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Abstract: In response to the urgent need to address climate change and reduce carbon emissions,
there has been a growing interest in innovative approaches that integrate AI and CDR technology.
This article provides a comprehensive review of the current state of research in this field and aims to
highlight its potential implications with a clear focus on the integration of AI and CDR. Specifically,
this paper outlines four main approaches for integrating AI and CDR: accurate carbon emissions
assessment, optimized energy system configuration, real-time monitoring and scheduling of CDR
facilities, and mutual benefits with mechanisms. By leveraging AI, researchers can demonstrate the
positive impact of AI and CDR integration on the environment, economy, and energy efficiency. This
paper also offers insights into future research directions and areas of focus to improve efficiency,
reduce environmental impact, and enhance economic viability in the integration of AI and CDR
technology. It suggests improving modeling and optimization techniques, enhancing data collec-
tion and integration capabilities, enabling robust decision-making and risk assessment, fostering
interdisciplinary collaboration for appropriate policy and governance frameworks, and identifying
promising opportunities for energy system optimization. Additionally, this paper explores further
advancements in this field and discusses how they can pave the way for practical applications of AI
and CDR technology in real-world scenarios.

Keywords: climate change; low carbon; sustainable development; AI-CDR; 3E analysis

1. Introduction
1.1. Research Background

Carbon Dioxide Removal (CDR) technology and Artificial Intelligence (AI) are two
prominent fields that have gained significant attention in recent years [1–3]. CDR technol-
ogy focuses on the removal of carbon dioxide from the atmosphere [4], while AI encom-
passes the development of intelligent systems capable of performing tasks that typically
require human intelligence [5,6]. The integration of CDR technology and AI presents a
compelling opportunity to optimize energy systems and address the challenges of climate
change. CDR technology aims to mitigate climate change by actively removing carbon diox-
ide from the atmosphere or capturing it from emission sources [7]. Various CDR methods
have been proposed and developed including Direct Air Capture (DAC) [8], which extracts
CO2 directly from ambient air, and Bioenergy Carbon Capture and Storage (BECCS), which
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combines biomass energy production with carbon capture and storage [9,10]. These tech-
nologies offer the potential to reduce carbon emissions and contribute to a more sustainable
future. Figure 1 shows the important role of AI in CO2 emission reduction. The left scheme
corresponds to an AI-based GHG sequestrating cycle. The right scheme describes the role
of AI software in this scheme.
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Additionally, AI has demonstrated remarkable capabilities in data analysis, pattern
recognition, and optimization [11]. By harnessing the power of AI, energy systems can be
optimized to achieve greater efficiency, reduce the carbon footprint, and improve overall
performance. The integration of CDR technology and AI holds significant promise for
energy system optimization. AI techniques can enhance CDR technologies in several
ways including accurate assessment and monitoring of carbon emissions, optimization of
deployment and operation of CDR facilities, and real-time monitoring and adaptive control
based on changing conditions [12].

The motivation behind integrating CDR technology and AI lies in the urgent need
to address climate change and transition to a sustainable energy future. The rising levels
of carbon dioxide in the atmosphere and the associated environmental consequences
necessitate effective strategies to reduce emissions and remove existing carbon [13]. By
combining CDR technology and AI, we can enhance the efficiency and effectiveness of
carbon removal processes, optimize energy systems, and accelerate the transition to a low-
carbon economy. The integration of CDR technology and AI presents a unique opportunity
to optimize energy systems and mitigate climate change. By combining the capabilities
of CDR technology in carbon removal and AI in data analysis and optimization, we can
achieve more efficient and sustainable energy systems. The following sections of this review
will delve deeper into the applications, advantages, challenges, and future prospects of this
integration.

1.2. Overview of CDR Technology

Carbon Dioxide Removal (CDR) technology encompasses various methods and ap-
proaches aimed at removing carbon dioxide from the atmosphere or capturing it from
emission sources. Here are some common CDR technologies.

