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Abstract: Regarding the difficulty of extracting fault information in the faulty status of UAV (un-
manned aerial vehicle) engines and the high time cost and large data requirement of the existing deep
learning fault diagnosis algorithms with many training parameters, in this paper, a small-sample
transfer learning fault diagnosis algorithm is proposed. First, vibration signals under the engine fault
status are converted into a two-dimensional time-frequency map by multiple simultaneous squeezing
S-transform (MSSST), which reduces the randomness of manually extracted features. Second, to
address the problems of slow network model training and large data sample requirement, a transfer
diagnosis strategy using the fine-tuned time-frequency map samples as the pre-training model of the
ResNet-18 convolutional neural network is proposed. In addition, in order to improve the training
effect of the network model, an agent model is introduced to optimize the hyperparameter network
autonomously. Finally, experiments show that the algorithm proposed in this paper can obtain high
classification accuracy in fault diagnosis of UAV engines compared to other commonly used methods,
with a classification accuracy of faults as high as 97.1751%; in addition, we show that it maintains a
very stable small-sample migratory learning capability under this condition.

Keywords: fault diagnosis; transfer learning; surrogate model; hyperparameter optimization;
small sample

1. Introduction

UAVs have a wide range of uses, with the advantages of low cost, high efficiency,
strong survivability, and good mobility. They can carry out rescue and disaster relief, agri-
cultural irrigation, power patrol, be used in environmental protection, film shooting, border
patrol, military operations, and work in other fields [1,2]. The engine is the component
with the highest failure rate, the most complex performance correction, and the largest
maintenance workload in the UAV system. Its working status directly affects the safe
and reliable flight of the UAV. Due to the complex structure and function of UAV engines
and the harsh working environment, the requirements for reliability, stability, and bearing
capacity are very high [3]. However, the long-time operation of the engine brings a series
of problems, such as wear of mechanical parts, load failure, corrosion, defects, etc. These
damage conditions cause an increase in the fuel consumption rate, exhaust temperature, a
decrease of thrust, etc., and gradually aggravates performance degradation of engine parts
and the whole machine, leading to the occurrence of faults. In serious cases, they cause
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complete failure of engine performance or even shutdown [4]. Therefore, fault detection
and diagnosis of the working status of UAV engines are of great significance.

Traditional fault diagnosis comprises three steps: signal processing, feature extraction,
and fault status recognition [5]. Tang designed a four-channel sound signal acquisition
system for UAV engine testing and performed blind source separation on the collected
signals. First, the correlation coefficient is used as the standard to collect four signals,
and then three of them are selected for underdetermined blind source separation using
a blind source separation algorithm. Finally, four kinds of signals are obtained, namely
engine propeller noise, exhaust noise, fan noise in the test room, and other background
noise, which provide necessary data for further engine fault location and diagnosis [6].
Regarding the problem of low accuracy of UAV sensor fault diagnosis, Ye et al. decomposed
the collected UAV sensor original signal through four layers of wavelet decomposition
and classified the fault status as the input of a multi-core support vector machine. The
classification accuracy reaches 91%, at which the fault diagnosis of UAV sensors can be
carried out effectively [7]. Traditional fault diagnosis methods need to process the original
signal on a large scale and cannot effectively reflect the logical relationship between the
processed signal and the fault, which restricts the improvement of the accuracy of fault
diagnosis [8].

The fault diagnosis method based on deep learning can adaptively extract features
according to the characteristics of the data themselves, without manual feature extraction,
and can directly take time series data and high-dimensional data as input and enhance
the nonlinear processing ability of the model by increasing the number of layers of the
neural network [9]. At the same time, the deep learning method has strong generalization
ability. With the support of large-scale data sets, the model can be better generalized to
unknown fault modes and has certain adaptability to new fault diagnosis problems [10].
In reference [11], regarding the problem whereby the UAV system cannot accurately carry
out fault monitoring and diagnosis, the collected vibration signal was input into the
convolutional neural network with three layers of convolution layer and pooling layer,
and the accuracy of fault diagnosis reaches 97.5%. Ma [12] designed a UAV experimental
acquisition system based on the vibration signal, which is used for nondestructive UAV
testing and fault diagnosis methods. Four kinds of vibration signals were collected in the
experiment, namely normal status and three kinds of fault status. First, empirical mode
decomposition (EMD) was used to reduce the noise of the original signal. Second, the
y-axis data were screened out by the root mean square error (RMSE). Finally, it was input
into the convolutional neural network for fault diagnosis, which was verified. It had a
certain reference value for nondestructive testing and fault diagnosis of multi-rotor UAV. In
the above research, the deep learning model was trained with one-dimensional signals, but
the data information contained in two-dimensional images was more comprehensive [13].
Its main advantages are as follows:

1. Two-dimensional images can represent data information from multiple angles, and
the information represented by one-dimensional signals is not comprehensive.

2. The image is easier to distinguish. Through the time-frequency conversion method,
the one-dimensional signal is converted into a two-dimensional time-frequency map.
Through the intelligent classification method, the classification and recognition can be
more intuitive.

Through the summary of the above literature, it can be found that the current research
on UAV engine fault diagnosis still has the following problems: first, the traditional
time-frequency analysis methods, such as continuous wavelet transform, Hilbert–Huang
transform, and short-time Fourier transform, still have room for improvement in time-
frequency resolution, which has an important impact on the accuracy of fault diagnosis
based on deep learning; second, the research based on UAV engines is lacking, and the
amount of data that can be used as training samples is not rich enough. Therefore, in order
to solve the above problems, this paper proposes a small-sample migration learning fault
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diagnosis method for the UAV engine based on MSSST and ACS-BPNN surrogate model
optimization depth convolution, which can accurately carry out fault diagnosis.

The main contributions of this study are as follows:

(a) Using the current experimental environment, the preset fault experiment of the UAV
engine is carried out, and the vibration signal of the UAV engine in a typical fault
status is collected.

