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Abstract: The iron and steel industry is the leading industry supporting China’s industrial sector.
Currently, there is less assessment work on green and low-carbon technologies for the iron and
steel industry. This study clarifies the overall strategy of technology assessment by researching the
relevant theories and methods of technology assessment. The study further establishes a scientific and
reasonable comprehensive assessment index system of green and low-carbon technologies for the iron
and steel industry from the aspects of technology index, economy and promotion, and application,
including factors such as 11 indexes, the amount of energy saving, carbon dioxide emission reduction,
and the resource recovery rate by utilising analytical and comprehensive methods and combining with
the characteristics of the technologies. By analysing and comparing the advantages and disadvantages
of the commonly used assessment methods, the entropy weighting method, grey correlation analysis
method, and TOPSIS (technique for order preference by similarity to an ideal solution) method are
combined and optimised to construct a comprehensive assessment model. The Latin hypercube
sampling method is also introduced to analyse the technical parameters in combination with the
evaluation model. Finally, fourteen iron and steel green and low-carbon technologies were selected
for case assessment and uncertainty analysis of technical parameters, and it was found that the
comprehensive assessment result of gas combined cycle power generation technology was optimal.
After determining the weights of each assessment indicator through the entropy weighting method,
it is concluded that the technical performance indicator > economic indicator > promotional indicator.
A comparative analysis of the results under the three preference decisions concludes that technical
performance is the main obstacle to improving the comprehensive assessment score of the technology,
followed by the economics of the technology. Finally, the uncertainty analysis of the technical
parameters shows that the fluctuation of the technical parameters not only affects the performance
of the technology, but also affects the weights of the indicators and the comprehensive evaluation
results of the technology.

Keywords: energy-saving technologies for the steel industry; Latin hypercube sampling; indicator
system assessment; entropy weight method-grey correlation analysis-TOPSIS method

1. Introduction

In response to the continued rise in global greenhouse gas emissions, China has set
a strategic goal of peaking carbon emissions by 2030 and achieving carbon neutrality by
2060 [1,2]. The iron and steel industry is energy-intensive and also an important area for
green and low-carbon development. The steel industry accounts for about 15 per cent of
the country’s total carbon emissions. To achieve the 2060 carbon neutrality target, low-
carbon steelmaking is a challenge that Chinese steel companies must meet. Currently,
China’s steel industry is at the beginning of a zero-carbon transition. The primary raw
material for steelmaking in China is coal, and the steelmaking process is dominated by long-
process steel; the steel production system is shown in Figure 1. A large amount of energy
consumption and pollutant emissions accompany the high output of China’s iron and steel
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industry. To promote green and low carbon, China’s iron and steel industry is actively
promoting the three major iron and steel projects, namely, capacity replacement, ultra-
low emission, and extreme energy efficiency [3]. According to a report on the economic
operation of China’s iron and steel industry, China’s crude steel output will be 1.013 billion
tonnes in 2022, accounting for 55.3 per cent of the global share [4,5]. Vigorously developing
green and low-carbon technologies in the iron and steel industry and promoting the
application of green and low-carbon technologies is an effective way to realise the energy-
saving and low-carbon development of the iron and steel industry and ensure green and
sustainable development [6].
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The iron and steel industry is in urgent need of technological upgrading for greening
and carbon reduction. The green emission reduction pathway can be summarised as green
management, green structure, and green technology [7]. Among them, the management of
the green emission reduction path focuses on improving the productivity of the primary
production technology and avoiding unnecessary production waste behaviour; structural
green emission reduction focuses on structural adjustment to achieve the transformation
of enterprise production, reduce production energy consumption, and achieve the com-
prehensive energy consumption and emissions reduction; technological green emission
reduction focuses on the application of advanced green emission reduction technology to
improve the overall level of enterprise technology and energy efficiency, so as to achieve
the green emission reduction of enterprises. As the Chinese government attaches impor-
tance to the promotion and application of green emission reduction technologies, specific
measures such as legal responsibilities, administrative penalties, government subsidies,
and tax regulations are also being gradually implemented and strengthened to provide
constraints and incentives for the promotion and application of green emission reduction
technologies [8]. To strictly implement green and low-carbon development policies and
related standards and ensure that major high-carbon emission projects achieve low-carbon
emission or carbon-reducing technologies to meet the standards, conducting green and
low-carbon evaluation has become an urgent need for sustainable development and envi-
ronmental protection. Green energy saving and low carbon in the iron and steel industry
have always been a hot issue of concern in social development. However, there are fewer
studies on the comprehensive assessment of energy-saving and low-carbon technologies in
the iron and steel industry. A green and low-carbon evaluation of the steel industry can
prompt steel enterprises to adopt more environmentally friendly and efficient production
technologies to reduce the negative impact on the environment and, at the same time,
promote the adoption of more energy-saving and efficient production methods to improve
the efficiency of resource utilisation, reduce the waste of resources, and lower the risks, so
as to better adapt to the future development trend of sustainable development [9].

Since the end of the twentieth century, many scholars have applied life cycle assess-
ment (LCA) to the field of technology evaluation. Adisa Azapagic et al. [10] selected
indicators such as investment costs, operating costs, floor space, and energy consumption
to evaluate wastewater treatment systems from both economic and environmental perspec-
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tives using the LCA methodology, which proved the validity and flexibility of the overall
methodology for project evaluation, although the specific conclusions reached depended to
a certain extent on the economic assumptions made. Deng Julong et al. [11] proposed grey
system theory for the first time, including factors such as grey situation analysis and grey
coupling evaluation. It transforms a linear time-varying system stability determination
problem into a constant symmetric matrix, whether a negative definite determination prob-
lem, through the generating number to find out the law from the cluttered data, opening
up a new way for the research of the abstract system in various fields which is simple to
apply and more convenient than the existing method of determining the stability of the
linear time-varying system. Yang Yuan et al. [12] constructed an evaluation index system
including three criteria of technology, economy, and environment on the basis of research,
determined the weights through the expert consultation method and entropy weighting
method, and finally synthesised it using fuzzy integration methods. The best wastewater
treatment technology applicable to small towns and cities was screened out, as is the
optimal technology by applying this index system under the precondition of perfecting
the research of indexes’ qualitative and quantitative. Cheng Rui et al. [13] constructed a
comprehensive soil quality evaluation index system and assessment method applicable
to the whole life cycle of mines in five aspects. They improved the effectiveness of the
assessment work with a reasonable assessment process. The comprehensive judgement
results were in line with the actual situation, which proved that the two-level fuzzy compre-
hensive judgement method could make objective and accurate evaluations. Yang Zhongya
et al. [14] selected the Yangtze River Delta region as a case study, where the application of
China’s energy-saving technologies has broader prospects. They incorporated the syner-
gistic benefits into the calculation of technological energy-saving costs. They carried out
single-factor sensitivity analyses and systematic uncertainty analyses in response to the
results, which further extended the significance and accuracy of the technology assessment.
The popularisation of the technology was found to be conducive to promoting energy
conservation and emission reduction in the iron and steel industry. Yan Haochun et al. [15]
addressed the building materials industry’s green, low-carbon development through the
relevant recommendations. The completion of the evaluation and rating of technology was
based on the score and rating to complete the evaluation of green low-carbon technology
report, a clear evaluation of the situation of the evaluation indicators and evaluation of the
comprehensive situation and the evaluation of green low-carbon technology to regulate the
evaluation process.