• Direct Air Capture (DAC)

Principle: DAC technology directly extracts carbon dioxide from ambient air using
chemical sorbents or membranes [14]. Application Scope: DAC can be deployed in various
locations including industrial sites, power plants, or even directly in the atmosphere.
Potential Challenges: DAC technologies face challenges related to energy consumption,
cost-effectiveness, and scalability. Developing efficient and cost-competitive sorbents and
optimizing the capture process are ongoing areas of research. Figure 2 shows the levelized
cost projections for CO2 direct air capture in 2050.
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Chemicals in Gt CO2/year [15–18].

• Bioenergy Carbon Capture and Storage (BECCS)

Principle: BECCS combines biomass energy production with carbon capture and
storage. The process flow diagram in Figure 3 depicts the operations during the harvest
season, which involves steam extraction for industrial processes and includes CCS. Biomass
plants capture CO2 emissions generated during energy production and store them under-
ground [19]. Application Scope: BECCS can be implemented in power plants, industrial
facilities, or dedicated biomass production facilities. Potential Challenges: Challenges
include ensuring sustainable biomass feedstock supply, optimizing the energy balance of
the process, and addressing potential environmental impacts associated with large-scale
biomass cultivation.
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• Carbon Sequestration

Principle: Carbon sequestration involves capturing and storing carbon dioxide emis-
sions in geological formations, such as depleted oil and gas reservoirs or deep saline
aquifers [21]. Application Scope: Carbon sequestration can be applied to various emission
sources including power plants and industrial facilities. Potential Challenges: Challenges
include selecting suitable storage sites, ensuring the long-term integrity of the storage
reservoirs, and addressing public perception and regulatory concerns surrounding the
safety and permanence of storage.

• Enhanced Weathering

Principle: Enhanced weathering involves accelerating natural weathering processes to
capture and store carbon dioxide [22]. It typically involves the application of minerals or
rocks that react with CO2 and permanently sequester it. Figure 4 illustrates a conceptual
diagram that presents the strategies of CCS through mineral carbonation. Application
Scope: Enhanced weathering can be applied to agricultural lands, coastal areas, or specific
carbon capture facilities. Potential Challenges: Challenges include identifying suitable
mineral sources, assessing the environmental impact of large-scale mineral deployment,
and understanding the long-term stability of carbon storage.
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Each CDR technology has its own set of principles, application scopes, and challenges.
It is crucial to evaluate these factors to determine the most suitable CDR technology for
a given context. The advantages and disadvantages of each technology are compared as
shown in Table 1.
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Table 1. Comparison of advantages and disadvantages of the four technologies.

Technologies Advantages Disadvantages

DAC

1. It can capture carbon dioxide from the air at
any location.
2. Potential for large-scale carbon capture
and storage.

1. It requires significant amounts of electricity
and energy.
2. Relatively high cost compared to
traditional methods.

BECCS

1. It utilizes biomass feedstocks, which can be
renewable and sustainable.
2. It can be integrated with existing power plants
or industrial facilities.

1. It requires large areas of land to cultivate
biomass feedstocks.
2. It competes with land use for food production
and conservation efforts.

Carbon Sequestration

1. It enhances soil fertility and promotes
sustainable land management practices
2. It can contribute to the development of carbon
offset projects

1. Limited capacity to sequester large amounts of
carbon dioxide
2. High costs associated with implementation and
maintenance

Enhanced Weathering

1. It has the potential to improve soil fertility and
agricultural productivity
2. It does not require complex infrastructure
for implementation

1. High costs associated with large-scale
implementation and transportation of materials
2. Potential challenges related to land use and
ecosystem disruption

1.3. Research Gap of Past Reviews

While there have been previous literature reviews on Carbon Dioxide Removal (CDR)
technology and Artificial Intelligence (AI) individually, there is a research gap when it
comes to exploring their integration specifically for energy system optimization [24]. Previ-
ous reviews have predominantly emphasized either CDR technologies or AI applications
in energy systems with limited consideration of their combined potential. This review aims
to address this gap by examining the integration of CDR technology and AI, highlighting
their synergistic effects and advantages for energy system optimization.