(b) The one-dimensional vibration signal of the UAV engine is transformed into a time-
frequency map by MSSST, and the time dependence of the vibration signal is mapped
into the image feature space, so that the original feature information is retained in the
time-frequency map as much as possible. Then, the deep learning network trained by
small-sample transfer learning is used to automatically extract the temporal and spa-
tial features in the image and complete the fault status recognition of small samples.

(c) The feasibility and effectiveness of the proposed fault diagnosis method for the UAV
engine are verified by the measured data of the UAV engine.

The rest is as follows: Section 2 introduces the relevant theories of MSSST and small-
sample transfer learning in detail; Section 3 introduces the process of small-sample transfer
learning fault diagnosis; in Section 4, the preset fault experiment of the UAV engine and
the process of vibration data acquisition are introduced, and the experimental results are
analyzed and studied; finally, the experimental results and the future research prospects of
UAV engine fault diagnosis are put forward.

2. Relevant Theories
2.1. Time-Frequency Image Conversion Based on MSSST

In the fault diagnosis process, the acquisition devices usually collect 1D signals. Both
evolutionary networks in this paper use images as inputs, so it is necessary to convert the 1D
vibration signals into 2D color time-frequency maps. One conversion method is to directly
intercept the vibration signal at equal intervals and reorganize it into a two-dimensional
matrix, which is then saved as a time-frequency map. However, this method does not
reflect the frequency domain characteristics of the signal. Based on the time-frequency
domain transform methods, there are mainly the Short-Time Fourier Transform (STFT), the
Continuous Wavelet Transform (CWT) and the Hilbert–Huang transform [14].

Linear time-frequency analysis methods such as STFT, CWT and Hilbert–Huang transform
have the advantages of simple computation and perfect reconstruction formulas [15–17]. At
the same time, it is clear from linear transformation that no cross terms are generated in the
time-frequency domain. However, there are two common limitations common to the above
methods. First, the time-frequency resolution is limited; second, under the uncertainty
principle, the time-frequency analysis using the above methods cannot localize the signal
in time and frequency with high resolution.

2.1.1. Synchronous Compression S-Transform

The S-transform inherits and develops the advantages of STFT and CWT, but the
Gaussian window function used in the S-transform is still a fixed window, which cannot
be adjusted in real time, so the S-transform as a means of time-frequency analysis still
has room for improvement [18]. There are two ways to enhance the analytical ability of
S-transform time-frequency: one is by adjusting the window function so that the window
function can be adapted to the characteristics of the signal in order to obtain the time-
frequency image with higher time-frequency resolution, but the selection of the window
function is a difficult problem at present, and it is not easy to be realized; the second way
to enhance the time-frequency analysis of the S-transform is more commonly used, and
it is a combination of the synchronous compression idea and the time-frequency analysis
method, i.e., compression of S-transform coefficients within a certain interval to a point,
so that the time-frequency image with a high time-frequency resolution can be obtained.
According to the principle of wavelet synchronous compression transform, the process of
Synchro squeezing S-transform (SSST) can be derived [19].
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The formula for the S-transform can be expanded and written in the following form:

ST(τ, f ) =
| f |√
2π

∫ +∞

−∞
x(t)e

−(t−τ)2 f 2
2 e−i2π f (t−τ)e−i2π f τdt. (1)

We make ψ(t) = 1√
2π

e
−t2

2 ei2πt; then, Equation (1) can be expressed as

ST(τ, f ) = | f |e−i2π f τ
∫ +∞

−∞
x(t)ψ[ f (t − τ)] dt, (2)

where ψ(t) is a complex conjugate of function ψ(t). According to the Parseval theorem and
the Plancherel theorem, Equation (2) can be written as

ST(τ, f ) = | f |e−i2π f τ
∫ +∞

−∞
x̂(ξ)ψ̂[ f−1ξ]eiτξdξ, (3)

where x̂(ξ) is the Fourier transform of signal x(t). ψ̂(ξ) is the complex conjugate of Fourier
transform of ψ(t).

When signal x(t) is a harmonic component, i.e., x(t) = A cos 2π f0t,

x̂(ξ) = Aπ[δ(ξ − 2π f0) + δ(ξ + 2π f0)]. (4)

Substituting Equation (4) into Equation (3), the following equation can be obtained:

ST(τ, f ) =
A
2

e−i2π( f− f0)τ ψ̂(2π f−1 f0). (5)

We calculate the partial derivative of Equation (5) to obtain

ST(τ, f )
∂t

= iAπ( f0 − f ) e−i2π( f− f0)τ ψ̂(2π f−1 f0). (6)

Therefore, the instantaneous frequency of signal x(t) is

f (τ, f ) = f + [i2πST(τ, f )]−1 ∂ST(τ, f )
∂τ

. (7)

Obviously, for the single component signal of x(t) = A cos 2π f0t, from Equation (7),
the following can be obtained:

f (τ, f ) = f + [i2πST(τ, f )]−1 ∂ST(τ, f )
∂τ

= f +
iAπ( f0− f ) e−i2π( f− f0)τ ψ̂(2π f−1 f0)

iπ A
2 e−i2π( f− f0)τ ψ̂(2π f−1 f0)

= f0

. (8)

For more general multicomponent signals,

x(t) =
N

∑
n=1

xn(t) =
N

∑
n=1

An(t) cos[ϕn(t)]. (9)

It satisfies that for any time t obtained, An(t) will have ϕ′n(t) > 0, which is the
derivative of ϕn(t).

