new perspectives in improving
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algorithm efficiency and finding optimal solutions. The calculation of the new position of
object i is determined by the following equation:

Xt+1(i) =
{

Xt(i) + C1 × cc(i)× acct+1(i)norm × dt+1 × (Xrand − Xt(i)), TF ≤ 0.5
Xbest + F × C2 × cc(i)× acct+1(i)norm × dt+1 × (T × Xbest − Xt(i)), otherwise

(19)

The variable Xrand in expression represents a random position associated with a
random number generation process. This variable can take on different values at random.

F is the flag used to change the direction of movement using (Equation (20)).

F =

{
+1 i f P ≤ 0.5
−1 i f P > 0.5

with P = 2 × cc(i)− C4
(20)

The following observations reinforce the demonstration of the theoretical effectiveness
of the proposed chaotic algorithms:

As a first significant improvement, the chaos-enhanced Archimedean optimization
algorithm determines the positions, volumes, densities, and accelerations of all objects by
choosing the best solution from among those randomly generated.

Chaotic map integration supports CAO by orchestrating chaotic updates of density,
volume, and position, substantially improving the exploration process.

When it comes to probing a promising area in the search space, these chaotic parame-
ters play an essential role in fostering chaotic neighborhood exploitation.

6. Simulation Results

To evaluate the effectiveness of the proposed Chaos-Archimede Optimization Algo-
rithm (CAO), we undertook tests on three distinct problem sets. The first group, comprising
twenty-three benchmark functions (unimodal, multimodal, and multimodal with fixed
dimension) identified in Table 2, served as the basis for our evaluation. The second group
consists of three significant engineering problems: the design problem for a welded beam,
the design problem for a tension/compression spring, and the design problem for a pres-
sure vessel. These engineering problems enable us to test the effectiveness of our algorithms
in practical contexts. Finally, the third group of tests highlights the versatility of the CAO
approach. It is devoted to validating our CAO algorithm for signal reconstruction, as well
as 2D and 3D medical images. In this series of tests, we used discrete orthogonal Meixner
moments (MMs) as a key tool. These experiments cover a diverse range of application
domains and demonstrate the adaptability and efficiency of our CAO algorithm in a variety
of contexts.

Table 2. Unimodal, multimodal, and multimodal with fixed dimensions test functions.

Functions Descriptions Dimensions Range

U
nim

odalfunctions

F1 f (x) = ∑n
i=1 x2

i 30, 100, 500, 1000 [−100, 100]

F2 f (x) = ∑n
i=1|xi|+ ∏n

i=0|xi| 30, 100, 500, 1000 [−10, 10]

F3 f (x) = ∑d
i=1

(
∑i

j=1 xj

)2
30, 100, 500, 1000 [−100, 100]

F4 f (x) = maxi{|xi|, 1 ≤ i ≤ n} 30, 100, 500, 1000 [−100, 100]

F5 f (x) = ∑n−1
i=1

[
100
(
x2

i − xi+1
)2

+ (1 − xi)
2
]

30, 100, 500, 1000 [−30, 30]

F6 f (x) = ∑n
i=1(xi + 0.5)2 30, 100, 500, 1000 [−100, 100]

F7 f (x) = ∑n
i=0 ix4

i + random[0, 1) 30, 100, 500, 1000 [−128, 128]
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Table 2. Cont.

Functions Descriptions Dimensions Range

M
ultim

odalfunctions

F8 f (x) = ∑n
i=1 (xi sin(

√
|xi|)) 30, 100, 500, 1000 [−500, 500]

F9 f (x) = ∑n
i=1[x

2
i − 10 cos(2πxi) + 10] 30, 100, 500, 1000 [−5.12, 5.12]

F10
f (x) = 20 exp

(
−0.2

√
1
n ∑n

i=1 x2
i

)
−

exp
(

1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e

30, 100, 500, 1000
[−32, 32]

F11 f (x) = 1 + 1
4000 ∑n

i=1 xn
i − ∏n

i=1 cos
(

xi√
i

)
30, 100, 500, 1000 [−600, 600]

F12
f (x) = π

n [10 sin(πy1)]+

∑n
i=1 (yi − 1)2[1 + 10 sin2(πyi+1) + ∑n

i=1 u(xi, 10, 100, 4)
] 30, 100, 500, 1000 [−50, 50]

F13 f (x) = 0.1

(
sin2(3πx1) + ∑n

i=1 (xi − 1)2[1 + sin2(3πxi + 1)
]
+

(xn − 1)2(1 + sin2(2πxn)
)
+ ∑n

i=1 u(xi, 5, 100, 4)

)
30, 100, 500, 1000 [−50, 50]

M
ultim

odalfunctions
w

ith
a

fixed
dim

ension

F14 f (x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−ai,j)

)−1
2 [−65, 65]

F15 f (x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5]

F16 f (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]

F17 f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
4 x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos x1 + 10 2 [−5, 5]

F18 f (x) =
[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]
×[

30 + (2x1 − 3x2)
2 ×

(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2]

F19 f (x) = −∑4
i=1 ci exp

(
−∑3

i=1 aij
(

xij − pij
)2
)

3 [−1, 2]

F20 f (x) = −∑4
i=1 ci exp

(
−∑6

i=1 aij
(

xij − pij
)2
)

6 [0, 1]

F21 f (x) = −∑5
i=1

[
(x − ai)(x − ai)

T + ci

]−1
4 [0, 1]

F22 f (x) = −∑7
i=1

[
(x − ai)(x − ai)

T + ci

]−1
4 [0, 1]

F23 f (x) = −∑10
i=1

[
(x − ai)(x − ai)

T + ci

]−1
4 [0, 1]

For the first group, made up of 23 test functions in Table 2, the aim is to determine
the value of x that minimizes the function f(x) in each specific case. This solution search
is formulated under the constraint minf(x). It is important to note that the search range,
the possible values for the components of x, varies according to the specific nature of each
function. Each function may have distinct range requirements for the different variables,
and this variability must be considered when searching for the optimal solution for each
test function.

In the second group, the aim is to find optimal values for x that minimize the cost
functions associated with the welded beam, tension/compression spring, and pressure
vessel design problems. The search scope is adjusted accordingly to meet the specifics of
each engineering problem [36].

In the third problem, we seek to optimize the polynomial Meixner parameters (β, u)
by minimizing the objective function MSE (Mean Square Error), with the aim of obtaining
optimal parameters that enable 1D, 2D, and 3D signals to be reconstructed with excellent
quality. The dimension of this problem is equal to 2, as we are looking for optimal values
of β and u. The search range for the parameters is defined as follows: The search range for
β extends from 0 to N (the size of the signal), while the search range for u varies from 0
to 1. This choice of range reflects the specific conditions of the problem, and is intended
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to guarantee an exhaustive exploration of the possible values of β and u with the aim of
obtaining optimal parameters for the reconstruction of multidimensional signals.

Chaos-Archimede Optimization Algorithms (CAO) take advantage of ten types of
chaotic maps, as illustrated in Table 1. This diversity of chaotic maps has enabled us to
sequentially develop ten variations of Chaos-Archimede optimization algorithms, which we
have designated as follows: CAO1 (Chebyshev-AO), CAO2 (Circular-AO), CAO3 (Gauss-
AO), CAO4 (Iterative-AO), CAO5 (Logistic-AO), CAO6 (Piecewise-AO), CAO7 (Sine-AO),
CAO8 (Singer-AO), CAO9 (Sinusoidal-AO), and CAO10 (Tent-AO). The performance
of these ten new algorithms was evaluated by comparing them with the standard AO
algorithm. Notably, the comparative analysis shows that CAO10 stands out with the most
remarkable performance of the set.

Continuing our exploration, we extended the comparison by including CAO10 in a set
of original optimization algorithms, such as the whale optimization algorithm [36], the gray
wolf optimizer [37], salp swarm algorithm [38], multiverse optimizer [39], gravitational
search algorithm [40], sine cosine algorithm [41], particle swarm optimization [42], and
moth-flame optimization [43]. The results obtained highlight the efficiency of CAO10,
which competes with these original algorithms in a promising way, opening new perspec-
tives for diverse optimization applications.