By integrating CDR technology and AI, we can optimize energy systems and tackle
climate change challenges more effectively. While there have been studies on optimizing
energy systems using AI techniques, there is a lack of research specifically focused on
integrating CDR technology into these optimization strategies. This review aims to fill this
gap by exploring how AI can optimize the deployment, operation, and performance of
CDR technologies within energy systems.

Real-time monitoring and adaptive control are essential when integrating CDR tech-
nology and AI. AI enables the real-time monitoring of CDR facilities, allowing for adaptive
control and optimization based on changing conditions and demands. This capability en-
hances the efficiency and effectiveness of CDR technology in addressing carbon emissions.
The integration of CDR technology and AI has significant implications for sustainable
energy development. It contributes to carbon emission reduction, improved energy sys-
tem efficiency, and the development of new technologies, supporting the transition to a
sustainable energy future.

In summary, this review provides a comprehensive analysis of the integration of CDR
technology and AI. It covers the fundamental concepts and principles of CDR technology
and AI, explores integration methods and potential advantages, and discusses practical
challenges, feasibility, and environmental management aspects. By focusing on a specific
gap in research and highlighting the advantages of this review, we aim to provide valuable
insights for researchers, policymakers, and practitioners in the field of energy system
optimization and sustainable development.

2. Integration of “CDR + AI”

The integration of CDR Technology and Artificial Intelligence (AI) offers several
potential advantages, including four parts as follows:
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2.1. Accurate Carbon Emissions Assessment

By combining CDR technology and AI, it becomes possible to accurately assess and
quantify carbon emissions. Figure 5 shows an overview of the thematic dimensions in-
cluded in the technical feasibility assessment of CDR removal. AI algorithms can analyze
large amounts of data from various sources, including CDR facilities, industrial processes,
and energy consumption patterns, to provide more precise estimations of carbon emis-
sions. This can help in identifying high-emission areas, tracking progress towards emission
reduction goals, and informing policy decisions [25].
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AI algorithms can integrate and analyze data from multiple sources, including emis-
sions inventories, satellite imagery, sensor networks, and industry-specific data, to gain a
comprehensive understanding of emissions across different sectors and regions [26]. By
analyzing emissions-related data, AI can identify the spatial and temporal patterns of
emissions, such as emission hotspots or areas with significant emission fluctuations, and
pinpoint the high-emission areas that may require targeted interventions [27]. Machine
learning techniques enable AI models to recognize emission patterns and make predic-
tions based on historical data [28], identifying areas with a higher likelihood of being
high-emission areas [29,30].

Satellite imagery provides valuable information on greenhouse gas concentrations,
land-use changes, and industrial activities [31,32], which AI algorithms can process and ana-
lyze to identify regions with higher emissions and track changes over time [33]. Integrating
data from sensors and IoT devices enables real-time monitoring of emissions, facilitating
the identification of areas experiencing sudden spikes or persistent high emissions [34,35].
By visualizing emissions data spatially and using geospatial analysis techniques, AI can
provide intuitive representations of high-emission areas [36,37]—making it easier for policy-
makers and stakeholders to identify regions that require targeted mitigation strategies [38].
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By leveraging these capabilities, AI algorithms can assist in identifying high-emission
areas, providing valuable insights into the sources and patterns of emissions. This informa-
tion can guide policymakers in developing targeted interventions, implementing emission
reduction measures, and prioritizing areas for mitigation efforts.