When x(t) is a multicomponent signal, considering the linear property of the S-transform,
the result of its S-transform can be expressed as a superposition of the S-transforms of N
components, xn(t), with expression

STx(τ, f ) =
N

∑
n=1

STxn(τ, fn), (10)
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STxn(τ, fn) =
| fn|√

2π

∫ +∞

−∞
xn(t)e−

(τ−t)2 f 2
n

2 e−i2π fntdt. (11)

The instantaneous frequency of signal component xn(t) can be expressed as

fxn(τ, fn) = fn + [i2πSTxn(τ, fn)]
−1 ∂STxn(τ, fn)

∂τ
. (12)

Then, the instantaneous frequency of signal x(t) can be expressed in the form of the
summation of component signals:

fx(τ, f ) =
N

∑
n=1

{
δ( f − fn)

[
fn + (i2πSTxn(τ, fn))

−1 ∂STxn(τ, fn)

∂τ

]}
, (13)

where δ is the impulse function.
The basic principle of SSST is compressing the value in surrounding section

[
fl − 1

2 ∆ fl ,

fl +
1
2 ∆ fl

]
of center instantaneous frequency fl to fl . The integral expression of the sum of

SSST on a continuous interval is

SSSTx(τ, fl) =
1

2∆ fl

∫ fl+
1
2 ∆ fl

fl− 1
2 ∆ fl

|STx(τ, f )| fx(τ, f )d f . (14)

Similarly, when the continuous integral is in the form of discrete summation, the
expression of SSST under discrete conditions can be obtained as follows:

SSSTx(τ, fl) =
1

2∆ fl
∑

fk :| fx(τ, fk)− fl | ≤∆ fk/2
|STx(τ, fk)| fk∆ fk, (15)

where fl is frequency after SSST; fk is discrete frequency samples of the frequency interval
on the S-transform spectrum, and ∆ fk = fk − fk−1.

Taking the absolute amplitude of the S-transform result in Equations (14) and (15)
avoids the loss of energy due to the positive and negative summation in the compression
process, which can effectively improve the compression effect of the S-transform and
improve the time-frequency energy aggregation of the signal.

2.1.2. Multiple Simultaneous Squeezing S-Transform

The resulting time-frequency spectrograms have a high resolution when SSST is
used to process weak time-varying signals. However, for high-frequency weak-amplitude
signals, the time-frequency spectrograms processed by SSST still have the problem of energy
leakage. For this reason, this paper combines the simultaneous compressed S-transform
with the idea of multiple iterations to propose a new method of time-frequency analysis
based on Multi-SSST(MSSST), which is used to gradually improve the time-frequency
resolution of time-frequency spectrograms through multiple iterations sequentially in order
to reduce energy leakage.
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The iterative formula for MSSST is as follows:

Ts[1] = SSSTx(τ, fl)

Ts[2](τ, fl) =
∫ fl+

1
2 ∆ fl

fl− 1
2 ∆ fl

Ts[1](τ, ξ) f [τ, f (τ, ξ)]dξ

=
∫ fl+

1
2 ∆ fl

fl− 1
2 ∆ fl

STx(τ, f ) fx(τ, f ) f [τ, f (τ, ξ)]dξ

Ts[3](τ, fl) =
∫ fl+

1
2 ∆ fl

fl− 1
2 ∆ fl

Ts[2](τ, ξ) f [τ, f (τ, ξ)]dξ

=
∫ fl+

1
2 ∆ fl

fl− 1
2 ∆ fl

STx(τ, f ) fx(τ, f ) f [τ, f (τ, ξ)] f [τ, f (τ, ξ)]dξ

...

Ts[N](τ, fl) =
∫ fl+

1
2 ∆ fl

fl− 1
2 ∆ fl

Ts[N−1](τ, ξ) f (τ, f (τ, ξ))dξ

=
∫ fl+

1
2 ∆ fl

fl− 1
2 ∆ fl

STx(τ, f ) fx(τ, f ) f [τ, f (τ, ξ)] · ·· f [τ, f (τ, ξ)]dξ

, (16)

where N denotes the number of iterations (N ≥ 2). Taking Ts[k−1] into Ts[k](k = 2, 3, . . . , N)
and after N − 1 calculations, final result Ts[N](τ, fl) can be reduced to

MSSSTx(τ, fl) = Ts[N](τ, fl)

=
∫ fl+

1
2 ∆ fl

fl− 1
2 ∆ fl

STx(τ, ξ) fx(τ, ξ) f [τ, f (τ, ξ)][N−1]dξ
. (17)

In practice, performing SSST sequentially creates a huge computational burden.
Equation (17) is a simplified formula after many iterations, and when calculating the MSSST
of order N according to Equation (17), it is only necessary to calculate f [τ, f (τ, ξ)][N−1]

first, and then bring it into Equation (13) to obtain the same calculation result as that of
Equation (16), and the computational complexity of Equation (17) is not different from that
of the first-order SSST, which is conducive to improving calculation speed.

Compared with the STFT, the MSSST can greatly improve the time-frequency reso-
lution of the STFT, which is conducive to further improving the discriminative power of
network model fault diagnosis.

2.2. Transfer Learning

Transfer learning is a new deep learning approach the goal of which is to extract
similar components (transfer components) between different but related domains so that
knowledge learned on one domain can be applied to another domain [20]. The original
data domain is called the source domain, and the target domain of interest is called the
target domain. To facilitate description, the concepts of domain and task are introduced.
Domain Ω usually consists of a collection of feature vectors and a data distribution, X is
defined as a collection containing n samples, and the corresponding feature vectors of
each sample together form a collection of feature vectors (feature space), which in turn
can be used to define a domain by Ω = {χ, P(X)}, where χ is the feature space, P(X) is
the marginal probability distribution of the sample, and X = {x1, x2, . . . , xn} ⊂ χ. Further,
the concept of a task is introduced, i.e., for an input feature vector, a reasonable prediction
of the vector’s label is made probabilistically by means of label prediction function f (·).
A task can thus be defined in terms of γ = {φ, P(Y|X)}, where φ is the labeling space
and P(Y|X) is the labeling category of the vector. Given the concepts of domain and task,
transfer learning is mainly used to solve the problem of knowledge learning and transfer
under different domain and different task conditions (see Figure 1) [21].

In terms of technical tools, transfer learning can be categorized into instance-based
transfer learning, feature-based transfer learning, association-based transfer learning and
parameter-based transfer learning [22]. Instance-based transfer learning improves the
effectiveness and robustness of transfer learning by adjusting the weights of the parts
of the source domain that are more similar to the target domain. Feature-based transfer
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learning attempts to construct a feature subspace that integrates the shared feature factors
of the source and target domains, which can reduce the feature differences between the
two and improve the transferability of knowledge. The purpose of association rule-based
transfer learning is to discover potential connections between source and target domains,
focusing on transferability. Parameter-based transfer learning reduces the differences
between domains with the idea of using a large amount of source-domain data to train
the model under the transfer learning strategy of shallow parameter freezing and deep
parameter learning, and then use a small amount of target-domain data to determine the
depth parameters of the model so that the parameters of the deep network layer are more
in line with the classification features of the target-domain data.