The assessment of green and low-carbon technologies in the steel industry should take
into account technical, economic, and environmental factors. At present, most of the evalu-
ation of green energy-saving and low-carbon technologies is based on empirical judgment
and qualitative analysis. There is a large subjectivity, lack of corresponding reference basis
and judgment standards, and there are no effective comprehensive evaluation index system
or comprehensive and quantitative evaluation methods to comprehensively evaluate the
actual energy-saving and carbon-reduction effects and potential impacts of energy-saving
and low-carbon technologies. This has resulted in enterprises or energy-saving service
companies in the process of implementing energy-saving and low-carbon technology trans-
formation or updating, and there is a certain blindness in the selection of energy-saving and
low-carbon technologies, which affects the comprehensive benefits of project implementa-
tion. This makes it necessary to establish a comprehensive evaluation index system and a
quantitative comprehensive evaluation tool to comprehensively evaluate energy-saving
and low-carbon technologies. Second, few studies have considered the uncertainty of tech-
nical parameters and their impact on the evaluation results. There are various uncertainties
in technical performance, such as measurement deviations, changes in the application envi-
ronment, and fluctuations in the technical performance itself. Because these uncertainties
have an impact at the same time, they can lead to a large number of possible scenarios and
lead to results that are not in line with practice. This study constructs a comprehensive
assessment methodology system for energy-saving and low-carbon technologies in the
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iron and steel industry, combined with the characteristics of the iron and steel industry.
It selects some of the technologies for assessment. Firstly, the index system is constructed
following the steps of the index system to build a comprehensive assessment index system
for energy-saving and low-carbon technologies in the iron and steel industry. Secondly, we
compare and analyse the advantages and disadvantages of different assessment methods,
select a technology assessment method that meets the characteristics of the comprehensive
assessment of green energy-saving and low-carbon technologies in the iron and steel indus-
try and the purpose of this paper, and combine the entropy weighting method and the grey
correlation analysis–TOPSIS assessment method to construct a comprehensive assessment
model. Finally, a number of energy-saving and low-carbon technologies in the iron and
steel industry are selected for the case study, and the evaluation index system and assess-
ment model are constructed and applied to the comprehensive assessment of a number of
selected energy-saving and low-carbon technologies. Different technological solutions are
selected for different decision-making preferences. At the same time, uncertainty analysis is
carried out for the uncertainty of technical parameters. In this study, technical performance
factors, economic factors, environmental factors, and the promotion and application of
the technology are taken into account. The TOPSIS method and grey correlation analysis
method are combined and improved to establish a comprehensive assessment model, which
overcomes the shortcomings of the assessment methods and the gaps in the assessment of
technologies in the iron and steel industry. The multifaceted structure, multidisciplinary
underlying knowledge support, and quantitative and comprehensive assessment results
provided by the comprehensive assessment model of iron and steel industry technologies
are not only difficult to replace with other research methods but also contribute to the
implementation of green, energy-saving, and low-carbon work in China’s iron and steel
industry. They provide scientific and reasonable bases and references for the release and
updating of advanced green, energy-saving, and low-carbon technologies and the phasing
out and updating of energy-saving and low-carbon technologies in each iron and steel
enterprise. They can also provide a scientific and reasonable basis and reference.

2. Establishment of an Evaluation System
2.1. Assessment of Green and Low-Carbon Technologies in the Steel Industry

A comprehensive assessment of technology first requires the establishment of an as-
sessment indicator system, and whether the assessment process is scientific and feasible, as
well as the accuracy of the final assessment results, largely depend on whether the selection
of technology assessment indicators is reasonable. This study will elaborate on the subject
and object of assessment, assessment objectives and content, principles for establishing
the indicator system, the basis for establishing the indicators, and the establishment of the
indicator system. The technology assessment in this study takes into account the needs of
different subjects. From the perspective of comprehensive and all-round development of
the industry, the relevant subjects in the selection of green and low-carbon technologies are
mainly included in the processes of technology assessment and selection. In addition to the
need for coordination of the purposes and interests between different assessment subjects,
it is also necessary to realise the coordination of the final purposes or interests between
assessment subjects of different levels to achieve a comprehensive balance of purposes
or interests of the country and society, the industry and region, and enterprises, so as to
achieve a comprehensive balance of purposes or interests of the technology selection issue.
In addition to the coordination of purposes and interests between different assessment
bodies, coordination of purposes or interests between different levels of assessment bodies
is also necessary to achieve a comprehensive balance between the purposes or interests
of the state and society, the industry and region, and the enterprises in the selection of
technologies. Regarding green, energy-saving, and low-carbon technologies in the iron
and steel industry, this study screens out a set of comprehensive assessment indicators
and undertakes technology assessment and corresponding validation analyses, with the
specific research route shown in Figure 2.
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2.2. The Basis and Influencing Factors of Technical Evaluation

The technology assessment index system of the iron and steel industry includes the
three criteria of technology, economy, and environment [16]. Referring to the technology
assessment index system of other industries, most of them also include the three criteria
layers of technical performance, economic cost, and environmental impact, and, due to
different focuses, others also involve social impact, operation and management, pollution
control, and other indicators. The indicator layer is a specific refinement on the basis
of the guideline layer indicators, and the technical guideline layer mainly includes the
advanced nature of the technology, the effect of technology application, technology maturity,
technology stability, and other indicators [17,18]. The economic guideline layer mainly
includes the cost of investment in fixed assets, the cost of operation and maintenance, the
land area, the economic return, and other indicators. The environmental impact of the
guideline layer mainly includes the control of pollutant emissions, secondary pollution,
the consumption of energy and resources, noise, and other indicators. When selecting
evaluation indexes, we should consider national laws and regulations, industrial policies,
technologies, environmental protection standards, and other relevant regulations and
documents related to the iron and steel industry. Table 1 presents a summary study of
existing assessment indicators for the steel industry.

The factors affecting the comprehensive assessment of green and low-carbon tech-
nologies in the iron and steel industry include 1. the impact of the technology itself, 2. the
economic level, 3. the environmental benefits and the social benefits. The comprehensive
assessment of green and low-carbon technologies in the iron and steel industry is based
on a multifaceted assessment. The comprehensive assessment indicator system for green
and low-carbon technologies in the iron and steel industry consists of three layers: the
target layer is used to reflect the results of the comprehensive assessment of each assessed
technology, the normative layer is used to comprehensively reflect the status of all aspects
of the assessed technologies, and the indicator layer is used to reflect the effect of the
implementation of each technology from the single characteristic of particular aspects of
the technology.
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Table 1. Study of existing assessment indicators in the steel industry.

Target Layer Normative Layer Indicator Layer

A comprehensive evaluation of flue gas
desulphurisation technology in the iron

and steel industry [17]

Technical indicator System upgrade performance, adverse impact, system
operational stability, technology maturity

Economic indicator Infrastructure investment, unit desulphurisation cost,
floor space

Environmental indicator Recovery performance of by products, secondary
pollution, desulphurisation efficiency

Assessment of symbiotic technologies in
the steel industry [18]

Energy saving
CO2 emission reduction
By product recovery rate

fixed-asset investment
Technology payback period

Technology penetration

3. Comprehensive Assessment Model of Green and Low-Carbon Technologies in the
Steel Industry
3.1. Selection of Assessment Methodology

Comprehensive assessment of green and low-carbon technologies in the iron and steel
industry, as a complex problem with many influencing factors, mutual influence between
factors, and difficulty in determining the relationship between the influencing factors, is
most suitable for adopting the multi-objective comprehensive assessment method. Based
on the introduction of comprehensive assessment methods, it can be seen that each method
is widely used and has its unique advantages, but also has its disadvantages, which are
analysed in Table 2 below.

Table 2. Analytical table of commonly used multi-objective integrated assessment methods.

Method Advantage Disadvantage

Expert scoring
method

Simple methodology;
Intuitive;

Can be assessed even in the absence
of informative data.

Highly subjective;
Accuracy depends on expert perception

and lacks objectivity.