6.1. Reference Function Validation

(a) Extensibility test

To evaluate the performance of the Chaos-Archimede Optimization (CAO) algorithm,
this section carries out an in-depth comparison between the results obtained by CAO
and those of the original AO algorithm. Tests are specifically carried out on twenty-
three benchmark functions (F1–F23), involving rigorous evaluations of the scalability of
both algorithms.

The aim of scalability tests is to analyze the impact of dimensions on the efficiency of
stochastic optimizers. They enable us to understand how problem dimensions affect the
quality of the solutions generated, as well as the efficiency of the CAO when the dimension
is dynamically increased. Three different dimensions are therefore examined in this study:
20, 30, and 50. To assess the performance of the algorithms, several performance measures
are used. These include: (1) the mean and standard deviation of the final solutions obtained
for each function. (2) Analysis of the convergence of the functions obtained to assess
the speed with which the algorithms converge toward optimal solutions. (3) Ranking to
identify the chaotic map that performs best among all available chaotic maps.

All optimization algorithms are subjected to the same experimental conditions, in-
cluding an identical population size and a predefined maximum value set at 500. This
rigorous methodological approach ensures a fair comparison of CAO versus AO perfor-
mance, highlighting the potential advantages of using chaotic maps in the context of
stochastic optimization.

(1) In statistics, the standard deviation is a fundamental measure used to quantify the
amplitude of variation and dispersion within a data set. A standard deviation close to
zero indicates that optimal solutions tend to be very close to the mean, reflecting a
high concentration of results. On the other hand, a high standard deviation reflects
a greater dispersion of optimal solutions over a wide range of values, suggesting
greater variability. Tables 3–11 show the mean error and standard deviation of so-
lutions obtained from experiments with the ten CAO optimization algorithms and
the standard AO for dimensions of 20, 30, and 50, respectively. Analysis of these
results reveals that CAO optimization algorithms outperform AO in all functions
(F1-F23), regardless of the number of dimensions. Moreover, these CAO algorithms
systematically display a clear superiority in the higher dimensions, underlining their
ability to handle complex problems. Notably, the CAO10 algorithm stands out as
offering exceptional accuracy compared to other CAO variants, reinforcing its status
as the preferred choice for optimizing varied, multidimensional problems. These



Processes 2024, 12, 406 14 of 43

results demonstrate that integrating chaotic maps into CAO optimization algorithms
can significantly improve their efficiency, paving the way for more accurate solutions
and greater convergence in complex optimization contexts.

(2) The convergence test represents an essential criterion for assessing the performance of
algorithms in achieving the global optimum. Figures 4–6 illustrate the convergence
curves of test functions using CAO optimization algorithms and standard AO for
dimensions of 20, 30, and 50, respectively. As these figures show, all CAO algorithms
demonstrate a remarkable ability to find optimal solutions to reference functions in all
functions (F1–F23). These algorithms demonstrate reliability and stability, standing
out for their ability to explore search spaces more thoroughly than the standard AO
algorithm. Moreover, they converge on optimal solutions considerably faster than
the standard algorithm. These observations show that the use of chaotic maps in
optimization significantly improves algorithm performance, contributing to greater
efficiency and a significant reduction in the time needed to reach optimal solutions.

(3) In ranking-based analysis, algorithms are evaluated and ranked according to their
average performance. For this purpose, a standard ranking system is used to estab-
lish the competition between algorithms. Figure 7 show the ranking of algorithms
according to their performance in 20, 30, and 50 dimensions. In this ranking system,
the ranking value 1 indicates the best performance, while the ranking value 11 reflects
the least favorable performance. Clearly, the ten chaotic maps outperform the original
AO algorithm. In addition, the CAO10 algorithm stands out by achieving significantly
higher rankings than the other CAO variants.

These results convincingly demonstrate that introducing chaotic maps into the opti-
mization process confers a significant performance advantage over the standard
Archimedean optimization algorithm. In particular, the CAO10 algorithm stands out
as the preeminent choice, highlighting its exceptional efficiency and ability to obtain opti-
mal solutions in multidimensional spaces. This ranking analysis underlines the importance
of integrating chaotic variables into optimization for improved performance and a better
ability to solve a variety of problems.

(b) Comparison test with other optimization algorithms

To verify the effectiveness of the proposed algorithm, CAO10 was compared with
ten well-known algorithms: Whale Optimization Algorithm, Gray Wolf Optimizer, Salp
Swarm Algorithm, Multiverse Optimizer, Gravitational Search Algorithm, Sine Cosine
Algorithm, Particle Swarm Optimization, and Moth-Flame Optimization. The parameter
values for the above algorithms have been set in accordance with their original papers.
Table 12 shows the parameter values for each algorithm. In all experiments, the population
size and maximum number of iterations were set to 30 and 500, respectively.
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Table 3. Results on unimodal benchmark functions (F1 to F7) with Dim = 20.

Algorithms Metric F1 F2 F3 F4 F5 F6 F7

CAO1
Mean 3.1594 × 10−62 4.2767 × 10−45 1.4931 × 10−45 7.3686 × 10−43 0.0042 0.0514 9.7338 × 10−3

Std 1.4107 × 10−61 9.2632 × 10−54 5.5336 × 10−44 3.7618 × 10−42 0.0186 0.1182 0.0319

CAO2
Mean 1.9363 × 10−47 1.7334 × 10−62 5.7325 × 10−44 1.7001 × 10−53 0.0023 0.0812 0.0013

Std 1.1737 × 10−46 9.4942 × 10−62 4.3096 × 10−42 1.1469 × 10−51 0.0035 0.1345 0.0280

CAO3
Mean 1.6439 × 10−46 3.7819 × 10−48 6.1514 × 10−40 7.1135 × 10−43 0.0017 0.0905 0.0034

Std 2.3888 × 10−45 2.5496 × 10−47 4.3359 × 10−38 1.7891 × 10−42 0.0035 0.1602 0.0198

CAO4
Mean 1.8571 × 10−51 1.5478 × 10−51 9.7073 × 10−41 4.7818 × 10−39 0.0017 0.0883 1.5364 × 10−4

Std 1.5543 × 10−50 9.8913 × 10−51 2.4082 × 10−39 5.4813 × 10−38 0.0031 0.1391 0.0173

CAO5
Mean 1.2846 × 10−42 5.0386 × 10−43 1.0864 × 10−38 3.6411 × 10−47 0.0044 0.0580 0.0022

Std 4.3618 × 10−41 2.2073 × 10−42 9.4501 × 10−37 1.8711 × 10−46 0.0181 0.1135 0.0167

CAO6
Mean 2.1626 × 10−41 6.9392 × 10−45 1.3965 × 10−38 8.9057 × 10−40 0.0013 0.0804 0.0044

Std 8.1082 × 10−41 2.3261 × 10−43 4.0487 × 10−37 1.1046 × 10−38 0.0024 0.1502 0.0224

CAO7
Mean 2.5815 × 10−45 7.3256 × 10−44 7.4666 × 10−37 1.0667 × 10−40 0.0016 0.0543 0.0016

Std 1.5931 × 10−42 6.6050 × 10−43 2.2757 × 10−35 2.3155 × 10−40 0.0032 0.0976 0.0130

CAO8
Mean 3.0509 × 10−42 7.5109 × 10−44 2.3251 × 10−37 3.0214 × 10−39 0.0012 0.0717 0.0017

Std 2.4369 × 10−40 9.4416 × 10−42 2.9999 × 10−35 5.0822 × 10−38 0.0023 0.1229 0.0120

CAO9
Mean 1.3773 × 10−42 4.1022 × 10−43 5.3556 × 10−40 2.2169 × 10−39 0.0021 0.0562 0.0011

Std 1.6850 × 10−41 1.4126 × 10−42 2.1538 × 10−38 2.3310 × 10−38 0.0034 0.1030 0.0205

CAO10
Mean 4.3124 × 10−68 2.5689 × 10−70 2.0973 × 10−54 1.0760 × 10−62 0.0071 0.0805 0.0012

Std 4.7876 × 10−67 1.2543 × 10−68 1.5917 × 10−52 3.1530 × 10−62 0.0257 0.1208 0.0156

AO
Mean 3.6324 × 10−41 2.9733 × 10−42 7.8430 × 10−36 9.6616 × 10−39 0.0125 0.3160 0.0132

Std 3.3158 × 10−40 2.3904 × 10−41 7.8266 × 10−34 7.1005 × 10−38 0.0266 0.2063 0.0242
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Table 4. Results on multimodal benchmark functions (F8 to F13) with Dim = 20.