Processes 2024, 12, 367 7 of 23 
 

 

and task, transfer learning is mainly used to solve the problem of knowledge learning and 

transfer under different domain and different task conditions (see Figure 1) [21]. 

 

Figure 1. Schematic diagram of transfer learning. 

In terms of technical tools, transfer learning can be categorized into instance-based 

transfer learning, feature-based transfer learning, association-based transfer learning and 

parameter-based transfer learning [22]. Instance-based transfer learning improves the ef-

fectiveness and robustness of transfer learning by adjusting the weights of the parts of the 

source domain that are more similar to the target domain. Feature-based transfer learning 

attempts to construct a feature subspace that integrates the shared feature factors of the 

source and target domains, which can reduce the feature differences between the two and 

improve the transferability of knowledge. The purpose of association rule-based transfer 

learning is to discover potential connections between source and target domains, focusing 

on transferability. Parameter-based transfer learning reduces the differences between do-

mains with the idea of using a large amount of source-domain data to train the model 

under the transfer learning strategy of shallow parameter freezing and deep parameter 

learning, and then use a small amount of target-domain data to determine the depth pa-

rameters of the model so that the parameters of the deep network layer are more in line 

with the classification features of the target-domain data. 

The source domain knowledge is a sufficient number of ImageNet datasets, the target 

domain is time-frequency image samples of UAV engine vibration signals, the network 

models are AlexNet Convolutional Networks and ResNet-18 Convolutional Networks, 

and the migration strategy uses the freezing of the shallow network layers and fine-tuning 

of the deeper network layers. This method eliminates the need for end-to-end training of 

the network model as well as the computation of the difference metric between the source 

and target domain data at each iteration and the need for reverse iteration. Only a small 

number of samples are needed to fine-tune the depth classification parameters of the net-

work. In this way, the classification layer has the characteristics of edge distribution of the 

target domain data. The network's ability of depth feature extraction is utilized for pic-

tures in order to determine the subtle differences between the time-frequency images of 

the different faults in the engine of the unmanned aerial vehicle so as to achieve the pur-

pose of rapid classification of faults under the condition of a small number of samples of 

equipment. 

2.3. Convolutional Network Model 

In recent years, deep learning networks have been enriched and developed, among 

which Alexnet, Googlenet and ResNet are typical high-quality convolutional network 

models and are widely used. These models already have some parameter bases after 

learning from the ImageNet image set. For data processing in other domains, it is 

Figure 1. Schematic diagram of transfer learning.

The source domain knowledge is a sufficient number of ImageNet datasets, the target
domain is time-frequency image samples of UAV engine vibration signals, the network
models are AlexNet Convolutional Networks and ResNet-18 Convolutional Networks, and
the migration strategy uses the freezing of the shallow network layers and fine-tuning
of the deeper network layers. This method eliminates the need for end-to-end training
of the network model as well as the computation of the difference metric between the
source and target domain data at each iteration and the need for reverse iteration. Only
a small number of samples are needed to fine-tune the depth classification parameters of
the network. In this way, the classification layer has the characteristics of edge distribution
of the target domain data. The network’s ability of depth feature extraction is utilized for
pictures in order to determine the subtle differences between the time-frequency images
of the different faults in the engine of the unmanned aerial vehicle so as to achieve the
purpose of rapid classification of faults under the condition of a small number of samples
of equipment.

2.3. Convolutional Network Model

In recent years, deep learning networks have been enriched and developed, among
which Alexnet, Googlenet and ResNet are typical high-quality convolutional network
models and are widely used. These models already have some parameter bases after
learning from the ImageNet image set. For data processing in other domains, it is necessary
to utilize migration learning, but for the processing of small-sample data in this paper,
too many network layers and complex structural models tend to have problems with
training speed and overfitting of training results. Therefore, in this paper, the ResNet-
18 convolutional network with simple network structure is chosen as the deep learning
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processing algorithm, and a migration learning strategy is used to realize the migration
detection between the ImageNet image set and the data in this paper [23].

The ResNet-18 network is a typical deep residual network, and the introduction of
residual mapping improves the learning ability of the network, thus speeding up the
convergence of the model. The structural model in ResNet-18 mainly consists of a con-
volutional layer, four residual layers (basic layer), an average pooling layer and a fully
connected layer, where the individual residual blocks are connected to each other by two
convolutional layer jumps. Distinguishing this model from the AlexNet model, which acts
as a directed acyclic network, the global average pooling layer needs to be connected to the
fully connected layer in order to ensure proper network delivery after changes are made to
the network layers at the end. The network structure of the ResNet-18 model is illustrated
in Figure 2. Only the convolutional and fully connected layers with parameter space are
shown in the figure, while the pooling and activation layers are omitted here.
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As can be seen in Figure 2, the two convolutional models have different size require-
ments for the input of the feature graph, where the Alexnet model requires the input size of
the image to be 227 × 227 × 3, while the ResNet-18 model requires the input size of the im-
age to be 224 × 224 × 3. This implies that the sparse representation of the two-dimensional
image has to be graphically resized prior to the input to cope with the demands of the
different convolutional models.

2.4. Agent Model

In the optimization of network hyper-parameters, three key hyper-parameters are
optimized, i.e., initial learning rate, batch size and maximum number of trainings. For
supervised learning, an appropriate initial learning rate allows for the objective function to
converge to a local minimum within the validation time; an appropriate batch size improves
the accuracy of gradient descent, thus reducing the magnitude of fluctuations during
training; the maximum number of training times determines the degree of convergence of
the network, and an excessively small number of training times leads to early convergence
of the network, while an excessively large number of training times wastes time [24].