Hierarchical
analysis [19]

Simple and practical;
Rigorous structure;

Few quantitative information needs;
Highly operational.

Too many qualitative components, too
subjective;

Difficult to calculate when assessing
more indicators;

Unable to judge elements that think
differently.

TOPSIS
method [20]

Low sample requirements;
Raw data are well utilised, close to

the actual
situation, strong objectivity.

Prone to reverse sequencing;
Some situations cannot be judged and

are not very sensitive;
Programmes cannot be classified and

managed.

Data
envelopment

analysis [21,22]

Stronger objectivity;
Indicators do not need to be

weighted;
Data do not need to be

dimensionless.

High demand for the number of
decision-making units;

Inability to reflect the actual situation of
decision-making units;

Inability to distinguish between levels
of technical efficiency.
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Table 2. Cont.

Method Advantage Disadvantage

Grey
correlation

analysis [23]

Lower workload;
Reduced losses from information

asymmetry;
Low data requirements.

Deficiencies in the overall assessment
of the programme;

Poor analysis of qualitative indicators;
Sorting from curve shape similarity

only;
Inability to address similarity of

indicator information.

Fuzzy
integrated
assessment
method [24]

Simple and easy to grasp;
Fuzzy problems quantified;

Strong applicability;
Ability to solve complex problems.

Indicator relevance is difficult to
address;

Excessive subjectivity;
Inadequate assessment methodology.

3.2. Standardisation of Evaluation Indicators

There are m technologies to be assessed, n assessment indicators, to determine the
specific quantitative value of each technology under each indicator. Thus, m technologies to
be assessed and n assessment indicators constitute the matrix V =

(
xij

)
m×n (Equation (1)),

which is called the decision matrix [25]. xij denotes the value of the j-th indicator for the
i-th technology, where i = 1, 2, 3, · · · , m, j = 1, 2, 3, · · · , n.

V =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (1)

In the assessment process, the outline and order of magnitude of each assessment
indicator are usually different, so it is not possible to directly compare the calculation.
In order to ensure the accuracy of the final assessment results, the parameters of the
assessment indicators need to be dimensionless [26]. For the above matrix, the standardised
treatment is calculated as follows:

The treatment of benefit-based indicators is as in Equation (2).

x′ ij =
xij − min

(
xij

)
max

(
xij

)
− min

(
xij

) , i = 1, 2, . . . , m, j = 1, 2, . . . , n (2)

For cost-based indicators, the treatment is as in Equation (3).

x′ ij =
max

(
xij

)
− xij

max
(
xij

)
− min

(
xij

) , i = 1, 2, . . . , m, j = 1, 2, . . . , n (3)

In the above two equations, max
(
xij

)
, min

(
xij

)
are the maximum value of the indicator

and the minimum value of the indicator in different technologies under the same assessment
indicator, respectively. Find the maximum and minimum values of the indicator among all
technologies assessed, with the maximum value being 1 and the minimum value being 0.
The number of intermediate indicators between the maximum and minimum values is
calculated by linear interpolation.

3.3. Determination of Indicator Weights

As for the weighting of factors affecting technical performance, technical economy,
and technology diffusion in the process of technology assessment, if it is decided through
experts’ empirical judgement and artificial assignment of values, it will inevitably result
in a certain degree of subjectivity and one-sidedness. In this study, in the process of
determining the weights of the comprehensive assessment indicators of green and low-
carbon technologies in the iron and steel industry, the entropy weight method is used to
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assign values to the weights of the indicators. Entropy represents the degree of chaos of
a system in physics [27]. In information data, entropy is the amount of information and
uncertainty that reflects the system. The greater the amount of information that can be
accessed, the less chaotic the system is, so the lower the uncertainty and the lower the
entropy [28]. When the data gap is larger, and the distribution of each assessment technique
on a particular assessment indicator is more dispersed, the smaller its entropy value, the
greater the impact of the indicator on the assessment results, then the greater the weight of
the indicator [29]. The calculation steps are as follows:

Firstly, the decision matrix V =
(

xij
)

m×n is normalised to obtain the normalised
decision matrix as V′ =

(
xij

′)
m×n (Equation (4)). xij

′ is the standardised value of the j-th
indicator for the i-th objective, where i = 1, 2, 3, · · · , m; j = 1, 2, 3, · · · , n. Secondly, according
to the definition of entropy itself, the entropy value of the j-th indicator is calculated
according to Equations (5)–(7):

V′ =

 x11
′ · · · x1n

′

...
. . .

...
xm1

′ · · · xmn
′

 (4)

ej = −k
m

∑
i=1

pijln
(

pij
)
, ej ≥ 0 (5)

k =
1

In(m)
(6)

Pij =
x′ij

∑m
i=1 x′ij

, i = 1, 2, . . . m, j = 1, 2, . . . n (7)

where m denotes the number of technologies and Pij denotes the probability of a specific
state in which the system is located (0 ≤ P ≤ 1, ∑P = 1). To make sense of ln

(
pij

)
, when

pij = 0, ln
(

pij
)

is considered to be a larger value based on the practical significance of
the assessment. The result of multiplication with pij tends to 0 and can be considered as
pijln

(
pij

)
= 0. Finally, the entropy weight W of the assessment indicators is calculated

(Equation (8)), where wj denotes the entropy weight of the j-th assessment indicator, n is
the number of assessment indicators, and Ee = ∑n

j=1 ej, 0 ≤ wj ≤ 1, ∑n
j=1 wj = 1.

W =

w1 . . . 0
...

. . .
...

0 . . . wn

 (8)

wj =
1 − ej

n − Ee
(9)

3.4. Integrated Assessment Method Based on Grey Correlation Analysis-TOPSIS Improvement

Based on the traditional TOPSIS method, the combination of TOPSIS and grey cor-
relation analysis is improved to establish a comprehensive assessment model [30]. The
improved TOPSIS model based on grey correlation analysis is a comprehensive assessment
method that ranks the strengths and weaknesses of assessment objects based on positive
and negative ideal solutions to the problem and the correlation coefficients [31]. The en-
tropy weight objective assignment method was used to assign weights to the indicators
of the assessment system, while grey correlation analysis was used to improve the basic
idea of the TOPSIS method [32]. Constructing the grey correlation TOPSIS model based on
entropy assignment to rank the advantages and disadvantages of green and low-carbon
technologies in the iron and steel industry is a good way to make up for the shortcomings
of TOPSIS and grey correlation analysis and synthesise the advantages of both [33].
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Construct and standardise a matrix of assessment indicators based on m technologies
and n assessment indicators, calculate the weights W of each assessment indicator, and
calculate the weighted standardised decision matrix Z. Calculate the positive ideal solution
J+ and the negative ideal solution J− for the technology to be evaluated, and calculate
the Euclidean distances D+

i + and D−
i from technology i to the positive and negative ideal

solutions. Calculate the grey correlation R+
i + and R−

i between technology i and the positive
and negative ideal solutions, the dimensionless distance D+

i and D−
i from technology i

to the positive and negative ideal solutions, and the grey correlation R+
i and R−

i to the
positive and negative ideal solutions. Calculate the proximity of technique i to the positive
ideal point S+

i and the proximity of the negative ideal solution S−
i , then calculate the

relative closeness of technique i to be evaluated to the ideal solution CSi and rank them.
A large number of simulations from random samples is necessary to avoid the possibility
that uncertainty in the parameters of the technique may lead to significant deviations
between theoretical results and reality. Therefore, the Latin hypercubic sampling method
is introduced in conjunction with an evaluation model to analyse the uncertainty in the
parameters of the technology to be evaluated.