2.2. Optimized Energy System Configuration

AI algorithms can optimize the integration of CDR technology into energy systems by
analyzing data on energy demand, renewable energy generation [39], and other factors to
identify the most efficient and cost-effective ways to reduce carbon emissions and improve
overall system efficiency [40,41]. By maximizing the use of renewable energy sources, AI
can help reduce carbon emissions. Figure 6 is a schematic of a low-carbon energy system.
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AI algorithms can analyze extensive datasets related to energy demand, renewable
energy generation, grid infrastructure, and other relevant factors [42,43]. By processing
this data, AI models can build sophisticated models that capture the complexities of an
energy system including the interplay between different energy sources, demand patterns,
and carbon emissions [40,44]. These models enable scenario analysis and optimization
to identify efficient and cost-effective configurations for integrating CDR technology [45].
Considering factors such as energy demand, renewable energy availability, storage capac-
ities, and carbon removal targets, AI algorithms simulate and evaluate different system
configurations [46,47]. This facilitates the identification of optimal solutions that maximize
renewable energy use, minimize carbon emissions, and achieve specific energy and carbon
removal objectives.

AI algorithms also optimize demand-side management strategies by analyzing energy
demand patterns [12,48]. By leveraging machine learning techniques, AI identifies demand
response opportunities, predicts peak energy demand periods, and optimizes the schedul-
ing of energy-consuming activities [49,50]. This helps balance energy supply and demand,
reduce reliance on fossil fuel-based energy generation, and increase the integration of
renewable energy and CDR technologies. AI enhances the accuracy of renewable energy
forecasting by analyzing historical weather data, renewable energy generation data, and
other variables [51,52]. Accurate predictions of renewable energy availability enable the
optimization of CDR facility scheduling and operation, aligning them with high renewable
energy generation and low grid demand [53,54]. Furthermore, AI algorithms optimize en-
ergy system configurations by analyzing historical and real-time data on energy supply and
demand, market prices, weather conditions, and other factors [55]. This analysis identifies
opportunities for energy storage deployment, demand shifting, and smart grid manage-
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ment [56], ensuring stability, accommodating intermittent renewable energy sources, and
effectively integrating CDR technologies [39].

By leveraging AI capabilities, energy system operators, policymakers, and stakehold-
ers can optimize energy system configurations to maximize CDR technology benefits. This
includes minimizing carbon emissions, maximizing renewable energy use, and improving
overall system efficiency and resilience.

2.3. Real-Time Monitoring and Scheduling of CDR Facilities

AI enables the real-time monitoring and adaptive control of CDR facilities. By ana-
lyzing data from sensors, AI algorithms can continuously monitor the performance and
operation of CDR facilities, detecting any anomalies or inefficiencies [57]. This allows
for timely adjustments and optimizations, ensuring optimal utilization of resources and
maximization of the carbon removal capacity of the facilities. Figure 7 displays a map
depicting the global distribution of CCUS facilities with a specific focus on Europe.
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AI algorithms integrate data from various sensors and monitoring devices installed in
CDR facilities [59,60]. This includes parameters like temperature, pressure, flow rates, and
capture efficiency. By continuously analyzing real-time data, AI monitors the performance
of CDR facilities, detects anomalies or deviations from optimal conditions, and alerts op-
erators to potential issues [61,62]. Anomaly detection techniques help identify abnormal
behavior or malfunctions [63], triggering alarms or notifications by comparing real-time
sensor data with historical patterns and predefined thresholds. Operators can take imme-
diate corrective actions, minimizing disruptions in the carbon removal process. AI also
predicts maintenance needs and schedules proactive maintenance activities, optimizing
facility availability and reliability [64].