Algorithms Metric F8 F9 F10 F11 F12 F13

CAO1
Mean 1.128 × 103 0.227400 7.881 × 10−10 1.440 × 10−6 0.2511 0.0018

Std 5.164 × 103 0.858809 7.519 × 10−10 9.349 × 10−6 0.4087 0.0028

CAO2
Mean 25.134100 9.274 × 10−11 6.312 × 10−10 1.482 × 10−9 0.1523 0.0482

Std 2.730 × 102 7.059 × 10−9 6.498 × 10−10 4.489 × 10−9 0.2858 0.1142

CAO3
Mean 1.588 × 102 3.333 × 10−9 2.921 × 10−5 6.270 × 10−10 0.1919 0.0670

Std 5.571 × 102 5.292 × 10−8 1.629 × 10−4 4.489 × 10−9 0.3959 0.2197

CAO4
Mean 47.835000 1.316 × 10−9 3.727 × 10−9 1.117 × 10−9 0.2230 0.0337

Std 4.622 × 102 4.845 × 10−9 1.593 × 10−8 8.992 × 10−9 0.3903 0.1814

CAO5
Mean 5.288 × 102 4.422 × 10−9 2.357 × 10−9 3.155 × 10−8 0.2683 0.0550

Std 1.922 × 103 1.084 × 10−8 2.638 × 10−8 1.044 × 10−8 0.4091 0.2154

CAO6
Mean 1.141 × 102 6.606 × 10−9 8.621 × 10−9 5.130 × 10−9 0.1631 0.0227

Std 4.698 × 102 3.252 × 10−8 5.440 × 10−8 1.600 × 10−8 0.2899 0.1198

CAO7
Mean 71.133400 0.0871088 5.638 × 10−9 3.205 × 10−7 0.2318 0.0557

Std 3.352 × 102 0.4535700 5.563 × 10−8 1.986 × 10−6 0.3853 0.1901

CAO8
Mean 84.312066 1.953 × 10−9 1.111 × 10−7 1.465 × 10−6 0.1854 0.0345

Std 3.613 × 102 1.191 × 10−8 1.41 × 10−07 1.170 × 10−05 0.3095 0.1823

CAO9
Mean 29.966509 0.030900 3.551 × 10−09 8.202 × 10−09 0.1856 0.0650

Std 2.804 × 102 0.680800 1.962 × 10−07 3.330 × 10−16 0.2957 0.2426

CAO10
Mean 2.3081090 3.420 × 10−12 4.984 × 10−10 4.897 × 10−10 0.0837 0.1403

Std 2.080 × 102 1.540 × 10−9 1.753 × 10−08 4.489 × 10−09 0.2473 0.1641

AO
Mean 2.420 × 104 0.3440844 0.646 × 10−04 1.465 × 10−06 0.3082 0.1432

Std 1.328 × 105 0.7684421 1.522 × 10−04 1.170 × 10−05 0.4069 0.3872
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Table 5. Results on multimodal with fixed dimension benchmark functions (F14 to F23) with Dim = 20.

Algorithms Metric F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

CAO1
Mean 23.5815 0.7105 0.3121 0.6889 0.4504 0.6033 0.2810 3.7579 5.4131 3.9216

Std 10.8277 0.8045 0.5615 0.6711 0.6893 0.2101 0.1678 0.1280 3.9482 1.1888

CAO2
Mean 23.8706 0.2734 0.3081 0.4911 0.4548 0.5483 0.3202 3.8651 3.7238 3.8291

Std 11.4591 0.3355 0.5541 0.3181 0.6102 0.2939 0.1500 0.1651 1.3278 0.0517

CAO3
Mean 31.6299 1.4277 0.3079 0.6752 0.4524 0.5031 0.2954 3.7590 1.0592 3.8082

Std 0.41229 1.6146 0.5556 0.6677 0.6841 0.3595 0.1492 0.1682 0.1421 0.3970

CAO4
Mean 8.40730 0.6766 0.3040 0.5198 0.4749 0.5548 0.2938 3.9112 3.9740 3.8283

Std 33.6743 1.2477 0.5514 0.5011 0.6844 0.2472 0.1360 0.2399 0.1241 0.2028

CAO5
Mean 15.7013 0.9387 0.3093 0.4331 0.4683 0.5235 0.4689 3.8067 3.8458 3.9310

Std 22.3390 0.7604 0.5639 0.4098 0.6746 0.3146 0.2938 0.1692 0.1553 1.1082

CAO6
Mean 24.0695 0.3185 0.3139 0.4919 0.4848 0.5148 0.2917 5.9160 0.8748 3.7528

Std 10.5741 0.3032 0.5611 0.5331 0.0635 0.3276 0.1999 0.0601 0.1946 0.3190

CAO7
Mean 24.0737 0.7898 0.2891 0.7011 0.4567 0.4898 0.4005 3.9008 3.8113 3.8739

Std 10.8516 0.7628 0.5315 0.7910 0.7009 0.3756 0.2455 0.1454 0.1721 2.2105

CAO8
Mean 23.7654 0.6129 0.3119 0.6771 0.4580 0.5075 0.3241 4.7385 3.7550 3.8911

Std 11.4256 0.6960 0.563 0.6212 0.7014 0.3539 0.3456 0.3129 0.4660 1.0406

CAO9
Mean 31.7341 0.6033 0.2629 0.7104 0.4975 0.5429 0.3343 5.8325 4.8077 3.8313

Std 0.80712 0.5942 0.4756 0.7408 0.7069 0.3129 0.2659 2.2863 2.1332 0.234

CAO10
Mean 7.95817 0.1204 0.2999 0.2184 0.4882 0.4955 0.2783 3.6677 0.9978 3.7450

Std 33.9401 0.0826 0.5475 0.2718 0.2718 0.3839 0.1771 0.1095 0.0039 0.1277

AO
Mean 32.0059 7.4968 0.3206 0.8011 0.4998 0.6318 0.4710 7.7926 7.8387 3.9236

Std 0.26778 9.0191 0.5494 0.8237 0.6997 0.1871 0.2549 0.2027 0.1019 0.2180
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Table 6. Results on unimodal benchmark functions (F1 to F7) with Dim = 30.