Firstly, the standardised decision proof V′ =
(
xij

′)
m×n and the entropy weights of

evaluation indexes W =
(
wj

)
m×n will be obtained, and the standardised decision matrix V′

will be multiplied by the corresponding indexes’ weights W, which leads to the weighted
standardised decision matrix Z (Equation (10)). Next, calculate the positive and negative
ideal solutions under each assessment metric (Equations (11) and (12)).

Z = V′ × W =

 x11
′ · · · x1n

′

...
. . .

...
xm1

′ · · · xmn
′

×

w1 . . . 0
...

. . .
...

0 . . . wn

 (10)

z+j =

{
max

(
zij

)
, j ∈ +

min
(
zij

)
, j ∈ − j = 1, 2, . . . n (11)

z−j =

{
min

(
zij

)
, j ∈ +

max
(
zij

)
, j ∈ − j = 1, 2, . . . n (12)

where: z+j indicates that the assessment technique is positively desirable under indicator

j, z−j indicates that the assessment technique is negatively desirable under indicator j, +
indicates that indicator j is a benefit-based indicator, and − indicates that indicator j is a
cost-based indicator. The positive ideal solution J+ (Equation (13)) and the negative ideal
solution J− (Equation (14)) of the weighted decision matrix are obtained via the above.
Then, the Euclidean distance between the values of each technical indicator and the ideal
value is calculated [34]. Let D+

i be the Euclidean distance from technology i to the positive
ideal solution and D−

i be the Euclidean distance from technology i to the negative ideal
solution, then the Euclidean distance formula is shown in Equations (15) and (16):

J+ =
(

z+1 , z+2 , z+3 , · · · , z+j
)

(13)

J− =
(

z−1 , z−2 , z−3 , · · · , z−j
)

(14)

D+
i =

(
∑j=n

j=1 ( zij − z+j
)2

) 1
2
, i = 1, 2, . . . , m (15)

D−
i =

(
∑j=n

j=1 ( zij − z−j
)2

) 1
2
, i = 1, 2, . . . n (16)

The grey correlation coefficients between the parameters of each assessed technology
and the positive and negative ideal solutions are calculated [35,36]. Based on the weighted
normalisation matrix Z, the grey correlation coefficient between the parameters of the
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i-th technology under the j-th index and the positive ideal solution is r+ij , and the grey

correlation coefficient with the negative ideal solution is r−ij , respectively. The specific
calculation formulas are shown in Equations (17) and (18).

r+ij =
miniminj

∣∣∣z+j − zij

∣∣∣+ ρmaximaxj

∣∣∣z+j − zij

∣∣∣∣∣∣z+j − zij

∣∣∣+ ρmax
i

max
j

∣∣∣z+j − zij

∣∣∣ (17)

r−ij =
miniminj

∣∣∣z−j − zij

∣∣∣+ ρmaximaxj

∣∣∣z−j − zij

∣∣∣∣∣∣z−j − zij

∣∣∣+ ρmax
i

max
j

∣∣∣z−j − zij

∣∣∣ (18)

where ρ is the discrimination coefficient, which serves to increase the significance of the
difference between the correlation coefficients. ρ is generally between 0 and 1, usually
taken as 0.5, and in this study, it is taken as 0.5. Let the grey correlation of each indicator
parameter of the ith assessment technique with the positive ideal solution be R+

i , and
the grey correlation with the negative ideal solution be R−

i . The specific calculations are
shown in Equations (19) and (20). Calculate the proximity of the evaluation technique to
the positive and negative ideal solutions, the dimensionless treatment of D+

i and D−
i with

R+
i and R−

i , respectively, as shown in Equation (21):

R+
i =

1
n

n

∑
j=1

r+ij , i = 1, 2, · · · , m (19)

R−
i =

1
n

n

∑
j=1

r−ij , i = 1, 2, · · · , m (20)

M*
i =

Mi
max

1⩽i⩽m
(Mi)

(21)

where M*
i represents the corresponding D+

i , D−
i , R+

i , R−
i , respectively, let S+

i be the prox-
imity of the evaluation technique to the positive ideal solution under the combination of
the two methods, S−

i as the closeness of the assessment technique to the negative ideal
solution under the combination of the two methods. The larger the values of D−

i and R+
i ,

and the larger the value of S+
i , the closer the assessment technique is to the positive ideal

technique. The larger the values of D+
i and R−

i and the larger the value of S−
i , the closer

the assessment technique is to the negative ideal technique. S+
i and S−

i are calculated as
shown in Equations (22) and (23).

S+
i = λD−

i + (1 − λ)R+
i , i = 1, 2, · · · , m (22)

S−
i = λD+

i + (1 − λ)R−
i , i = 1, 2, · · · , m (23)

where λ is the assessor’s preference coefficient for the two methods, which is generally taken
as 0.5. When λ = 0, it is the grey correlation analysis method only that is used to determine
the proximity of the assessed technology to the positive and negative ideal solutions.
When λ = 1, it is the TOPSIS method only that is used to determine the proximity of the
assessed technology to the positive and negative ideal solutions. Since the two methods
evaluate the technology from different perspectives, when the evaluator’s preference for
the similarity of location and shape between the technology parameter curves and the ideal
solution varies (the degree of the evaluator’s preference for Euclidean distance and grey
correlation), the evaluation results made for the technology will also be different [37]. The
evaluator can choose the appropriate preference coefficients to obtain the best evaluation
results in line with his/her preferences. Finally, the comprehensive relative closeness
CSi of the assessment technology is calculated, the size of the relative closeness is the
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comprehensive score of the technology, and the comprehensive effect of the technology
is judged according to the size of the score; the larger the closeness is, the better the
comprehensive performance of the assessment technology is, and, vice versa, the worse the
comprehensive performance is.

CSi =
S+

i
S−

i + S+
i

, i = 1, 2, . . . m (24)

4. Assessment of Examples of Green and Low-Carbon Technologies in the Steel Industry
4.1. Technology Selection and Parameter Acquisition

Compared with other industries, the iron and steel industry is characterised by a long
industrial chain, complex internal processes, many emission points of air pollutants, and
a large amount of pollutant generation. In order to conduct a comprehensive assessment
of green and low-carbon technologies, this paper takes the iron and steel industry as
an example to verify the feasibility of the model. This paper selects energy-saving and
low-carbon technologies for the iron and steel industry from a total of 35 low-carbon
technologies in 6 categories according to the Catalogue of Low-Carbon Technologies to be
Promoted by the State (the Fourth Batch) and other documents (Table 3), which describes
in detail the technological principles, conditions of applicability, economics, and effects
of the actual application of the technologies, but lacks a comprehensive assessment of the
technologies and a comparative analysis of the technologies. In this paper, each of the
processes involved in the iron and steel production process is taken as an assessment object.
The model is validated, and a comprehensive score for each technology is derived.

Table 3. List of assessment techniques.

Serial
Number Technical Name Thrust

T1
High-temperature and
high-pressure dry coke

quenching

Coke production is carried out under
high-temperature and high-pressure conditions,

The volatiles in the coal are rapidly evaporated and
burned in a short period of time.

T2 CO2 cycle device
The coke oven gas reacts with recycled CO2

separated from CO2-rich exhaust gas to produce
syngas for synthetic natural gas production.

T3 Sintering flue gas sensible
heat recovery

The waste heat of the cooler is recovered by using
the existing technology, which is mainly focused on
the recovery of the waste heat flue gas of the cooler.

T4 Sintering waste heat turbine
The waste heat of the flue gas generated by sintering

is used to make the steam generated by the waste
heat boiler output useful work of the steam turbine.

T5
Sinter ore apparent heat

utilisation by SCR of sinter
ore flue gas

The waste heat of the sintering flue gas is purified.

T6 Washable blast furnace slag
sensible heat exchange Recovery of sensible heat from blast furnace slag.