The agent model consists of two main parts: the swarm optimization algorithm and
the calculation of the fitness function value. The swarm optimization algorithm adopts
an improved kind of Cuckoo Search (CS) population optimization algorithm, which im-
proves the convergence speed and global optimization ability of the Cuckoo Optimization
algorithm and helps to optimize the hyperparameters of the network model effectively.
For solving fitness function values, the network is trained using different hyperparameter
samples to obtain the corresponding training accuracy. The trained BPNN model is embed-
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ded in the solution of the fitness function for effective and automatic optimization of the
hyperparameters of the evolutionary network.

2.4.1. Cuckoo Algorithm and Its Improvement

In nature, the way cuckoos search for suitable locations for their egg-laying nests is
actually an optimization process. In view of this, Yang et al. at Cambridge University
proposed a population optimization algorithm for CS based on the principle of bionics. The
algorithm includes two core ideas: nest parasitism of cuckoos and the Levy (Levy) flight
mechanism [25].

Cuckoo breeding is parasitic behavior. Cuckoos themselves do not build nests; when
breeding, cuckoos lay their eggs in other hosts’ nests and remove some of the host’s eggs to
improve the survival chances of the parasitic eggs, but the parasitic eggs are sometimes
found and discarded by the hosts. In the correspondence between the virtual cuckoo
breeding strategy and the solution set, the algorithm considers the whole search space
as the feasible domain, the parasitized cuckoo eggs as the problem solution, and the best
adapted parasitized cuckoo eggs as the optimal solution of the problem. To better model
the cuckoo derivation strategy, the algorithm presupposes three rules:

(a) Cuckoos lay one egg at a time and parasitize a random host nest.
(b) Only the finest eggs are kept for the next generation.
(c) The number of nests is fixed, and Pa is the probability that a parasitized bird’s egg

is found. Once a parasitized bird egg is found and discarded, the cuckoo then flies
throughout the search space, Lévy generating a new nest-finding path, and re-lays
the egg.

With the host nest as the search space and cuckoo eggs as the solution, the iteration
process from generation t to generation t + 1 in the ith nest can be expressed as follows:

xi
(t+1) = xi

(t) + R
u

|v|1/β

[
x(t)i − x(t)best

]
, (18)

where xi
(t) and xi

(t+1) are the solutions of generation t and generation t + 1 in the i bird’s
nest, respectively; R is the step size, R = 0.01; u and v both obey the normal distribution:

σu =

{
Γ(1 + β) sin(πβ/2)

Γ[(1 + β)/2]β2(β−1)/2

}1/β

, (19)

where Γ(z) is the gamma function, Γ(z) =
∫ ∞

0 tz−1e−tdt.

2.4.2. Adaptive Cuckoo Search (ACS) Algorithm

The CS algorithm’s step ratio R and discovery probability Pa are both constants that
are set. These two parameters can be adjusted to improve parameter optimization and
performance of the CS algorithm.

(a) Improvements in step length ratios

The optimization process consists of two stages: global optimization and local opti-
mization. A large step size is used in global optimization to improve convergence speed;
a small step size is used in the local optimization stage to ensure convergence accuracy.
However, a uniform step size setting cannot satisfy the above objectives at the same time, so
the relevant parameters of the step size are adjusted to improve optimization performance
of the CS algorithm.

In Equation (18), R u
|v|1/β

[
x(t)i − x(t)best

]
is set as the step size. It is considered that the

step size is co-influenced by R, u, v, and
[

x(t)i − x(t)best

]
while the degree of effect is uncertain.

Therefore, in order to improve the global convergence speed and optimization accuracy of
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the CS algorithm, R is no longer set as a fixed parameter, and it is dynamically adjusted
according to the following Equation (20):

R = Rs −
k(Rs − Re)

Gmax
, (20)

where Rs and Re are the initial and final step size proportions, respectively, and Rs > Re; k
is the current number of iterations; Gmax is the maximum number of iterations.

(b) Improvement in host detection probability.

The second rule of the algorithm is similar to the genetic algorithm chromosome
mutation operation and is used to avoid the solution from falling into a local optimum. The
value of discovery probability Pa can have an impact on the performance of the algorithm.
If the value of Pa is too large, it will destroy the algorithm’s search mechanism and even
reduce it to a random search algorithm. If discovery rate Pa is too small, the algorithm is
prone to premature maturity.

Global optimization search focuses on searching all feasible domains. In the global
optimization stage, a larger Pa should be used for global variational search. To avoid
the algorithm degenerating into a random search algorithm, Pa should be appropriately
reduced as the number of iterations increases. To summarize, Pa is improved:

Pa = Pae

[
1 + (Pas/Pae)

1/(1+k)
]
, (21)

where Pas and Pae are the initial and final discovery rates, respectively.

2.4.3. Back Propagation Neural Network (BPNN)

Replacing the actual training process of the convolutional network with the network
prediction process, the BPNN network should fulfill the following two requirements:(1)
Simple structure and fast training speed; (2) Fast prediction speed and high accuracy. As a
typical three-layer neural network, BPNN consists of only input, hidden and output layers,
with a relatively simple structure [26,27], and has a strong prediction ability for nonlinear
complex situations.

In this paper, we use a three-layer BPNN as a prediction model, assuming that the
input hyperparameter combination vector is x = (x1, x2, x3). The outputs of its implicit
and output layers can be expressed as, respectively:

yi = f

(
∑
j

wijxj − θj

)
zl = g

(
∑
i

hliyi − nl

) , (22)

where xj is the jth feature; wij and hli are the weight values of neuron connection; θj and ni
are the threshold of the neuron.

The structure of the BPNN is schematically shown in Figure 3. In order for the BPNN
to have the ability to predict the training accuracy of the convolutional network, the actual
training accuracy of the corresponding convolutional network under different combinations
of hyperparameters is counted so that a certain number of sample pairs are generated. The
BPNN is allowed to train on these sample pairs to learn the nonlinear relationship between
the values of the hyperparameters and the network training results, which is used as a
prediction model to predict the fitness value of the optimization algorithm.