Algorithms Metric F1 F2 F3 F4 F5 F6 F7

CAO1
Mean 6.9002 × 10−56 4.3889 × 10−46 2.8527 × 10−50 4.2177 × 10−43 0.0013 0.0680 0.0020

Std 8.8970 × 10−55 1.6921 × 10−45 2.0478 × 10−46 2.9221 × 10−42 0.0021 0.1099 0.0301

CAO2
Mean 2.0179 × 10−48 1.7606 × 10−62 1.0364 × 10−50 5.7924 × 10−54 0.0012 0.0668 0.0023

Std 1.1076 × 10−47 1.0465 × 10−61 5.6617 × 10−50 3.0722 × 10−53 0.0025 0.1158 0.0081

CAO3
Mean 4.9040 × 10−46 5.7033 × 10−49 2.5248 × 10−43 1.8416 × 10−44 0.0022 0.0439 0.0048

Std 1.0077 × 10−44 4.3851 × 10−47 2.5420 × 10−41 3.2764 × 10−43 0.0036 0.0671 0.0174

CAO4
Mean 1.4185 × 10−49 2.7644 × 10−44 2.2256 × 10−41 2.4460 × 10−40 0.0013 0.0960 0.0024

Std 3.0797 × 10−49 1.2080 × 10−43 6.0544 × 10−39 3.0646 × 10−39 0.0025 0.1386 0.0181

CAO5
Mean 7.9361 × 10−41 5.5580 × 10−45 1.0328 × 10−45 1.4898 × 10−41 0.0033 0.0960 0.0018

Std 3.6388 × 10−40 8.9315 × 10−44 3.4739 × 10−43 8.7590 × 10−40 0.0109 0.0688 0.0114

CAO6
Mean 5.1744 × 10−44 4.4873 × 10−46 3.5064 × 10−41 1.8246 × 10−39 0.0017 0.0948 0.0012

Std 5.1589 × 10−43 4.2547 × 10−45 1.4646 × 10−39 1.6917 × 10−38 0.0025 0.1491 0.0231

CAO7
Mean 2.9060 × 10−43 2.1857 × 10−45 5.0238 × 10−41 8.6015 × 10−41 0.0019 0.0670 0.0039

Std 1.5628 × 10−42 6.0383 × 10−45 2.6723 × 10−39 3.1661 × 10−40 0.0026 0.1033 0.0190

CAO8
Mean 6.2145 × 10−41 9.7401 × 10−45 3.7685 × 10−39 4.3596 × 10−39 0.0052 0.0760 0.0038

Std 6.3794 × 10−40 6.2932 × 10−43 1.8435 × 10−37 2.9606 × 10−38 0.0214 0.1170 0.0218

CAO9
Mean 7.5027 × 10−44 1.0543 × 10−51 1.5536 × 10−37 2.3961 × 10−46 0.0031 0.0835 6.0726 × 10−04

Std 7.4475 × 10−43 2.3570 × 10−51 8.7301 × 10−36 3.2826 × 10−45 0.0040 0.1346 0.0274

CAO10
Mean 1.1623 × 10−66 4.0243 × 10−66 4.3410 × 10−59 4.8664 × 10−60 0.0019 0.1576 0.0013

Std 6.2719 × 10−66 1.8822 × 10−65 2.3865 × 10−57 1.4679 × 10−59 0.0031 0.1515 0.0234

AO
Mean 1.0825 × 10−40 6.6106 × 10−44 1.9768 × 10−37 2.9982 × 10−38 0.0069 0.3194 0.0051

Std 2.2192 × 10−39 1.7556 × 10−43 7.6752 × 10−36 2.0650 × 10−37 0.0047 0.2003 0.0187
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Table 7. Results on multimodal benchmark functions (F8 to F13) with Dim = 30.

Algorithms Metric F8 F9 F10 F11 F12 F13

CAO1
Mean 52.697001 3.294 × 10−08 1.850 × 10−09 5.011 × 10−09 0.1381 0.0649

Std 3.006 × 10+02 2.894 × 10−07 6.374 × 10−07 2.336 × 10−08 0.2774 0.1940

CAO2
Mean 23.330010 2.415 × 10−04 4.589 × 10−08 5.585 × 10−07 0.1574 0.0824

Std 3.553 × 10+02 0.849300 1.809 × 10−07 4.629 × 10−06 0.3011 0.1570

CAO3
Mean 1.214 × 10+02 1.329 × 10−05 9.265 × 10−08 1.992 × 10−08 0.1779 0.0556

Std 2.600 × 10+02 3.123 × 10−04 3.094 × 10−07 1.677 × 10−07 0.3364 0.2147

CAO4
Mean 91.173000 9.416 × 10−08 1.334 × 10−08 6.218 × 10−08 0.1865 0.0358

Std 2.387 × 10+02 8.232 × 10−07 3.551 × 10−08 2.195 × 10−07 0.3347 0.1818

CAO5
Mean 1.819 × 10+02 0.2393342 9.295 × 10−08 9.967 × 10−07 0.2566 0.0655

Std 2.982 × 10+02 1.4389110 3.808 × 10−07 4.127 × 10−06 0.3844 0.1811

CAO6
Mean 1.144 × 10+02 0.063000 5.721 × 10−09 9.769 × 10−08 0.1862 0.0909

Std 3.260 × 10+02 0.206623 3.485 × 10−08 5.083 × 10−07 0.3813 0.2269

CAO7
Mean 40.235900 4.242 × 10−09 7.161 × 10−10 2.315 × 10−07 0.1767 0.0773

Std 2.829 × 10+02 5.530 × 10−08 2.708 × 10−08 6.464 × 10−04 0.3302 0.1732

CAO8
Mean 1.761 × 10+02 2.882 × 10−08 1.0661 × 10−08 3.582 × 10−05 0.1563 0.0540

Std 1.606 × 10+03 1.866 × 10−07 5.102 × 10−08 1.908 × 10−06 0.3400 0.2567

CAO9
Mean 1.354 × 10+02 0.7106120 1.447 × 10−08 4.202 × 10−09 0.2829 0.0517

Std 2.710 × 10+02 1.0148110 7.504 × 10−08 4.608 × 10−08 0.3036 0.1689

CAO10
Mean 17.014212 6.319 × 10−10 2.465 × 10−11 5.004 × 10−09 0.2543 0.0524

Std 2.604 × 10+02 1.191 × 10−08 1.913 × 10−11 1.923 × 10−08 0.3421 0.1734

AO
Mean 2.994 × 10+02 0.748800 3.492 × 10−07 3.396 × 10−05 0.3405 0.1537

Std 1.582 × 10+03 0.819100 1.674 × 10−06 3.876 × 10−05 0.3647 0.3426
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Table 8. Results on multimodal with fixed dimension benchmark functions (F14 to F23) with Dim = 30.

Algorithms Metric F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

CAO1
Mean 31.918 1.1166 0.3081 0.6889 0.4899 0.5171 0.4047 3.8699 5.3699 3.8539

Std 0.0699 1.2725 0.5628 0.6711 0.6985 0.3029 0.2557 0.2449 4.8676 0.1391

CAO2
Mean 31.936 0.9725 0.3080 0.4911 0.4986 0.5312 0.4397 3.8709 0.9948 3.8559

Std 0.1160 0.9758 0.5600 0.3181 0.7026 0.3043 0.3033 0.1236 0.0123 0.1689

CAO3
Mean 32.037 0.9263 0.3105 0.6752 0.4977 0.5368 0.3294 5.8206 3.9013 3.9448

Std 0.0142 0.8718 0.5618 0.6677 0.1488 0.2868 0.1753 0.1237 0.0854 1.0730

CAO4
Mean 31.973 0.1353 0.2910 0.5198 0.4976 0.4685 0.3022 5.9415 3.8704 3.9107

Std 0.0211 0.6356 0.5250 0.5011 0.7081 0.3552 0.1299 0.0813 0.0246 0.9368

CAO5
Mean 31.954 0.3539 0.3036 0.4331 0.4874 0.4880 0.3211 7.7962 3.7861 3.9607

Std 0.0686 0.2355 0.5524 0.4098 0.6919 0.3801 0.1898 0.3882 0.2508 0.0660

CAO6
Mean 7.9194 0.8295 0.3134 0.4919 0.4779 0.3578 0.2871 7.8445 3.8344 3.8886

Std 33.945 0.7270 0.5640 0.5331 0.6502 0.5928 0.1834 0.0885 0.1883 0.2245

CAO7
Mean 31.964 0.8388 0.2694 0.7011 0.4820 0.4690 0.4029 3.8997 4.8758 3.9378

Std 0.1856 0.7919 0.4932 0.7910 0.6969 0.3992 0.2639 0.1499 2.1707 0.0595

CAO8
Mean 31.885 1.4273 0.2995 0.6771 0.4830 0.5411 0.3148 3.9203 3.8131 3.8889

Std 0.0522 2.1896 0.5718 0.6212 0.6941 0.2783 0.1701 0.1310 0.2318 0.1612

CAO9
Mean 15.972 0.5239 0.3012 0.7104 0.4737 0.4795 0.3305 3.7537 3.8840 3.7793

Std 22.601 0.3270 0.5496 0.7408 0.7095 0.3992 0.1632 0.2041 0.1461 1.1065

CAO10
Mean 7.7902 0.1977 0.3222 0.2184 0.4799 0.5024 0.2753 3.7018 0.9758 3.7749

Std 11.730 0.6718 0.5497 0.2718 0.6983 0.3657 0.1387 0.2791 0.0453 1.0418

AO
Mean 32.998 1.4459 0.3236 0.8011 0.5868 0.5943 0.4518 7.9899 3.8359 5.1871

Std 0.1388 7.1337 0.5439 0.8237 0.7067 0.3673 0.1722 0.4604 2.6451 1.8885
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Table 9. Results on unimodal benchmark functions (F1 to F7) with Dim = 50.