T7 Blast furnace slag sensible
heat coal gasification

High-value-added products are produced using slag
and sensible heat.

T8
Blast furnace gas residual
pressure turbine power

generation

The by product of blast furnace smelting is used to
make the gas work through the turboexpander,

which is converted into mechanical energy, which in
turn is converted into electrical energy.
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Table 3. Cont.

Serial
Number Technical Name Thrust

T9 Fan power recovery turbine A device that converts the kinetic energy of the wind
into electrical energy.

T10 Gas-fired combined cycle
power generation

A combined cycle in which the exhaust gas from a
gas turbine is used as a heating source circulating by

a steam turbine unit.

T11 Blast furnace gas boiler
power generation Low sulphur content and low dust concentration.

T12 Methanol from coke oven
and blast furnace gas

In the transformation of the circular industrial chain
of the coking industry, coke oven gas is used as raw

material to produce methanol.

T13 Cement made from blast
furnace slag

Hydration of clinker minerals, chemical reaction of
slag powder with calcium hydroxide and calcium

sulfate.

T14 Steel slag to cement

The hydraulic cementitious material made of
open-hearth furnace and converter steel slag is the
main component, and granulated blast furnace slag

and gypsum are added.

This indicator is categorised by distinguishing between qualitative and quantitative
indicators. Qualitative indicators include the maturity of the technology, its advancement,
and its stability. When such data are counted, they are directly classified into a number
of grades, and appropriate judgements are given with assessment rules according to
the actual situation of the technology and personal experience. Quantitative indicators
include energy saving, carbon dioxide emission reduction, resource recovery rate, fixed
investment cost, operating cost, economic efficiency, static payback period, and technology
promotion potential. The statistics of such technologies directly utilise the characteristic
parameters of the technology. For quantitative indicators, there are two types of indicators:
benefit-type indicators and cost-type indicators [38]. The parameters of the generalizability
indicators are obtained through the experts’ professional understanding of the technical
indicators, and the corresponding evaluation is given, as shown in Table 4. Among them
are benefit-type indicators, i.e., the larger the indicator data, the better the performance
of the technology, such as energy saving; and cost-type indicators, i.e., the smaller the
indicator data, the better the performance of the technology, such as fixed investment costs,
operating costs, and payback period. The indicator data for each technology are shown
in Table 5.

Table 4. Detailed rules for the evaluation of qualitative indicators of green energy-saving and
low-carbon technologies in the iron and steel industry.

Index Evaluation Details

Technology maturity Score 9: Matured; Score 7: More mature; Score 5: Ordinary;
Score 3: Not mature enough; Score 1: Immature

Technological advancement
Score 9: International advanced; Score 7: Domestic advanced;
Score 5: Domestic average; Score 3: Backward in the country;

Score 1: Domestic elimination

Technical stability Score 9: Very stable; Score 7: Relatively stable; Score 5: Ordinary;
Score 3: Poor; Score 1: Very unstable
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Table 5. Statistics related to technical indicators [21,39,40].

Technical

Normative
Energy Saving

(Kgce/t
Products)

Carbon
Reduction

(kg/t Products)

Resource
Recovery

Rate %

Fixed
Investment

Costs
(t Products)

Running Cost
(t Products·a)

Economic
Gain/

(t Products·a)

Static
Payback

Period (a)

Technology
Maturity

Technological
Superiority

Technical
Stability

Potential
for

Outreach %

T1 12.65 64 36.2 130 18.89 34.64 9.25 9 7 9 80
T2 19.31 168.81 79 15 30.84 39.46 2.74 5 3 5 10
T3 8.07 20 72.97 12.23 6.93 9.18 6.44 9 5 9 40
T4 4.61 10.43 41.78 12.5 6.36 13.5 2.75 9 5 5 10
T5 11.27 108.4 32.39 1 2.43 3.45 1.98 7 5 5 10
T6 7.12 18.83 21.06 13 1.29 3.02 8.51 7 5 7 10
T7 17.02 101.2 92.2 122.9 122.74 135.14 10.91 5 5 3 1
T8 5.53 36.72 39 16.37 4.16 6.51 7.97 9 7 9 75
T9 6.35 52.16 44.8 23.08 12.37 25.85 2.71 9 7 7 50

T10 76.75 509.62 51 164.45 93.25 189.92 2.7 9 7 7 30
T11 18.25 46.72 28 18.44 8.27 59.38 1.36 9 7 9 50
T12 94.62 45.5 10.86 22.42 63.72 120.84 1.39 5 7 3 20
T13 43.3 54 95 162.56 104.42 150 4.57 9 7 9 60
T14 8.35 144 80 24.62 19.57 27.93 3.94 9 7 9 50

Type of indicator efficiency-
based

efficiency-
based

efficiency-
based cost-based cost-based efficiency-

based
cost-

based
efficiency-

based
efficiency-

based
efficiency-

based
efficiency-

based
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4.2. Analysis of the Assessment Process and Results

Construct a decision matrix V =
(
xij

)
14×11. xij denotes the value of the j-th indicator

of the i-th technology, where i = 1, 2, 3, · · · , 14, j = 1, 2, 3, · · · , 11. The decision matrix
is standardised to obtain the standardised decision matrix V′ =

(
xij

′)
m×n, and xij

′ is the
standardised value of the jth indicator of the i-th technology, as in Equation (25). Knowing
the standardised decision matrix V′, k = 1

In(14) = 0.379, the indicator entropy value e can
be calculated, and the result is shown in Figure 3.

V =



12.65 64 36.2 130 18.89 34.64 9.25 9 7 9 80
19.31 168.81 79 15 30.84 39.46 2.74 5 3 5 10
8.07 20 72.97 12.23 6.93 9.18 6.44 9 5 9 40
4.61 10.43 41.78 12.5 6.36 13.5 2.75 9 5 5 10

11.27 108.4 32.39 1 2.43 3.45 1.98 7 5 5 10
7.12 18.83 21.06 13 1.29 3.02 8.51 7 5 7 10

17.02 101.2 92.2 122.9 122.74 135.14 10.91 5 5 3 1
5.53 36.72 39 16.37 4.16 6.51 7.97 9 7 9 75
6.35 52.16 44.8 23.08 12.37 25.85 2.71 9 7 7 50

76.75 509.62 51 164.45 93.25 189.92 2.7 9 7 7 30
18.25 46.72 28 18.44 8.27 59.38 1.36 9 7 9 50
94.62 45.5 10.86 22.42 63.72 120.84 1.39 5 7 3 20
43.3 54 95 162.56 104.42 150 4.57 9 7 9 60
8.35 144 80 24.62 19.57 27.93 3.94 9 7 9 50



(25)

V′ =



0.089 0.107 0.301 0.211 0.855 0.169 0.174 1 1 1 1
0.163 0.317 0.810 0.914 0.757 0.195 0.855 0 0 0.333 0.114
0.038 0.019 0.738 0.931 0.954 0.033 0.468 1 0.5 1 0.494

0 0 0.367 0.930 0.958 0.056 0.854 1 0.5 0.333 0.114
0.074 0.196 0.256 1 0.991 0.002 0.935 0.5 0.5 0.333 0.114
0.028 0.017 0.121 0.927 1 0 0.251 0.5 0.5 0.667 0.114
0.138 0.182 0.967 0.254 0 0.706 0 0 0.5 0 0
0.010 0.053 0.334 0.906 0.976 0.019 0.307 1 1 1 0.937
0.019 0.084 0.403 0.865 0.909 0.122 0.859 1 1 0.667 0.620
0.801 1 0.477 0 0.243 1 0.860 1 1 0.667 0.367
0.152 0.073 0.204 0.893 0.943 0.302 1 1 1 1 0.620

1 0.070 0 0.869 0.486 0.630 0.997 0 1 0 0.241
0.430 0.087 1 0.012 0.151 0.786 0.664 1 1 1 0.747
0.042 0.268 0.822 0.855 0.850 0.133 0.730 1 1 1 0.620



(26)
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As can be seen from Figure 4, technical performance indicators > economic indicators >
diffusion indicators. The larger the weight the value represents, the greater its influence on
the comprehensive assessment results, and the smaller the weight, the smaller the influence,
then the technical performance indicators have the highest proportion of influence on the
assessment results when assessing the technologies selected for this study, followed by
the economy, and the promotability has the smallest proportion. As can be seen from the
Figure 5, the indicators of each index layer are ranked in order of weight:

w1(Energy conservation) > w2(CO2 emission reductions) > w6(Economic gain)
> w11(Potential for technology diffusion) > w8(Technology maturity)
> w3(Resource recovery rate) > w10(Technical stability) > w4(Fixed investment costs)
> w7(Static payback period) > w5(Running cost)> w9(technological superiority)
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Figure 5. Comparison of indicator weights at the indicator layer.