2.4.4. Agent Model of Adaptive Cuckoo Search Algorithm—BPNN

The design flow of the proposed agent model is shown in Figure 4. The reciprocal of
the output result of the BPNN is used as the fitness value of the ACS: if the input value of
the BPNN is ac, the fitness value is 1/ac. After the ACS algorithm reaches the maximum
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number of iterations, the values of the training accuracy of the convolutional network
and the combination of hyper-parameters that corresponds to the optimal algorithm can
be output.

Processes 2024, 12, 367 11 of 23 
 

 

 

Figure 3. Schematic diagram of BPNN structure. 

2.4.4. Agent Model of Adaptive Cuckoo Search Algorithm—BPNN 

The design flow of the proposed agent model is shown in Figure 4. The reciprocal of 

the output result of the BPNN is used as the fitness value of the ACS: if the input value of 

the BPNN is ac, the fitness value is 1/ac. After the ACS algorithm reaches the maximum 

number of iterations, the values of the training accuracy of the convolutional network and 

the combination of hyper-parameters that corresponds to the optimal algorithm can be 

output. 

The compilation flow of the improved cuckoo algorithm is shown in Figure 4. 

N

Y

Start

Parameter Setting

Initialize Solution A

Reach maximum number of iterations?

Output optimal solution best and optimal 

fitness Fmin

Lévy Flight Generation Solution B

Discovery, Generate Solution B

Hybrid solutions A and B

 

Figure 4. Flow chart of the adaptive cuckoo algorithm. 

Parameter initialization: n  is the solution space or the number of nests. 

(a) Parameter setting. the number of nests , n, the maximum breeding algebra, maxG , the 

upper and lower boundaries of the solution, Ub and Lb, the initial and final step sizes, 

sR  and eR , and the initial and final host discovery rates, asP  and aeP  are set. 

(b) Initializing the solution. Solution A in each nest is initialized. 

Figure 3. Schematic diagram of BPNN structure.

Processes 2024, 12, 367 11 of 23 
 

 

 

Figure 3. Schematic diagram of BPNN structure. 

2.4.4. Agent Model of Adaptive Cuckoo Search Algorithm—BPNN 

The design flow of the proposed agent model is shown in Figure 4. The reciprocal of 

the output result of the BPNN is used as the fitness value of the ACS: if the input value of 

the BPNN is ac, the fitness value is 1/ac. After the ACS algorithm reaches the maximum 

number of iterations, the values of the training accuracy of the convolutional network and 

the combination of hyper-parameters that corresponds to the optimal algorithm can be 

output. 

The compilation flow of the improved cuckoo algorithm is shown in Figure 4. 

N

Y

Start

Parameter Setting

Initialize Solution A

Reach maximum number of iterations?

Output optimal solution best and optimal 

fitness Fmin

Lévy Flight Generation Solution B

Discovery, Generate Solution B

Hybrid solutions A and B

 

Figure 4. Flow chart of the adaptive cuckoo algorithm. 

Parameter initialization: n  is the solution space or the number of nests. 

(a) Parameter setting. the number of nests , n, the maximum breeding algebra, maxG , the 

upper and lower boundaries of the solution, Ub and Lb, the initial and final step sizes, 

sR  and eR , and the initial and final host discovery rates, asP  and aeP  are set. 

(b) Initializing the solution. Solution A in each nest is initialized. 

Figure 4. Flow chart of the adaptive cuckoo algorithm.

The compilation flow of the improved cuckoo algorithm is shown in Figure 4.
Parameter initialization: n is the solution space or the number of nests.

(a) Parameter setting. the number of nests, n, the maximum breeding algebra, Gmax, the
upper and lower boundaries of the solution, Ub and Lb, the initial and final step sizes,
Rs and Re, and the initial and final host discovery rates, Pas and Pae are set.

(b) Initializing the solution. Solution A in each nest is initialized.
(c) Lévy flight. Lévy flight is implemented for Solution A to generate Solution B.
(d) Discovery. The host discovers partial Solution B according to probability Pa. For the

discovered part, it is randomly generated again to form a new solution, B.
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(e) Mix. The fitness values of Solution B and Solution A are compared, recording the
medium and excellent Solution B in A, forming a new solution, still recording as A,
and recording the current optimal solution best and optimal fitness fmin.

(f) Determination of whether to terminate. If multiplication algebra reaches G, the
optimal solution best and optimal fitness fmin are output, and the calculation is
completed; otherwise, Step (c) is repeated and multiplication continues.

2.4.5. Analysis of Algorithm Improvement Effect

This section compares the performance of Particle Swarm Optimization (PSO), the
Genetic Algorithm (GA), the CS algorithm and the ACS algorithm for optimization through
simulation experiments. Performance test functions of the intelligent optimization algo-
rithm are shown in Table 1. Figure 5 illustrates the 3D surface shapes of some of the test
functions in Table 1. Obviously, the shapes of these test functions are characterized by
complexity and nonlinearity, contain multiple peaks and valleys, and have a large number
of local extreme points, which can be used to test the algorithm’s global search performance,
population diversity retention ability, algorithm resistance to premature maturity, local
optimization search performance, and stability [28,29].

Table 1. Performance test function.