Algorithms Metric F1 F2 F3 F4 F5 F6 F7

CAO1
Mean 1.4014 × 10−45 8.8678 × 10−57 1.1554 × 10−40 5.8719 × 10−42 0.0069 0.1093 0.0040

Std 7.6487 × 10−45 2.1708 × 10−56 5.5669 × 10−39 5.3266 × 10−41 0.0232 0.1638 0.0291

CAO2
Mean 2.6731 × 10−51 2.4961 × 10−59 1.9667 × 10−43 7.4677 × 10−54 0.0021 0.1861 5.4088 × 10−04

Std 2.0123 × 10−50 1.3672 × 10−58 1.0771 × 10−42 4.8434 × 10−53 0.0071 0.1962 0.0080

CAO3
Mean 1.8612 × 10−48 6.0549 × 10−50 3.6566 × 10−43 8.6094 × 10−43 0.0029 0.1253 0.0042

Std 3.3861 × 10−46 4.6964 × 10−49 2.7153 × 10−41 2.2832 × 10−41 0.0031 0.1751 0.0226

CAO4
Mean 2.9703 × 10−43 2.7805 × 10−45 3.0920 × 10−38 5.7765 × 10−39 0.0054 0.0967 4.6365 × 10−04

Std 1.6591 × 10−41 6.2944 × 10−45 1.6459 × 10−36 3.3849 × 10−38 0.0074 0.1482 0.0135

CAO5
Mean 1.4490 × 10−43 1.5213 × 10−45 1.6830 × 10−45 4.8799 × 10−40 0.0053 0.1653 0.0028

Std 1.7810 × 10−42 3.7847 × 10−44 1.6462 × 10−43 8.1681 × 10−39 0.0121 0.1630 0.0239

CAO6
Mean 2.8062 × 10−43 3.2209 × 10−47 2.7807 × 10−41 8.7902 × 10−40 0.0050 0.1185 0.0018

Std 1.1892 × 10−42 7.7997 × 10−46 1.5526 × 10−39 9.6235 × 10−39 0.0177 0.1697 0.0178

CAO7
Mean 1.2935 × 10−44 6.5273 × 10−49 3.7121 × 10−41 1.2178 × 10−39 0.0069 0.1665 0.0018

Std 7.2688 × 10−44 2.4915 × 10−46 4.7472 × 10−39 8.3726 × 10−38 0.0167 0.1897 0.0201

CAO8
Mean 2.1431 × 10−50 3.2920 × 10−53 1.2780 × 10−38 3.6523 × 10−44 0.0031 0.1188 0.0014

Std 8.4976 × 10−50 3.8756 × 10−52 1.4820 × 10−35 1.6212 × 10−43 0.0252 0.1546 0.0224

CAO9
Mean 4.8437 × 10−43 6.7968 × 10−46 1.4760 × 10−38 3.6295 × 10−41 0.0034 0.0841 8.9504 × 10−04

Std 1.8334 × 10−42 9.7044 × 10−45 3.0308 × 10−36 6.4156 × 10−40 0.0040 0.1349 0.0152

CAO10
Mean 3.6296 × 10−65 3.1257 × 10−67 9.5705 × 10−50 9.8494 × 10−58 0.0033 0.0790 7.4727 × 10−05

Std 8.2527 × 10−64 3.2552 × 10−66 4.1655 × 10−47 6.5074 × 10−57 0.0116 0.1022 0.0148

AO
Mean 1.5736 × 10−41 9.6721 × 10−45 7.9429 × 10−35 1.1173 × 10−37 0.0080 0.4122 0.1962

Std 4.8437 × 10−43 5.4167 × 10−44 4.8572 × 10−33 1.1009 × 10−36 0.0090 0.1355 0.0278
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Table 10. Results on multimodal benchmark functions (F8 to F13) with Dim = 50.

Algorithms Metric F8 F9 F10 F11 F12 F13

CAO1
Mean 50.576180 8.948 × 10−10 7.102 × 10−11 8.376 × 10−10 0.1909 0.0332

Std 4.529 × 10+02 6.276 × 10−09 7.895 × 10−09 4.557 × 10−09 0.3220 0.1311

CAO2
Mean 1.089 × 10+02 1.145 × 10−09 6.343 × 10−10 4.510 × 10−10 0.2746 0.0317

Std 3.043 × 10+02 6.065 × 10−09 7.622 × 10−09 3.941 × 10−09 0.4175 0.0927

CAO3
Mean 2.454 × 10+02 2.308 × 10−09 1.864 × 10−06 2.348 × 10−09 0.1883 0.1515

Std 8.856 × 10+02 1.333 × 10−08 5.692 × 10−06 1.071 × 10−08 0.3099 0.2685

CAO4
Mean 19.685672 1.323 × 10−08 8.463 × 10−09 1.078 × 10−09 0.3117 0.0771

Std 5.120 × 10+02 2.827 × 10−08 6.374 × 10−08 7.045 × 10−09 0.2585 0.2566

CAO5
Mean 9.737 × 10+03 3.089 × 10−08 1.829 × 10−09 2.185 × 10−09 0.3554 0.1723

Std 5.333 × 10+04 1.630 × 10−07 2.002 × 10−08 1.132 × 10−08 0.3874 0.2590

CAO6
Mean 75.224186 6.554 × 10−09 3.572 × 10−08 2.693 × 10−09 0.4354 0.0339

Std 3.022 × 10+02 3.432 × 10−08 1.473 × 10−07 1.040 × 10−08 0.4623 0.1805

CAO7
Mean 1.046 × 10+02 1.120 × 10−07 3.017 × 10−09 7.572 × 10−10 0.1572 0.0428

Std 3.382 × 10+02 2.570 × 10−06 2.594 × 10−08 3.839 × 10−09 0.2686 0.1845

CAO8
Mean 20.061502 3.531 × 10−09 7.303 × 10−08 1.915 × 10−09 0.3418 0.1002

Std 3.566 × 10+02 5.911 × 10−08 1.790 × 10−07 9.994 × 10−09 0.3668 0.2592

CAO9
Mean 24.954709 6.108 × 10−06 3.673 × 10−09 8.857 × 10−10 0.2028 0.0707

Std 3.791 × 10+02 2.172 × 10−04 9.125 × 10−09 4.306 × 10−09 0.2753 0.2037

CAO10
Mean 18.734093 7.141 × 10−10 6.571 × 10−10 3.384 × 10−10 0.1750 0.0199

Std 2.7839001 1.735 × 10−09 1.493 × 10−09 4.752 × 10−09 0.3443 0.1116

AO
Mean 8.926 × 10+07 6.732 × 10−06 7.217 × 10−05 2.255 × 10−04 0.5738 0.2460

Std 4.315 × 10+08 2.183 × 10−04 2.243 × 10−04 1.122 × 10−04 0.4749 0.3448



Processes 2024, 12, 406 24 of 43

Table 11. Results on multimodal with fixed dimension benchmark functions (F14 to F23) with Dim = 50.