AI dynamically adjusts CDR facility operations based on real-time data and changing
conditions. By monitoring factors like energy availability, carbon capture efficiency, and



Processes 2024, 12, 402 9 of 18

storage capacity, AI optimizes scheduling and resource allocation. This enables adaptive
control strategies that maximize carbon removal capacity, optimize energy consumption,
and respond to fluctuations in renewable energy generation or demand. AI optimizes
resource allocation within CDR facilities, considering real-time data on energy availability,
cost, and carbon removal targets. This determines the most efficient allocation of resources
for optimal carbon removal performance, minimizing costs while maximizing capacity. AI
integrates with energy grid data and market signals to schedule CDR facilities. Considering
electricity prices, demand peaks, and renewable energy availability, AI schedules carbon
removal processes during periods of low electricity demand or high renewable energy
availability. This maximizes renewable energy utilization, reduces costs, and aligns carbon
removal activities with grid conditions.

2.4. Mutual Benefits and Mechanisms

The integration of CDR technology and AI can lead to mutual benefits and syner-
gies [65]. CDR technology can provide data for AI model training and improvement,
while AI optimization methods can improve the efficiency of CDR technology. The data
collected from CDR facilities can be used to train AI models and enhance their accuracy
and efficiency. AI algorithms can analyze complex datasets and optimize the operation and
performance of CDR facilities, leading to increased carbon removal efficiency and reduced
operational costs [22].

CDR facilities generate a wealth of data that can be utilized to train AI models [3]. By
incorporating this data into the training process, AI algorithms can learn from real-world
CDR operations and improve their accuracy and efficiency. This leads to more effective AI
models that can make better decisions and optimizations in CDR technology [66].

AI algorithms can optimize the operation and performance of CDR facilities by an-
alyzing complex datasets and identifying patterns and correlations [67]. This enables AI
to make informed decisions and adjustments in real-time, enhancing the efficiency and
effectiveness of CDR technology. AI algorithms can optimize various aspects of CDR
technology processes, including capture, storage, and utilization of carbon dioxide, leading
to cost reductions, energy savings, and increased carbon removal capacity.

AI algorithms can enable CDR systems to be adaptive and responsive to changing
conditions by continuously analyzing real-time data. This adaptability allows CDR systems
to optimize their performance in response to variations in energy supply, carbon emissions,
and other relevant factors, ensuring effective carbon removal in real-time [68]. AI can
also play a crucial role in planning the deployment and scalability of CDR technology by
analyzing various factors and optimizing the allocation of resources [69].

The integration of CDR technology and AI creates a symbiotic relationship that enables
improved carbon removal capabilities, cost-effectiveness, and scalability. This synergy
contributes to the mitigation of climate change by offering accurate carbon emissions assess-
ments, optimized energy system configurations, and real-time monitoring and scheduling
of CDR facilities. The mutual benefits between CDR technology and AI can drive advance-
ments in both fields, leading to more efficient and effective carbon removal solutions.

3. E Performance Improvement for Energy System

The integration of CDR technology and AI can indeed result in performance im-
provements in terms of efficiency, environmental impact, and economic viability [70]. The
integration of CDR technology and AI can bring about significant performance improve-
ments in terms of efficiency, environmental impact reduction, and economic viability [71].
These improvements contribute to the advancement and adoption of CDR technology as a
crucial tool in addressing climate change and achieving sustainable carbon mitigation goals.

3.1. Efficiency Improvements

AI algorithms can optimize the operation and processes of CDR facilities, leading to
increased efficiency. By analyzing large volumes of data, AI models can identify patterns,
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correlations, and optimal operating conditions. This optimization can improve the overall
efficiency of carbon removal processes, such as capture, storage, and utilization, reducing
energy consumption and resource wastage [72]. Enhanced efficiency translates to higher
carbon removal rates per unit of energy or resources utilized. Figure 8 shows how com-
pression energy consumption varied with cooling temperature and compressor discharge
pressure for three CO2 capture scenarios.
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AI algorithms analyze data generated by CDR systems including sensor readings,
operational parameters, and historical performance data. By processing this data, AI models
identify patterns, correlations, and optimal operating conditions that maximize carbon
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removal efficiency [74]. For example, AI determines the optimal flow rates, temperature,
pressure, and solvent concentrations for carbon capture processes, minimizing energy
consumption and improving capture efficiency. AI enables real-time monitoring and
adaptive control of CDR facilities, detecting deviations from optimal conditions and making
necessary adjustments [75].