The energy-saving indicator w1 occupies the largest proportion, indicating that energy
saving has the largest impact share in the integrated assessment of technologies. Next,
the CO2 emission reduction indicator w2 and the economic return indicator w6 ranked
second and third, respectively. On the other hand, the technological advancement indicator
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w9, the operating cost indicator w5, and the static payback period indicator w7 accounted
for smaller proportions, indicating that the influence of these three indicators accounted
for a smaller proportion in the comprehensive assessment. The relevant data of each
technology on the three indicators of energy saving, carbon dioxide emission reduction,
and economic return are more different. Hence, the uncertainty of the data under these
three indicators is more considerable, resulting in a smaller information entropy value. Its
weight value is larger, indicating that the indicator can provide more helpful assessment
information to the assessor. While differences in the data related to each technology on
the three indicators of technological advancement indicator, operating cost indicator and
static payback period are small, the uncertainty of the data under their indicator is small, so
the information entropy value is more considerable. Its weighting value is smaller, which
indicates that the indicator provides less useful assessment information to the assessor.
When the parameters of the technology under an indicator are the same, the data under the
indicator are customised, there is no uncertainty, the information entropy value reaches the
maximum, and its weight value is zero, indicating that the indicator cannot provide the
assessor with useful assessment information, i.e., under the indicator, there is no difference
in the assessment technology for the assessor among all the assessment techniques, and
removal of the indicator can be considered. The calculation results are consistent with the
fundamental data analysis and also indicate the correctness of the calculation results.

4.3. Integrated Assessment

Multiplying the standardised evidence for decision making with the correspond-
ing indicator weights results in a weighted standardised decision matrix Z = V′ × W
(Equation (27)). The positive ideal solution J+ and negative ideal solution J− of the
weighted normalised decision matrix are shown in Table 6. As can be seen from the
scores of the positive and negative ideal solutions, due to the values in the standardised
decision matrix, with a maximum of 1 and a minimum of 0, after assigning values to them,
the positive ideal solution for the benefit-type indicators is essentially the value of the
weights of the indicators, while the negative ideal solution is 0. The opposite is true for
the cost-type indicators. After obtaining the positive and negative ideal solutions of the
weighted normalised decision matrix, the Euclidean distances D+

i and D−
i are calculated

for each technology distance from the positive and negative ideal solutions, and the results
are shown in Table 7. After that, the grey correlations R+

i and R−
i of each index parameter

of the assessment technique with the positive and negative ideal solutions are calculated,
and the results are shown in Table 8. The Euclidean distances D+

i and D−
i and the grey

correlations R+
i and R−

i are, respectively, dimensionless, and the results are shown in
Table 9. Finally, the proximity of the technique to the positive and negative ideal solutions,
S+

i and S−
i , are calculated by taking λ = 0, λ = 0.5, λ = 1, respectively, and the relative

closeness CSi is calculated; the results are shown in Table 10.

Z =



0.019 0.019 0.019 0.012 0.036 0.027 0.008 0.072 0.033 0.062 0.082
0.034 0.055 0.051 0.053 0.032 0.031 0.039 0 0 0.021 0.009
0.008 0.003 0.047 0.054 0.041 0.005 0.022 0.072 0.017 0.062 0.040

0 0 0.023 0.054 0.041 0.009 0.039 0.072 0.017 0.021 0.009
0.016 0.034 0.016 0.058 0.042 0.0004 0.043 0.036 0.017 0.021 0.009
0.006 0.003 0.008 0.054 0.043 0 0.012 0.036 0.017 0.041 0.009
0.029 0.032 0.060 0.015 0 0.112 0 0 0.017 0 0
0.002 0.009 0.021 0.052 0.042 0.003 0.014 0.072 0.033 0.062 0.076
0.004 0.015 0.025 0.050 0.039 0.019 0.040 0.072 0.033 0.041 0.051
0.168 0.174 0.030 0 0.010 0.159 0.040 0.072 0.033 0.041 0.030
0.032 0.013 0.012 0.052 0.040 0.048 0.046 0.072 0.033 0.062 0.051
0.210 0.012 0 0.050 0.021 0.100 0.046 0 0.033 0 0.020
0.090 0.015 0.062 0.001 0.006 0.125 0.031 0.072 0.033 0.062 0.061
0.009 0.047 0.051 0.049 0.036 0.021 0.034 0.072 0.033 0.062 0.051



(27)
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Table 6. Positive and negative ideal solutions.

Indicator Energy Saving
w1

Carbon Dioxide
Emission

Reduction w2

Resource
Recovery Rate

w3

Fixed
Investment

Cost w4

Operating Cost
w5

Economic
Return w6

z+ 0.210 0.174 0.062 0 0 0.159
z− 0 0 0 0.058 0.043 0

Indicator Static payback
period w7

Technology
maturity w8

Technology
advancement

w9

Technology
stability w10

Technology
promotion

potential w11

z+ 0 0.072 0.033 0.062 0.082
z− 0.046 0 0 0 0

Table 7. Euclidean distances.

Technical T1 T2 T3 T4 T5 T6 T7 T8

D+
i 0.286 0.283 0.317 0.334 0.316 0.334 0.267 0.318

D−
i 0.149 0.092 0.117 0.081 0.061 0.068 0.155 0.132

Technical T9 T10 T11 T12 T13 T14

D+
i 0.309 0.087 0.283 0.227 0.205 0.286

D−
i 0.109 0.313 0.128 0.237 0.215 0.135

Table 8. Grey correlation.

Technical T1 T2 T3 T4 T5 T6 T7

R+
i 0.286 0.283 0.317 0.334 0.316 0.334 0.267

R−
i 0.149 0.092 0.117 0.081 0.061 0.068 0.155

Technical T8 T9 T10 T11 T12 T13 T14

R+
i 0.318 0.309 0.087 0.283 0.227 0.205 0.286

R−
i 0.132 0.109 0.313 0.128 0.237 0.215 0.135

Table 9. Dimensionless quantification.

Technical D+
i

* D−
i

* R+
i

* R−
i

*

T1 0.854 0.474 0.881 0.840
T2 0.846 0.293 0.729 0.957
T3 0.950 0.374 0.809 0.926
T4 1 0.260 0.741 1
T5 0.946 0.196 0.713 0.998
T6 0.998 0.218 0.736 0.997
T7 0.799 0.496 0.831 0.879
T8 0.951 0.422 0.838 0.912
T9 0.925 0.348 0.794 0.922

T10 0.260 1 1 0.725
T11 0.846 0.408 0.810 0.896
T12 0.679 0.757 0.w802 0.925
T13 0.615 0.688 0.953 0.749
T14 0.855 0.431 0.840 0.868
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Table 10. Comparison of assessment result.

