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The multi-layered and complex nature of cellular regulation enhances the need for
advanced computational methodologies that can serve as scaffolds for organizing experi-
mental data to facilitate the inference of meaningful relationships [1]. First-principle-type
unstructured models have been successfully used to monitor, predict, and optimize cell cul-
ture performance in biomanufacturing processes. However, such model-based approaches
have not been widely adopted by the bioprocess industry due to clear limitations [2]: (i) in-
consistencies in the utilized growth kinetics, leading to conflicting conclusions; (ii) lack of
correlation/connectivity with the critical quality attributes (CQAs) of downstream unit op-
erations; and (iii) limited information on the impact of process parameters (i.e., shear stress,
DO2, DCO2, pH, osmolality) on product and broth quality. Therefore, despite outstanding
research developments in biotechnology, the sophisticated mathematical toolset that led to
the explosive growth of manufacturing capacity in traditional chemical industries, known
as process systems engineering (PSE), has not been widely applied to the biomanufacturing
industry [3]. Consequently, the design and optimization of industrial biomanufacturing
processes remains heavily reliant on manual and evidence-based approaches [4].

At the other end of the spectrum, mathematical models for biological systems devel-
oped over the last decades have been central in the understanding, improvement, and
optimization of biological systems [5]. Knowledge of the metabolic state of a cell and its
response to various stimuli and extracellular conditions can offer significant insight into its
regulatory functions, as well as assist in identifying pathways and targets that could be
manipulated using synthetic biology tools [6]. Metabolic engineering and systems biology
study the interactions between all known metabolic reactions in an organism, and their
application has yielded significant insight into the regulatory elements of central carbon
metabolism [7]. However, they are computationally intensive approaches, rendering their
use impractical for on-line industrial applications. To date, several challenges remain
before detailed kinetic models reach the degree of maturity required for conventional use
in industrial-scale biomanufacturing applications.

In recent years, hybrid integrated knowledge and data-driven modeling approaches
have revealed the potential to further unlock bioprocess performance by utilizing increas-
ingly sophisticated machine learning algorithms to mitigate the limitations of traditional
knowledge-based modes [8]. Data-driven approaches allow the identification of patterns
and correlations that may not be apparent through traditional modeling alone. The synergy
between mathematical modeling and machine learning facilitates real-time optimization
and fosters adaptive and responsive bio-based technologies [9]. Combined with the contem-
porary popularity of artificial intelligence (AI), machine learning, and data mining tools,
these hybrid approaches have provided a platform for clear communication between mod-
elers and process engineers and have contributed to the increased adoption of model-based
approaches in industrial biomanufacturing [10]. What is presently lacking is availabil-
ity of novel engineering approaches able to integrate, organize, and guide experimental
(and modeling) information across multiple unit operations, all the way from the strain
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design and selection phase to the purification and/or formulation of the end product. This
shortage of advanced modeling tools also affects the techno-economic and life cycle (LCA)
analyses of new bio-based processes and products, using plant-wide steady-state modeling
approaches [11].

This Special Issue of Processes, entitled “Advanced Modeling of Biomanufacturing
Processes” (accessed on 26 January 2024), aims to advance the degree of maturity of
model-based approaches in industrial biomanufacturing, presenting developments in
seven research articles and two dedicated reviews. These cover a range of applications
across different sectors such as biopharmaceuticals, high-added value biochemicals, and
biomaterials. Initially, Gibson et al. present a model-based evaluation of the effect of buffer
management on bioprocess efficiency to facilitate the design of sustainable biopharma-
ceutical manufacturing processes. A detailed non-replicated full factorial design model is
employed to identify the impact of buffer management on a monoclonal antibody produc-
tion process at a large scale. The study demonstrates the potential to significantly reduce
process mass intensity among the investigated strategies. In an attempt to describe cellular
behavior, Krumm et al. apply a simple segmented model to systematically analyze the
superiority of a high-seeding density fed-batch process compared to conventional feeding
strategies. The model was validated as a predictive tool for improving the feeding policy
and harvest viability of the system and used to derive optimal fed-batch feeding strategies.

Venturing beyond antibodies, Gómez-Aldapa et al. employ a design of experiments
(DoE) approach to derive a predictive response surface model (RSM) that was used to
optimize the production of isopentyl acetate from whey components. The model was able
to identify optimal operating conditions in terms of substrate concentration, allowing the
efficient exploitation of this low-cost substrate. Shifting the research focus to downstream
processing, Puga-Córdova et al. focused on separating 2-phenylethanol, produced during
whey fermentation. An additional objective was to evaluate the economic potential of
the process. By using a steady-state simulator, the authors showed that the developed
separation protocol possesses, beyond adequate efficiency, a large economic potential. Luna
et al. explore the potential of hybrid knowledge and data-driven models to optimize the
fermentative production of polyhydroxyalkanoates (PHAs). Specifically, a novel hybrid
model was developed and applied to simulate the dynamic evolution of growth and uptake
rates in microbial cells. Various operating conditions were investigated, including both
single- and dual-nutrient-limited growth, in order to identify conditions that maximize the
intracellular accumulation of the biopolymer. Meimaroglou et al. combine both determinis-
tic (i.e., method of moments) and stochastic (i.e., kinetic Monte Carlo) components to study
the hydrolysis and polycondensation reactions of saccharides. Their innovative modeling
framework successfully simulated the formation of polysaccharides with high polymeriza-
tion degrees. Finally, Nedjhioui et al. apply a series of multi-factorial designs to minimize
the risks and hazards for both the environment and humans, during kerosene recovery.
This multi-objective optimization framework identified optimal operational conditions and
provided in depth insights on the physicochemical properties of this complex system.

In the first review of this Special Issue, Penloglou et al. analyze both technical and
economic aspects of nanocellulose production from lignocellulosic biomass. A detailed
plant-wide simulation model is used to calculate the most important key performance
indicators (KPIs), and compare them with the present state of the art. Thus, a comprehen-
sive overview of the current state of nanocellulose production is provided, highlighting
the main challenges to be addressed in future research. Finally, Tsipa et al. review avail-
able mathematical models for microbial fuel cells, developed and used for their design,
control, and optimization. In this framework, an advanced bio-based model is also pre-
sented, able to link gene regulation of specific metabolic pathways to microbial growth.
This multi-scale modeling approach enables a more accurate prediction and estimation
of substrate biodegradation mechanisms, microbial growth kinetics, and gene-enzyme
expression patterns.
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In conclusion, as is showcased by the nine publications of the present Special Issue,
advanced mathematical modeling of biomanufacturing processes and separation technolo-
gies is a cornerstone for achieving sustainability and efficiency in the modern era. The
ability to quantitatively represent biochemical and biological systems, as well as optimize
bioprocesses and anticipate challenges, positions mathematical modeling and simulation
as indispensable tools in the advancement of industrial-scale applications of biotechnol-
ogy. As the pursuit of innovative solutions to meet the growing demands for bio-based
products intensifies, the integration of rigorous multi-scale mathematical frameworks will
undoubtedly play a crucial role in shaping the future of the bio-economy.
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