AI optimizes energy consumption within CDR facilities by analyzing energy usage
patterns and considering factors like costs and availability. This includes strategies such
as load balancing, scheduling energy-intensive operations during low-demand periods,
and integrating renewable energy sources [76]. AI also optimizes resource allocation and
utilization within CDR facilities by analyzing data on availability, costs, and carbon removal
targets. This minimizes waste, reduces costs, and maximizes the facility’s carbon removal
capacity. AI aids in the early detection of equipment faults or maintenance needs within
CDR systems [77]. By continuously monitoring sensor data and performance metrics,
AI identifies anomalies or deviations that may indicate impending failures. This enables
proactive maintenance planning and reduces downtime, ensuring efficient and continuous
facility operation. AI continuously learns and adapts based on feedback and performance
data, identifying areas for improvement and refining optimization strategies over time [78].
This ongoing learning process leads to efficiency improvements and the better performance
of CDR systems.

By leveraging AI algorithms to optimize operations, control parameters, and allocate
resources, CDR facilities achieve higher efficiency, reducing energy consumption and
resource wastage while maximizing carbon removal rates. These improvements contribute
to the effectiveness of CDR technology in mitigating carbon emissions and combating
climate change.

3.2. Environmental Impact Reduction

AI optimization methods can significantly reduce the environmental impact of CDR
technology by improving the efficiency of carbon removal processes and minimizing energy
requirements and associated greenhouse gas emissions [79,80]. Additionally, AI algorithms
can identify opportunities for utilizing captured carbon dioxide in industrial processes or
carbon utilization technologies, further reducing emissions and environmental impact [81].

By optimizing the energy consumption of CDR processes, AI algorithms can mini-
mize energy usage without compromising carbon removal efficiency, thus reducing the
carbon footprint of CDR facilities. AI can also optimize various carbon removal processes,
such as capture, storage, and utilization, leading to more efficient and environmentally
friendly operations [3,82]. For instance, AI algorithms can determine optimal operating
conditions for carbon capture technologies, such as solvent selection, temperature, and
pressure, to maximize efficiency and minimize energy consumption, thereby reducing the
environmental impact of carbon removal.

Furthermore, AI algorithms can help identify opportunities for utilizing captured
carbon dioxide, such as in enhanced oil recovery, carbon-based materials production, or
carbon mineralization, thereby further reducing the environmental impact of CDR [83].
AI can also facilitate comprehensive life cycle assessments to evaluate the environmental
impact of CDR processes comprehensively, ensuring that environmental considerations
are taken into account throughout the CDR system’s life cycle. Additionally, AI can assist
in environmental monitoring and compliance in CDR facilities by detecting deviations
from regulatory standards or environmental thresholds, enabling timely corrective actions
to mitigate potential environmental impacts and ensure compliance with environmental
regulations [63,84].

In summary, the integration of CDR technology with AI can lead to a substantial
reduction in environmental impact through energy optimization, process efficiency im-
provements, identification of carbon utilization opportunities, comprehensive life cycle
assessments, environmental monitoring, and climate change mitigation. These environ-
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mental benefits highlight the potential of CDR technology integrated with AI in addressing
climate change and promoting a sustainable future.

3.3. Economic Feasibility

The integration of AI can enhance the economic viability of CDR technology by
identifying cost-effective strategies and optimizing resource allocation, energy management,
and process efficiency [85]. This optimization leads to reduced operational costs, making
CDR technology more economically feasible and attractive for implementation, fostering
its adoption and scalability [86].