Preference
Factor λ=0 λ=0.5 λ=1

technical S+
i S−

i CSi S+
i S−

i CSi S+
i S−

i CSi
T1 0.881 0.840 0.512 0.678 0.847 0.444 0.474 0.854 0.357
T2 0.729 0.957 0.432 0.511 0.902 0.362 0.293 0.846 0.257
T3 0.809 0.926 0.466 0.592 0.938 0.387 0.374 0.950 0.283
T4 0.741 1 0.426 0.500 1 0.334 0.260 1 0.206
T5 0.713 0.999 0.417 0.454 0.972 0.318 0.196 0.947 0.171
T6 0.736 0.998 0.425 0.477 0.997 0.324 0.218 0.998 0.179
T7 0.831 0.879 0.486 0.663 0.839 0.442 0.496 0.799 0.383
T8 0.838 0.912 0.479 0.630 0.932 0.403 0.422 0.951 0.307
T9 0.795 0.922 0.463 0.571 0.924 0.382 0.348 0.925 0.273
T10 1 0.725 0.580 1 0.493 0.670 1 0.260 0.794
T11 0.810 0.896 0.475 0.609 0.871 0.411 0.408 0.846 0.325
T12 0.802 0.925 0.465 0.780 0.802 0.493 0.757 0.679 0.527
T13 0.953 0.749 0.560 0.820 0.682 0.546 0.688 0.615 0.528
T14 0.840 0.868 0.492 0.636 0.861 0.425 0.431 0.855 0.335

sorted
T10 > T13 > T1 > T14 > T7 >

T8 > T11 > T3 > T12 > T9 > T2 >
T4 > T6 > T5

T10 > T13 > T12 > T1 > T7 >
T14 > T11 > T8 > T3 > T9 >

T2 > T4 > T6 > T5

T10 > T13 > T12 > T7 > T1 >
T14 > T11 > T8 > T3 > T9

> T2 > T4 > T6 > T5

When λ = 0, this is when only grey correlation analysis is considered to evaluate the
technology. When λ = 1, this is when only TOPSIS is considered to evaluate the technologies,
and when λ = 0.5, a combination of the two evaluation methods is combined. The value
of λ depends on the evaluator’s preference in terms of the similarity of the location and
shape of the technological parameter curves in terms of their relation to the positive and
negative ideal solutions (how much preference the evaluator has for the Euclidean distance
and the grey correlation). It can be concluded from Figure 6 that, regardless of the value of
λ, the combined assessment of technologies 10 and 13 outperforms the other technologies.
Although there are some technologies whose evaluation results vary with the value of λ,
the evaluation results of the combination of the two methods are basically the same as the
ranking of the traditional TOPSIS and grey correlation methods. However, it solves the
shortcomings of the grey correlation method’s unidirectional evaluation and the problem
of not being able to efficiently rank the two evaluated objects due to the same relative
proximity of the two evaluated objects as they appear in the TOPSIS method.

Processes 2024, 12, x FOR PEER REVIEW 20 of 28 
 

 

the problem of not being able to efficiently rank the two evaluated objects due to the same 
relative proximity of the two evaluated objects as they appear in the TOPSIS method. 

 

 

Figure 6. Comparison of relative closeness of each technology with different preference. 

4.4. Technology Preference Assessment 
When assessing technologies, it is also essential to consider the results of the assess-

ment under different preference types. In this study, three types of technology preferences 
are considered: corporate preference, environmental preference, and diffusion and appli-
cation preference, and their preferences are assessed. 

(1) Enterprise preference 
When the assessment subject is an enterprise user, the enterprise user focuses more 

on the technical economy when conducting technology assessment and selection. When 
assessing enterprise preference, the four indicators of fixed investment cost, operation 
cost, economic return, and static payback period are selected as assessment indicators. 
The results of the enterprise preference assessment are shown below. 

As can be seen from Figure 7, when assessing the firm preference decision, the as-
sessment results of each technique in order of magnitude are T10 > T7 > T13 > T12 > T1 > 
T11 > T2 > T6 > T14 > T8 > T3 > T9 > T4 > T5. Technique 10 is closest to the positive ideal 
solution, furthest from the negative ideal solution, and has the highest correlation with 
the most optimal solution and the highest relative closeness, i.e., Technique 10 is optimal 
among the evaluated technologies. Although Technology 10 does not perform as well as 
the other technologies in the two indicators of fixed investment cost and operation cost, 
its performance in the two indicators of economic return and static payback period, which 
account for a large proportion of the weight, is much better than that of the other technol-
ogies. Its final evaluation result is optimal and ranks first. 

 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 λ=0
 λ=0.5
 λ=1

R
el

at
iv

e 
pr

ox
im

ity

Technology

Figure 6. Comparison of relative closeness of each technology with different preference.



Processes 2024, 12, 397 19 of 26

4.4. Technology Preference Assessment

When assessing technologies, it is also essential to consider the results of the assess-
ment under different preference types. In this study, three types of technology preferences
are considered: corporate preference, environmental preference, and diffusion and applica-
tion preference, and their preferences are assessed.

(1) Enterprise preference
When the assessment subject is an enterprise user, the enterprise user focuses more

on the technical economy when conducting technology assessment and selection. When
assessing enterprise preference, the four indicators of fixed investment cost, operation cost,
economic return, and static payback period are selected as assessment indicators. The
results of the enterprise preference assessment are shown below.

As can be seen from Figure 7, when assessing the firm preference decision, the as-
sessment results of each technique in order of magnitude are T10 > T7 > T13 > T12 > T1
> T11 > T2 > T6 > T14 > T8 > T3 > T9 > T4 > T5. Technique 10 is closest to the positive
ideal solution, furthest from the negative ideal solution, and has the highest correlation
with the most optimal solution and the highest relative closeness, i.e., Technique 10 is
optimal among the evaluated technologies. Although Technology 10 does not perform as
well as the other technologies in the two indicators of fixed investment cost and operation
cost, its performance in the two indicators of economic return and static payback period,
which account for a large proportion of the weight, is much better than that of the other
technologies. Its final evaluation result is optimal and ranks first.
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Figure 7. Results of the assessment of firms’ preference decisions.

(2) Environmental preference
When the subject of evaluation is environmental preference, the evaluation at this point

focuses more on environmental protection and technical performance is the focus of the
evaluation.When the subject of evaluation is the environmental preference, more emphasis
is placed on environmental protection and the technical performance of the technology is
the focus of the evaluation. In the evaluation of environmental preference decision making,
the three indicators of energy saving, CO2 emission reduction, and resource recovery
rate were selected as evaluation indicators. The results of the environmental preference
assessment are shown below.

As can be seen from Figure 8, when the environmental preference decision making is
evaluated, the evaluation results of each technique in order of magnitude are T10 > T12 >
T13 > T2 > T7 > T14 > T3 > T5 > T11 > T1 > T9 > T8 > T4 > T6. Technique 10 is the closest
to the positive ideal solution, and the furthest from the negative ideal solution. It has



Processes 2024, 12, 397 20 of 26

the highest correlation with the most optimal solution, and the highest relative closeness,
i.e., Technique 10 in the environmental preference decision making is optimal among the
evaluated techniques. Technology 10 outperforms the other technologies in both energy
saving and CO2 emission reduction, two indicators with considerable weighting.
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Figure 8. Results of the environmental preference decision−making assessment.

(3) Promotion and application preference
When the subject of evaluation is a technology promotion and application preference

maker, the evaluation will focus more on the promotion and application of the technology,
and the technology will be evaluated with a focus on the promotability of the technology.
When evaluating the decision making of the promotion and application preference, the
maturity of the technology, the advancement of the technology, and the promotion potential
of the technology (the expected penetration rate) are selected as the evaluation indexes,

The four indicators of the technology’s stability are taken as the assessment indicators.
The results of the diffusion preference assessment are shown in Figure 9 below.
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Figure 9. Results of the extension application preference decision evaluation.