Algorithms Metric F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

CAO1
Mean 31.874 0.9322 0.3055 0.1637 0.4995 0.4806 0.3814 3.8509 3.9448 3.9409

Std 0.0465 0.8668 0.5478 0.0409 0.7069 0.3978 0.4140 0.1732 1.1602 1.1492

CAO2
Mean 31.917 0.1638 0.3002 0.4812 0.4668 0.5282 0.4510 3.8910 3.7960 3.9572

Std 0.0682 0.0646 0.5530 0.3717 0.6909 0.3089 0.2553 0.1070 1.3177 0.0726

CAO3
Mean 24.043 0.2942 0.3040 1.0520 0.4791 0.4969 0.3017 3.9100 3.8041 5.9418

Std 11.334 0.1701 0.5658 0.9127 0.6936 0.3773 0.1710 0.1315 0.3023 0.0674

CAO4
Mean 31.976 1.8398 0.3109 0.8081 0.4547 0.5124 0.3173 3.8638 3.8865 3.9464

Std 0.0042 1.6369 0.5621 0.9290 0.7076 0.3391 0.1510 0.0887 0.0943 0.1587

CAO5
Mean 31.876 1.3204 0.3147 0.7224 0.4800 0.5029 0.3687 3.8620 3.8693 3.8476

Std 0.4820 1.5182 0.5641 0.6030 0.7008 0.3546 0.2967 0.1743 0.2381 0.1844

CAO6
Mean 31.930 2.1473 0.3134 1.1640 0.4993 0.5075 0.3338 0.9762 3.9215 5.1173

Std 0.1420 1.8419 0.5649 1.1249 0.7075 0.3262 0.1845 0.1684 0.0909 1.9043

CAO7
Mean 32.287 0.9121 0.3093 1.3451 0.4935 0.5137 0.4635 3.8378 4.8509 4.8710

Std 0.0970 0.8089 0.5560 1.2379 0.7043 0.3444 0.3737 0.2739 2.0968 2.3336

CAO8
Mean 31.828 1.8464 0.3057 0.2626 0.4971 0.5074 0.2967 5.9450 3.8956 3.8634

Std 0.0010 1.7214 0.5464 0.1301 0.7052 0.3633 0.1610 0.0708 0.1400 1.1657

CAO9
Mean 32.034 0.1696 0.2998 0.9402 0.4955 0.4998 0.4130 3.8688 3.9100 3.9037

Std 0.1250 0.0429 0.5620 0.9664 0.7046 0.3690 0.2628 0.1256 0.1563 0.9978

CAO10
Mean 16.075 1.2854 0.2083 0.6132 0.4493 0.4995 0.2803 3.9291 0.9998 3.8473

Std 22.609 1.1661 0.5630 0.4642 0.6790 0.3534 0.1555 0.0738 0.0639 0.1782

AO
Mean 32.988 2.5993 0.3138 1.4186 0.4997 0.5326 0.4773 7.9595 5.8418 5.9869

Std 0.0990 1.7676 0.5370 1.2984 0.1453 0.3496 0.2462 0.0707 0.1536 0.0108
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Table 12. Parameter values for all algorithms.

Algorithms Parameters

Proposed CAO
N (Population size) = 30, tmax = 500

C1 (Control variable 1) = 2, C2 (Control variable 2) = 6, C3 (Control variable 3) = 2 and C4
(Control variable 4) = 0.5

WOA a1 = [0, 2]; a2 = [−2, −1]; b = 1

GWO a = [0, 2]; r1 ∈ [0, 1]; r2 ∈ [0, 1]

MVO Existence probability ∈ [0.2, 1]; traveling distance rate ∈ [0.6, 1]

SSA 1 ∈ [0, 1]; c2 ∈ [0, 1]

GSA α = 20; G 0 = 100

SCA a = 2; r 4 = [0, 1]; r 2 = [0, 2]

PSO c1 = 2; c2 = 2; v max = 6

MFO b = 1; t = [ −1, 1]; a ∈ [ −2, −1]
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The mean results (Mean) and standard deviations (Std) obtained by the different
algorithms when solving problems F1–F23 are presented in Tables 13–15. The evaluation of
the convergence behavior of the algorithms in solving the set of problems is also shown in
Figure 8. Moreover, Tables 13–15 show conclusively that the CAO10 algorithm outperforms
all other algorithms in all cases (F1–F23).

The convergence curves shown in Figure 8 highlight the exceptional convergence
speed of CAO10 compared with other algorithms in all situations. Indeed, CAO10
shows remarkable convergence from the very first stages of the search, whereas other
algorithms struggle to improve the quality of solutions, even after a greater number of
exploratory stages.

These results highlight the strengths of the CAO10 algorithm, which manages to
significantly speed up the early stages of the search due to its chaotic initialization strategy.
In addition, CAO10 significantly improves its chances of avoiding local optima, thus
favoring the discovery of optimal solutions.

In short, these findings attest to the undeniable effectiveness of the CAO10 algorithm,
demonstrating its ability to solve a wide range of problems quickly and accurately. This
combination of rapid convergence and high performance makes it a preferred choice for
optimization in complex contexts.
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Table 13. Comparison results on unimodal benchmark functions (F1 to F7).

Algorithms Metric F1 F2 F3 F4 F5 F6 F7

CAO10
Mean 0 0 0 0 0.0783 0.0033 2.563 × 10−04

Std 0 0 0 0 0 0 0

WOA
Mean 5.9699 × 10−73 3.2843 × 10−26 4.3199 × 10+04 48.6732 27.3683 0.2995 0.0010

Std 0 0 0 0 0 0 0

GWO
Mean 7.5948 × 10+02 6.0593 × 10+10 3.3671 × 10+03 4.2158 1.7138 × 10+06 5.9424 × 10+02 0.5919

Std 5.7409 × 10+03 1.3549 × 10+12 1.4126 × 10+04 15.1590 1.6081 × 10+07 4.5826 × 10+03 6.4210

MVO
Mean 0.6912 0.8424 6.1245 × 10+02 1.1334 44.0211 1.2652 0.0527

Std 0 0 0 0 0 0 0

SSA
Mean 9.3343 × 10−08 0.7420 1.8868 × 10+03 15.7646 1.0708 × 10+02 2.4597 × 10−07 0.1490

Std 0 0 0 0 0 0 0

GSA
Mean 2.3130 × 10+03 1.9539 × 10+04 5.2702 × 10+03 7.8291 7.9100 × 10+05 2.0677 × 10+03 1.1004

Std 3.2912 × 10+03 3.7007 × 10+05 1.4597 × 10+04 11.2299 1.1827 × 10+07 5.7917 × 10+03 5.2359

SCA
Mean 8.6473 × 10+03 1.7905 × 10+03 4.5324 × 10+04 71.8592 1.0117 × 10+08 1.6909 × 10+04 39.0650

Std 1.8116 × 10+04 3.9504 × 10+04 4.8487 × 10+04 21.4367 1.2722 × 10+08 2.4662 × 10+04 50.2985

PSO
Mean −3.4910 × 10−25 3.2843 × 10−26 2.3859 × 10−15 −8.0173 × 10−20 0.5224 −0.5000 0.0018

Std 6.0413 × 10−24 2.6330 × 10−25 3.0418 × 10−14 6.4544 × 10−19 0.1985 0.0057 0.0294

MFO
Mean 1.0003 × 10+04 40.0700 2.9998 × 10+04 69.6565 4.2170 × 10+02 3.9826 3.0054

Std 0 0 0 0 0 0 0
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Table 14. Comparison results on multimodal benchmark functions (F8 to F13).