AI algorithms can optimize the allocation of resources and energy consumption within
CDR facilities, leading to cost savings [87]. They can also assist in the scalability and
deployment planning of CDR technology and provide decision support for stakeholders
considering investments in CDR technology [88]. By optimizing costs, resource allocation,
energy management, and process efficiency, AI integration enhances the economic viability
of CDR technology [89], making it more attractive for implementation, fostering its adop-
tion and scalability, and facilitating its role in addressing climate change and achieving
sustainable carbon mitigation goals. Figure 9 shows the relationship between the net
present value of negative CO2 and the cost of biomass (fuel) in both scenarios.
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4. Perspectives and Challenges

The success of AI algorithms depends on the availability and quality of data. Ensuring
data accuracy, consistency, and reliability is crucial for accurate modeling and optimization.
AI models used in CDR optimization may have inherent uncertainties due to the complex
and dynamic nature of environmental conditions. Addressing data quality issues and ac-
counting for model uncertainty is essential for reliable decision-making in CDR technology,
as shown in Figure 10. Evaluating the scalability and applicability of AI algorithms in
different CDR processes and system configurations is necessary to ensure technological
feasibility. Legal and regulatory challenges, as well as public perception and acceptance,
also need to be addressed for successful integration and adoption.
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Future Research Directions and Key Focus Areas: Future research should focus on
developing advanced AI models and optimization algorithms specifically tailored for
CDR technology, including addressing model uncertainties and improving data collection
methods. Developing decision support tools that account for uncertainties and risks
associated with CDR technology and AI integration is essential. Collaboration between
researchers, engineers, policymakers, and stakeholders is crucial for addressing technical,
economic, regulatory, and social challenges. Research should also explore the development
of policy and governance frameworks that support the integration of CDR technology and
AI and conduct large-scale demonstrations and field trials of integrated CDR technology
and AI systems.

By addressing challenges related to data quality, model uncertainty, technological
feasibility, policy and regulatory environments, and public acceptance and focusing on key
research areas, the integration of CDR technology and AI can advance energy system opti-
mization for carbon removal, contributing to the practical implementation and widespread
adoption of CDR technology to mitigate climate change and achieve sustainable carbon
mitigation goals.

5. Conclusions

Through this review, we have gained a comprehensive understanding of the applica-
tions and potentials of integrating CDR technology and AI in energy system optimization.
This integration offers new solutions for sustainable energy development, contributing to
carbon emission reduction, improved energy system efficiency, and the development of
new technologies.

1. This paper provides a comprehensive summary of the integration of AI and CDR
technology in energy system optimization. AI optimization algorithms identify cost-
effective strategies, such as optimal resource allocation, energy management, and process
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optimization, reducing operational costs and promoting the adoption and scalability of
CDR technology.

2. This review outlines four approaches to integrating CDR technology and AI in-
cluding using AI optimization algorithms for resource allocation, energy management,
process efficiency, and decision support. These approaches enhance the efficiency and
effectiveness of CDR technology in carbon reduction, contributing to sustainable energy
system optimization.

3. The integration of AI and CDR technology positively impacts three aspects of energy
systems: environment, economy, and energy. AI optimization algorithms reduce energy
consumption and carbon emissions, mitigating environmental effects. By optimizing costs,
CDR technology becomes more economically feasible, reducing operational expenses. AI
optimization algorithms also improve energy utilization efficiency, promoting sustainable
energy development.

4. This paper suggests future research directions and areas of focus, such as improving
modeling and optimization techniques, enhancing data collection and integration capa-
bilities, enabling robust decision-making and risk assessment, fostering interdisciplinary
collaboration, and developing appropriate policy and governance frameworks. Large-scale
demonstrations and field trials are crucial for validating the effectiveness, feasibility, and
scalability of integrated CDR technology and AI systems.

By addressing these aspects and focusing on future research directions, the integration
of AI and CDR technology can significantly contribute to mitigating climate change, reduc-
ing greenhouse gas emissions, and building a sustainable future. Advanced technology
and innovative approaches will play a crucial role in achieving carbon reduction targets
and creating a more environmentally friendly world.
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