It can be seen that when the promotion application preference decision is evaluated,
the evaluation results of each technique in order of magnitude are T1 > T8 > T13 > T14 =
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T11 > T9 > T3 > T10 > T4 > T6 > T5 > T12 > T2 > T7. Technology 1 is closest to the positive
ideal solution, farthest from the negative ideal solution, and has the highest correlation
and relative closeness to the ideal solution, i.e., the evaluation results of Technology 1
in promoting application preference decision making are optimal among the evaluation
techniques. Comparisons can be made under different decision preferences based on the
combined assessment results of each assessment technique; see Figure 10.
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Figure 10. Comparison of relative proximity across technologies with different decision preferences.

As can be seen from Figure 10, the vertical coordinates represent the relative closeness
of the technologies under the three preference types. Most of the relative closeness of the
technologies under the diffusion and application preference is greater than the environ-
mental and enterprise preferences. Most of the relative closeness of the technologies under
the enterprise preference is better than that of the environmental preference. A higher
relative closeness indicates that its distance from the most desirable solution is smaller and
its performance is better. Due to the environmental preference, enterprise preference and
diffusion, and application preference, the technical performance index, economic index,
and diffusion index are selected as the respective assessment indexes. The results show
that, on the one hand, the gap between the selected technologies in the diffusivity indicator
is smaller than the other two guideline-level indicators, and the gap between the tech-
nologies in the economic indicator is smaller than the technology performance indicator.
Alternatively, the environmental performance, i.e., the technological performance, is the
main obstacle to improving the score of the comprehensive assessment of the technologies,
followed by the economics of the technologies. Therefore, the main direction of technology
development is to improve the energy savingness, CO2 reduction, and resource recovery
rate of the technology.

4.5. Uncertainty Analysis

Due to various uncertainties in the technical performance, such as measurement bias,
changes in the application environment, and fluctuations in the technical performance itself,
the collected technical parameters may be different from the real parameters. Therefore,
it is necessary to analyse the influence of the uncertainty of technical parameters on the
calculation results [41].

The upper and lower boundaries of the technical parameters are set as the fluctuation
range of the technical parameters. Then, 10,000 samples are sampled using the Latin
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hypercubic sampling method, and these samples are repeatedly calculated [18,19]. The
calculation results are shown in Figures 11 and 12 below [42].
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As can be seen from Figure 11, under the original technical parameters, the weight
of assessment indicator W1 is 0.2098, while the sample weight of the indicator ranges
from 0.1898 to 0.2303. The rest of the assessment indicators are the same as W1, and
the sample weights of the indicators are concentrated in a specific range. Comparing
the range of indicator weights under the original parameters with the range of indicator
weights under the sample parameters, we can see that the sample weights fluctuate within
a range of approximately 10% up and down, centred on the original weights. Therefore,
the uncertainty of the technical parameters has little effect on the results of the indicator
weights. As shown in Figure 12, by comparing the technical relative closeness under the
original parameters with the technical relative closeness of the random samples, we can
find that the original relative closeness of most of the selected techniques is greater than the
median of the random results, and the sample relative closeness fluctuates within a range of
more than 10% centred on the original relative closeness. This also demonstrates the need
for uncertainty analysis. The fluctuation of technical parameters will affect not only the
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performance of the technology itself but also the indicator weights and the comprehensive
evaluation results of the technology. However, the impact on the indicator weights is small,
and the impact on the comprehensive evaluation results of the technology is considerable.
Therefore, when carrying out the comprehensive assessment of technologies, try to select
technical parameters with smaller errors for assessment calculations, or, when decision
makers make decisions, combine the original calculation results with uncertainties to
make choices.

5. Conclusions

The development status and technology evaluation status of green and low-carbon
technology in China’s iron and steel industry are discussed in this study. A comprehensive
evaluation model is established by combining and optimising the entropy weight method,
grey correlation analysis method, and TOPSIS method. The Latin hypercube sampling
and evaluation model is introduced to analyse the uncertainty of technical parameters.
It is expected that by constructing a comprehensive evaluation method system of green
energy-saving and low-carbon technologies, the relevant technologies will be evaluated,
the implementation and implementation of energy-saving and low-carbon work in China’s
iron and steel industry will be promoted, and the release and update of the national or
industry advanced green, energy-saving, and low-carbon technology catalogue and the
elimination and update of energy-saving and low-carbon technologies of various iron and
steel enterprises will be provided with a scientific and reasonable basis and reference. The
following conclusions were drawn:

(1) By constructing a top-down, three-level structure of the comprehensive evaluation
index system of green and low-carbon technologies in the iron and steel industry,
it was found that technical performance indicators had the most significant impact
on the comprehensive assessment results, the second was the economic index, and
the least impact was from the promotion index. The weights of the eleven index
layers were calculated and compared, and the energy saving index w1 had the greatest
impact on the comprehensive evaluation of technology. The w2 of CO2 emission
reduction indicators and economic benefit indicators also had a considerable impact
on w6, and the calculation results were consistent with fundamental data analysis.

(2) The comprehensive assessment of green and low-carbon technologies in the iron
and steel industry found that under different preference coefficients, Technology 10
was the closest to the positive ideal solution, the farthest from the negative ideal
solution, and had the highest correlation with the ideal solution and the highest
relative closeness, with the best comprehensive assessment result among the assessed
technologies among a number of assessment indicators. The technical parameters of
Technology 10 in several indicators with large weights, such as energy saving, carbon
dioxide emission reduction, and economic benefits, were better than other technical
indicator parameters, so the final comprehensive assessment results were optimal.
That is, when λ = 0, 0.5, 1, CSi was 0.580, 0.670, and 0.794, respectively.

(3) By evaluating the three technology preferences in the steel industry, it was concluded
that Technology 10 was closest to the positive ideal solution and furthest from the neg-
ative ideal solution. It had the highest correlation and relative closeness to the most
ideal solution, and the assessment result in the enterprise preference decision was
optimal among the evaluated technologies. By studying environmental preferences,
it was concluded that Technology 10 outperformed the other technologies in both
energy savings and CO2 emission reduction, two indicators with considerable weight-
ing, and had the best final assessment result. However, its performance in resource
recovery rate was average. Focusing on the diffusibility of the technology to assess
the technology, it was found that technology maturity, technological sophistication,
technology diffusion potential (expected penetration rate), and technological stability
all performed optimally on the four indicators. Technology 1 had the best assess-
ment results among the assessed technologies in terms of diffusion and application
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preference decision making. The main influencing factor affecting the comprehen-
sive level of the technology was the performance of the technology, followed by the
economic benefits of the technology; at the same time, the results of the uncertainty
analysis showed that fluctuations in the technical parameters will not only affect the
performance of the technology itself, but will also affect the indicator weights and the
comprehensive evaluation results of the technology, but have a smaller impact on the
indicator weights and a more considerable impact on the comprehensive evaluation
results of the technology.

The methodology for assessing the iron and steel industry in this study could subse-
quently be extended to other areas. Consideration needs to be given to the characteristics of
different industries and environments, taking into account the environmental, social, and
economic factors in the field. Differences in production processes, resource utilisation, and
emission characteristics in the target areas should be clarified, the role of the technology
assessment method in promoting rational resource utilisation and recycling should be
highlighted in the promotion process, demonstration projects should be set up to show
cases where the technology assessment method has been successfully applied to the iron
and steel industry in other fields, and a step-by-step strategy should be adopted, starting
with small-scale pilot projects and gradually expanding to wider applications.
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