Algorithms Metric F8 F9 F10 F11 F12 F13

CAO10
Mean 7.1672516 0 8.881 × 10−16 0 0.025844 0.0017

Std 3.770 × 10+02 0 0 0 0 0

WOA
Mean 3.623 × 10+03 7.212 × 10−10 31.43220 −1.032 × 10−07 0.177169 1.328 × 10+07

Std 8.615 × 10+02 4.546 × 10−09 3.109956 4.394 × 10−07 0.344965 1.114 × 10+08

GWO
Mean 1.254 × 10+04 1.475 × 10+02 9.744673 1.777 × 10+02 1.173 × 10+07 0.1690040

Std 0 1.014 × 10+02 3.296500 1.165 × 10+02 5.037 × 10+07 0.0029300

MVO
Mean 3.760 × 10+03 1.297 × 10+02 3.265648 33.63071 1.394 × 10+07 4.145 × 10+07

Std 1.170 × 10+03 92.400120 5.764688 1.041 × 10+02 8.101 × 10+07 1.889 × 10+08

SSA
Mean 7.170 × 10+03 2.190 × 10+02 19.90393 76.21996 4.983 × 10+07 5.291 × 10+07

Std 0 0 0 0 0 0

GSA
Mean 7.084 × 10+03 1.748 × 10+02 3.938290 1.364197 7.186429 3.5204640

Std 0 0 0 0 0 0

SCA
Mean 2.755 × 10+03 1.399 × 10+02 19.41303 2.184 × 10+02 3.305 × 10+08 5.687 × 10+08

Std 3.936 × 10+02 80.31465 2.937372 2.278 × 10+02 2.700 × 10+08 4.470 × 10+08

PSO
Mean 7.317 × 10+03 87.71319 8.928028 10.524 26.664201 5.272 × 10+02

Std 0 0 0 0 0 0

MFO
Mean 88.475008 4.342 × 10−07 1.174 × 10−06 −8.520 × 10−05 0.797739 0.5992800

Std 3.571 × 10+02 1.643 × 10−05 3.876 × 10−05 0.001445 0.907648 0.4798860
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Table 15. Comparison results on multimodal with fixed dimension benchmark functions (F14 to F23).

Algorithms Metric F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

CAO10
Mean 0.9980 6.237 × 10−04 0.31060 4.957 × 10−04 0.4583 0.4961 0.2838 0.9201 1.1833 0.8968

Std 0 0 0 0 0 0 0 0 0 0

WOA
Mean 23.9687 0.81739 0.9877 0.8630 4.1213 3.84711 2.6389 2.6353 3.8773 3.9407

Std 11.1862 0.83644 0.5634 0.7705 0.6606 0.3830 0.1299 0.1273 0.1174 0.0610

GWO
Mean 4.71250 0.00729 1.0316 0.0232 3.06361 −3.8627 3.1972 10.1484 7.9243 2.7740

Std 27.2895 0.01319 0.1565 0.0137 6.6742 0.0945 0.2608 1.0819 2.7934 1.6997

MVO
Mean 10.7640 0.00231 0.9853 0.0226 5.6369 3.8438 3.0637 1.7879 10.3952 10.535

Std 0.00220 0.00649 0.3523 0.0175 19.1752 0.0340 0.1322 0.6476 2.8479 2.9281

SSA
Mean 3.96820 0.00118 1.0316 0.0012 2.9999 3.8627 3.2031 5.1007 6.1271 5.5101

Std 0 0 0 0 0 0 0 0 0 0

GSA
Mean 15.5038 0.00140 1.0316 0.0186 3.0002 3.8627 3.1326 10.147 10.4022 10.536

Std 0 0 0 0 0 0 0 0 0 0

SCA
Mean 8.41915 0.00420 0.9728 0.0033 4.2623 3.7441 2.7264 3.8667 2.7515 10.521

Std 30.4592 0.00801 0.2243 0.0037 4.6039 0.5463 0.4135 0.4840 0.5961 0.1332

PSO
Mean 4.95049 0.00152 1.0316 0.0192 3.0322 3.8626 3.1114 10.1534 1.1833 3.8351

Std 0 0 0 0 0 0 0 0 0 0

MFO
Mean 31.9783 2.12677 0.3114 2.0795 0.5067 0.5076 0.3449 4.70315 4.3068 4.3554

Std 9.963 × 10−06 2.05953 0.5674 2.0143 0.7071 0.3713 0.1900 5.501 × 10−05 6.311 × 10−04 6.316 × 10−04
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6.2. Comparative Study on Two Real-World Applications

In this subsection, we use the CAO10 algorithm to solve three crucial engineering
mathematical modeling problems, namely: (a) the design of welded beams; (b) the design
of tension/compression springs; and (c) the design of pressure vessels. The results obtained
are compared with those of numerous algorithms, including WOA, GWO, SSA, MVO, GSA,
SCA, PSO, and MFO.

(a) The welded beam design problem (WBDP)

The objective of this test is to optimize the values of the supplied variables (l, h, t,
and b) to minimize the manufacturing cost for the WBD problem (Figure 9). To meet
this challenge, we used the CAO10 algorithm proposed for solving the WBD problem,
which we compared with various other optimization algorithms to determine its degree
of superiority.
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The results of this comparison are shown in Table 16. They remarkably reveal that the
performance of the CAO10 algorithm exceeds that of all the other algorithms considered, a
significant finding. As a result, it can be concluded that the CAO10 algorithm succeeds in
identifying the best solution for the WBD problem in pursuit of the best possible solution.

Table 16. Comparison results for WBDP.

Algorithms
The Optimal Values of the Variables

Optimal Cost
h L T b

WOA 0.203481 3.522134 9.034608 0.205832 1.728744

GWO 0.210018 4.685682 9.612054 0.211448 2.129173

SSA 0.216840 3.332410 8.801918 0.216850 1.764686

MVO 0.205868 3.492594 9.020946 0.206450 1.730838

GSA 0.203591 3.586508 9.298896 0.209935 2.445557

SCA 0.206811 3.482429 9.734118 0.208347 1.870321

PSO 0.207641 3.590249 9.370719 0.211037 1.812654

MFO 0.211980 3.610641 9.512845 0.207155 2.236191

CAO10 0.205403 3.478066 9.036632 0.205732 1.725388

(b) The problem of tension/compression springs (TCSP)

In the TCSP problem, our aim is to minimize the minimum weight of this spring by
optimizing three essential design variables (d, D, and the number of active coils, N), as
illustrated in Figure 10. To solve this complex problem, we used the CAO10 algorithm,
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which was specifically designed for this task. We then compared the performance of the
CAO10 algorithm with that of various competing optimization techniques.
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The results of this comparison, summarized in Table 17, convincingly demonstrating
the performance of the CAO10 algorithm. The CAO10 algorithm generates a greater
number of optimal solutions than the other approaches examined.

Table 17. Comparison results for TCSP.

Algorithms
The Optimal Values of the Variables

Optimal Weight
d D N

WOA 0.054459 0.426290 8.154532 0.012838

GWO 0.086479 1.300000 2.000000 0.030506

SSA 0.071927 0.317342 14.05613 0.012738

MVO 0.050450 0.327552 13.27398 0.012734

GSA 0.053251 0.393056 9.575860 0.013263

SCA 0.053562 0.311936 14.37716 0.014633

PSO 0.067439 0.381298 9.674320 0.014429

MFO 0.057192 0.418211 14.11433 0.023833

CAO10 0.050000 0.343364 12.11704 0.012671

(c) Pressure vessel design problem (PVDP)

In the context of the PVDP, the main objective is to determine the total cost of the
cylindrical pressure vessel, as shown in Figure 11. To satisfy the four constraints (Th, Ts,
R, and L), optimization operations must take into account four design factors. Using the
CAO10 algorithm to solve this problem, the simulation results obtained are compared
with those obtained by several different optimization algorithms, as shown in Table 18.
On the basis of these data, we can conclude that the suggested CAO10 algorithm has a
better cost value than all other comparative algorithms, with the exception of the shortest
path method.
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Table 18. Comparison results for PVD.