Function Name Function Expression Parameter Value
Range

Theoretical Optimal Solution
(Minimum Value)

Goldstein and Price
f1(x) =


[

1 + (x1 + x2 + 1)2
(

19 − 14x1 + 3x2
1

−14x2 + 6x1x2 + 3x2
2

)]
×
[

30 + (2x1 − 3x2)
2 ×

(
18 − 32x1 + 12x2

1
+48x2 − 36x1x2 + 27x2

2

)]


[−2, 2] 3

Branin
f2(x) =


(

x2 − 5
4π2 x2

1 +
5
π x1 − 6

)2

+10
(

1 − 1
8π

)
cos(x1) + 10

 [−5, 15] 0.397887

Schaffer F6 f3(x) =
sin2

√
x2

1+x2
2−0.5

[1+0.001(x2
1+x2

2)]
2 − 0.5 [−100, 100] −1

Rastrigin f4(x) =
D
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12, 5.12] 0

Michalewicz f5(x) =
D
∑

i=1
sin(xi)

[
sin
(

ix2
i

π

)]2m
, m = 10 [0, π] −4.6877

(if D = 5)

Schwefel f6(x) = 418.9829D −
D
∑

i=1
xi sin

√
|xi | [−500, 500] 0Processes 2024, 12, 367 13 of 23 
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The performance of ACS is tested below. PSO, GA, CS and ICS are used to search for
the minimum of the above test functions, respectively. All algorithms have population size
n = 30 and maximum number of iterations Gmax = 100 generations. Each test function
is searched 100 times each, and the final optimal function value of each test function is
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recorded, Fi. Performance of each optimization algorithm is measured in terms of minimum
error, maximum error and average error:

Minimum error : BE = min(Fi)− Fto, (23)

Maximum error : WE = max(Fi)− Fto, (24)

Mean error : AE = mean(Fi)− Fto. (25)

The smaller the minimum error, the better the optimization algorithm’s local opti-
mization ability. The larger the maximum error, the worse the optimization algorithm’s
ability to resist premature maturity. The smaller the average error, the more stable the
optimization algorithm’s optimization performance. In short, the smaller the value of these
three indicators, the better the performance of the optimization algorithm.

The test results are shown in Table 2. Comparing the test results of PSO, GA and CS,
among these three evaluation indexes, except for the minimum error BE corresponding
to test function f1 and maximum error WE corresponding to test function f5, the CS test
indexes are the smallest, so the CS algorithm has better performance. Then, comparing
the test results of CS and ACS, all the indexes of ACS test results are further reduced, so
the performance of the ACS algorithm is better than that of CS. In conclusion, among
these four algorithms, ACS has the best performance in finding the best value, and the
multi-intelligence body strategy improves the performance of the CS algorithm.

Table 2. Performance test results of intelligent optimization algorithms.

Algorithm Index
Test Function—Dimension f 1—2 f 2—2 f 3—2 f 4—5 f 5—5 f 6—5

PSO
BE 1.510 × 10−6 5.275 × 10−7 3.860 × 10−3 0.007 1.512 398.4
WE 0.301 2.308 4.595 × 10−2 5.970 2.901 978.4
AE 4.866 × 10−2 2.311 × 10−2 1.622 × 10−2 2.127 2.286 700.7

GA
BE 6.490 × 10−7 3.773 × 10−7 1.072 × 10−3 0.337 0.215 1.233
WE 27.00 2.436 × 10−2 3.725 × 10−2 8.839 1.329 503.4
AE 0.271 4.249 × 10−4 1.127 × 10−2 3.509 0.725 238.9

CS
BE 1.151 × 10−6 3.686 × 10−7 3.301 × 10−5 0.007 0.199 1.121
WE 3.957 × 10−2 6.171 × 10−4 9.716 × 10−3 2.587 1.445 270.2
AE 2.342 × 10−3 1.880 × 10−4 7.199 × 10−3 0.895 0.685 59.21

ACS
BE 1.337 × 10−8 2.295 × 10−7 0 0 0.162 0.731
WE 0.144 5.217 × 10−4 0 0 1.029 125.7
AE 1.759 × 10−3 1.009 × 10−4 0 0 0.356 21.15

3. Fault Diagnosis Algorithm Flow

So far, the framework of the small-sample transfer learning fault diagnosis method
for the UAV engine based on the MSSST and the ACS-BPNN agent model optimized deep
convolution is shown in Figure 6.

Specific processes are included:

(a) UAV engine fault presetting experiments are conducted to collect and preprocess the
vibration signals in the fault state;

(b) The acquired vibration signals are converted into three-channel color time-frequency
image samples by the MSSST and divided into the training set, the test set, and the
validation set according to a certain ratio;

(c) A pre-trained ResNet-18 network model on the ImageNet image set is used as the
base migration model;

(d) The learning rate of all network layers with parameter space before the last fully
connected layer of the binary convolutional network is set to zero, i.e., these network
layers are frozen and only the parameter-initialized connected layer of the last fully
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connected layer is retained in order to learn the classification features of UAV engine
fault samples;

(e) After training the network using the training set to obtain better training accuracy,
the hyperparameters of the two types of convolutional networks are autonomously
optimized using the ACS-BPNN agent model;

(f) Two types of convolutional networks are trained using optimized hyperparameters
and the trained networks are used to classify the test samples for fault diagnosis.
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4. Experimental Data Collection and Description

The data acquisition experiment is carried out. The relevant technical parameters of
the UAV engine used in the experiment are shown in Table 3, and the experimental data
acquisition and related software analysis are shown in Figure 7. During the experiment,
the vibration acquisition frequency is 20 k Hz, the length of experimental data acquisition
is 120 s, and the vibration equipment used is the DHDAS dynamic signal acquisition and
analysis system.

Table 3. Basic technical parameters of the UAV engine.

Type Parameter Category Parameter

Bore 79.5 mm Weight 75.0 kg
Piston stroke 60 mm Maximum continuous speed 5500 r/min

Number of cylinders 4 MCR 1250 hPa
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In the experiment, the model of the vibration sensor and its installation position are
shown in Figure 8.

According to the frequent faults of UAV engines, this paper presets four different fault
states. The preset fault experiment is shown in Figure 9. The specific descriptions of the
four different fault states are as follows:

(a) Simulation of the four-cylinder engine does not inject fuel (injector failure).

The engine four-cylinder injector plug is removed, the four-cylinder does not work, the
engine is running in the failure mode of the lack of cylinders. Engine working conditions
are as follows: speed 3000 r/min, throttle 11%.

(b) Simulation of the four-cylinder engine does not work (spark plug connector abnormal).

The engine four-cylinder high-pressure shielding cap is removed, four-cylinder oil
supply is normal but cannot be ignited, the four-cylinder cannot work properly, the engine
is still in the lack of cylinder fault mode operation. Engine working conditions are as
follows: speed 3000 r/min, throttle 11%.