Algorithms
The Optimal Values of the Variables

Optimal Cost
Ts Th R L

WOA 0.787682 0.397850 40.79602 193.6284 5.93255 × 10+03

GWO 1.210365 14.23855 52.61191 200.0000 8.04630 × 10+04

SSA 1.252278 0.616931 64.64376 12.57938 7.29154 × 10+03

MVO 0.792020 0.404503 41.00121 191.1295 5.96206 × 10+03

GSA 0.872208 0.651819 40.57705 174.9799 7.40800 × 10+03

SCA 1.340987 0.593397 61.53646 35.53712 8.21843 × 10+03

PSO 0.912099 0.774210 42.83227 174.9999 6.41810 × 10+03

MFO 1.462991 1.018712 62.88539 65.99552 8.78800 × 10+03

CAO10 0.781845 0.386473 40.51013 197.3649 5.89166 × 10+03

These results underline the exceptional effectiveness of the CAO10 algorithm in solving
complex problems such as WBDP, TCSP, and PVDP, demonstrating its ability to achieve
optimal solutions and outperform other optimization approaches. This breakthrough offers
promising prospects for the application of the CAO10 algorithm in industrial optimization
and engineering contexts, where the search for optimal solutions is of crucial importance.

6.3. Reconstruction of 2D and 3D Signals and Images Using Meixner Moments and the
Chaos-Archimède Algorithm (CAO)

Discrete orthogonal moments [44] play a prominent role in signal and image analy-
sis, and their usefulness extends to a multitude of varied applications. They have been
successful in areas such as classification, reconstruction, watermarking, encryption, and
compression [45–49]. They are a versatile tool for representing and processing complex
data. In the context of signal and image reconstruction, the use of discrete orthogonal
Meixner moments (MMs) is complemented by the calculation of polynomial Meixner val-
ues (MPs). These polynomials depend on local parameters, noted as (β, u). To achieve
optimum reconstruction quality, it is imperative to adjust these parameters appropriately.
This is where the Optimized Chaos-Archimede (CAO) algorithm comes in, proposing an
innovative solution. The CAO10 algorithm is used to determine optimal values for (β, u),
thus guaranteeing superior quality in image reconstruction. Figure 12 summarizes the key
steps in implementing the CAO algorithm for signal and image reconstruction.

In this subsection, we validate the CAO10 algorithm’s ability to reconstruct large
medical signals and images using MMs. This validation process comprises three distinct
tests. The first test aims to evaluate the performance of the proposed method for bio
signals. The second test looks at the reconstruction of medical color images. Its aim is to
demonstrate the ability of the CAO10 algorithm, in combination with MMs, to render color
images accurately. Finally, the third test tackles an even more complex challenge, namely,
the reconstruction of 3D images. We use the reconstruction method based on the CAO10
algorithm to achieve optimum results in the context of these three-dimensional images.

To assess the similarity between the original signal or image and those reconstructed,
we use the criteria of mean square error (MSE) and peak signal-to-noise ratio (PSNR) in
decibels (dB). These metrics enable us to objectively measure the quality of the reconstruc-
tion by quantifying the difference between the original signal or image and its reconstructed
version, thus providing an accurate assessment of the CAO10 algorithm’s performance in
each test scenario.
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(a) Optimal bio signal reconstruction using MMs and the CAO algorithm

In this test, we verify the efficiency of the CAO10 algorithm for reconstructing large
signals. To do this, we choose to reconstruct a specific ECG signal, named “MIT-BIH
record 124”, of size 1000 taken from the MIT-BIH database [50]. The CAO10 algorithm was
employed to optimize the local parameters (β, u) of the MPs used in the reconstruction
of this signal. The results obtained with the CAO10 algorithm were compared with those
generated by various other optimization algorithms, such as WOA, GWO, SSA, MVO, GSA,
SCA, PSO, and MFO.

Table 19 illustrates the original signal, as well as a set of signals reconstructed using
the different optimization methods. This figure also highlights the reconstruction errors,
measured in terms of MSE and PSNR, as well as the optimal values of the local parameters
(β, u) of the MPs. In addition, Figure 13 shows the PSNR values of signals reconstructed
using various algorithms.

The results of this test demonstrate that the method based on the CAO10 algorithm
enables optimal determination of the parameters (β, u), leading to excellent signal re-
construction quality, characterized by low MSE and high PSNR compared with other
optimization algorithms. These findings clearly underline the superiority and robustness
of the CAO10 algorithm in the context of biological signal reconstruction, opening up new
prospects for improving complex signal analysis in medicine and elsewhere.
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Table 19. “MIT-BIH record 111” signals reconstructed by MMs using the proposed method based on
the CAO algorithm method, compared with other algorithms.
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(b) Optimal reconstruction of 2D medical images using CAO-optimized MMs

In this test, we evaluate the ability of the MM-based reconstruction method and
CAO10 algorithm to reconstruct color medical images. We used 2D images of size 1024
from the database to carry out these experiments.

The CAO10 algorithm was used to optimize MMs parameters and perform medical
image reconstruction. The results obtained by the CAO10 algorithm were compared with
those generated by several other commonly used optimization algorithms, including WOA,
GWO, SSA, MVO, GSA, SCA, PSO, and MFO. The reconstructed images, including those
with the names “Brain”, “multiple-osteochondromas”, “mandible-fracture”, and “soft-
tissue-chondroma-thumb”, were evaluated in terms of reconstruction quality. Table 20
shows the results of this evaluation, including reconstructed images, optimized MMs
parameter values, and reconstruction errors, while Figure 14 shows the MSE and PSNR
curves of the “brain” image reconstructed using various algorithms.
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Table 20. Simulation results for medical image reconstruction of size 1024.
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Figure 14. MSE and PSNR plot of reconstructed ‘Brain’ image.

The results obtained attest to the ability of the CAO10 algorithm to determine optimal
values of the parameters (β, u) enabling the reconstruction of all images with a considerably
low MSE (high PSNR), thus outperforming the other algorithms evaluated. These findings
eloquently demonstrate the superiority of the CAO10 algorithm in the field of medical
image reconstruction.

(c) Optimal reconstruction of 3D images by MMs and the CAO algorithm

In this subsection, we evaluate the effectiveness of the proposed 3D reconstruction
method based on MMs and the CAO10 algorithm. We used the “Verterba” 3D image
of voxel size 256 downloaded from the [49] database. Table 21 shows the results of the
reconstruction of this image using the CAO10 algorithm compared with other optimization
algorithms. The values of the optimized parameters (β, u) and the error measures MSE
and PSNR are also displayed.

The results of this test show that the MMs values optimized by the CAO10 algorithm
lead to better reconstruction quality, characterized by very low MSE and high PSNR,
compared with other methods. These results demonstrate the effectiveness of our approach
to polynomial parameter selection and 3D image reconstruction.
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Table 21. The comparison results of the 3D image of the “corona” with size 256 × 256 × 256.
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7. Conclusions

In conclusion, this study presents a significant advance in the field of optimiza-
tion thanks to the introduction of the improved Archimedes optimization algorithm,
Chaotic_AO (CAO). This algorithm is based on the use of ten distinct chaotic maps to
replace pseudorandom sequences in the essential components of AO, namely, initialization,
density and volume updating, and position updating. This enhancement has succeeded in
striking a more appropriate balance between mining and exploration, offering an increased
probability of discovering global solutions.

Evaluation of CAO’s performance across three distinct groups of problems highlighted
its efficiency and reliability. The results of these tests clearly revealed that the CAO algo-
rithm is not only efficient but also reliable. It demonstrated remarkable convergence speeds
and exceptional solution quality in most of the cases studied. These observations confirm
the real potential of the CAO algorithm for solving varied and complex problems. Overall,
CAO offers exciting new prospects for improving optimization techniques, paving the way
for wide-ranging applications in fields from engineering to medicine.

Following on from our current research, we plan to extend the application of the CAO
algorithm to other areas of optimization, with particular emphasis on complex problems,
such as multi-criteria optimization with conflicting objectives. This focus on more complex
scenarios is intended to assess the robustness and versatility of the algorithm in the face of
a variety of challenges.
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