(c) Low voltage on the analog engine supply.

The normal supply voltage of the EFI engine is 13~14V, and the adjusted supply
voltage is only 8V, the engine is running in the low-voltage fault mode, and the engine
working conditions are as follows: speed 3000 r/min, throttle 11%.
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Figure 8. Sensor and its installation position. (a) The shape of the sensor; (b) The installation position
of the sensor.

(d) Simulation of disconnecting the A ignition (disconnecting one-way ignition).

The engine is in a normal condition with A and B ignitors, with the A ignitor controlling
the upper ignition system of the four cylinders and the B ignitor controlling the lower
ignition system of the four cylinders. After the A igniter is disconnected, the engine is
running in the failure mode of the upper ignition system of the four cylinders, and the
engine working conditions are as follows: speed 3000 r/min, throttle 11%.

(e) The engine is in a normal working condition.

The working conditions are the following: speed 3000 r/min, throttle 11%.
In the above preset fault experiments, it is shown that the experimental process is in

accordance with the vibration acquisition frequency of 20 k Hz. the vibration equipment
used is that of the DHDAS Dynamic Signal Acquisition and Analysis System for the
collection of experimental data and the initial software display; however, it is only obtained
through the collection of the data software and not from the time-domain diagram of the
experimental equipment. Therefore, we are unable to determine the failure of the situation,
and there is a need to use a further processing method to achieve the diagnosis of the fault.

The fault diagnosis method of the MSSST with small-sample migration learning
proposed in this paper is utilized to identify the individual states of UAV engines. As there
are few studies on UAV engine fault diagnosis at present, there is often the problem of
insufficient sample size. Therefore, 50 samples are randomly selected from each fault state
during the experimental process of this paper, which are used to realize the fault diagnosis
under small-sample conditions. Dividing the training set, the validation set and the test
set according to the ratio of 7:2:1, 35 training samples, 10 validation samples and 5 test
samples are obtained for feasibility validation experiments of the MSSST and small-sample
migratory learning fault state recognition methods.
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Figure 9. Preset Fault Experiment. (a) Insufficient power supply; (b) Fuel injector plug fault; (c) Spark
plug abnormality; (d) Disconnecting 1 igniter.

The original vibration signal is processed by the MSSST to obtain the time-frequency
diagram, as shown in Figure 10. The coordinate system, legend and blank parts are removed
to avoid the impact on the accuracy of fault diagnosis.

From the figure, it can be seen that the time-frequency resolution accuracy of the
time-frequency image obtained by the MSSST is very high, avoiding the phenomenon of
time-frequency blurring. Analysis from this perspective is beneficial to the identification of
subsequent samples. However, observing the time-frequency images in different states, it
can be found that the differentiation between the time-frequency images is not high, and
the fault classification of the UAV engine cannot be realized only by time-frequency images.

In order to compare the effectiveness of the methods proposed in this paper, exper-
iments are conducted to compare the training accuracy of different models. During the
experimental comparison, four different comparison methods are set:

(a) SSST-CS-BPNN-ResNet-18;
(b) MSSST-CS-BPNN-ResNet-18;
(c) SSST-ACS-BPNN-ResNet-18;
(d) MSSST-ACS-BPNN-ResNet-18.
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(c) Status 3; (d) Status 4; (e) Status 5.

Analyzing the results shown in Figure 11 and Table 4 and comparing the results of
Figure 11a,b, as well as Figure 11c,d, it can be seen that the MSSST method proposed in this
paper can improve the accuracy of fault diagnosis to a certain extent, indicating that the
time-frequency diagram obtained using MSSST analysis is superior to those obtained using
traditional time-frequency analysis methods such as SSST. Comparing Figure 11a,c, and
Figure 11b,d, it can be found that the performance of the ResNet-18 network optimized by
ACS-BPNN is improved, and the accuracy of fault diagnosis is also improved. In general,
the proposed method is optimized in time-frequency resolution and fault diagnosis results.

In order to show more clearly the fault classification process of the method proposed
in this paper, the said method is visualized in three dimensions, and the fault classification
is obtained as shown in Figure 12. From Figure 12, it can be clearly seen that the method
can realize the classification of five different states and carry out the fault diagnosis of a
UAV engine under small-sample conditions.

Table 4. Comparative results between different methods.

Methodologies Accuracy

SSST-CS-BPNN-ResNet-18 93.5028
MSSST-CS-BPNN-ResNet-18 95.3642
SSST-ACS-BPNN-ResNet-18 96.0625

MSSST-ACS-BPNN-ResNet-18 97.1751
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5. Conclusions

In this paper, we study the small-sample transfer learning fault diagnosis method for a
UAV engine based on the MSSST and ACS-BPNN agent model optimized deep convolution.
The MSSST time-frequency image of the vibration signal of the UAV engine is used as a
sample, and the hyper-parameters of the ResNet-18 network are autonomously optimized
using the ACS-BPNN agent model. The main conclusions of the proposed method in this
paper are shown below.

(a) The vibration signals of the UAV engine under different fault statuses are collected
by vibration sensors, and the vibration signals are converted into time-frequency dia-
grams using MSSST as inputs to the fault diagnosis model, and this feature extraction
method minimizes the disturbing factors of human-selected features.

(b) The CS algorithm, i.e., the ACS algorithm, is improved, which effectively enhances
the intelligence of the algorithm and further improves its global optimization capa-
bility. The combination of the ACS algorithm and the BPNN model is used for the
hyperparameter autonomous optimization of convolutional network ResNet-18. It is
experimentally verified that the proposed method can effectively diagnose the faults
of UAV engines under small-sample conditions.

In summary, the existing fault diagnosis algorithms usually require sufficient data
samples compared with the algorithm proposed in this paper, which requires a small
amount of data. Therefore, this study can provide theoretical reference and technical
support for fault diagnosis in the case of small samples. However, there are still some
problems and deficiencies in this study, such as the need to optimize the deep network
structure, research more accurate agent models, find more effective migration strategies to
reduce the data volume requirement, etc. Our team agrees that these problems are the next
focus of the research direction.
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