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Abstract: Predicting the cell response to drugs is central to drug discovery, drug repurposing, and
personalized medicine. To this end, large datasets of drug signatures have been curated, most notably
the Connectivity Map (CMap). A multitude of in silico approaches have also been formulated, but
strategies for predicting drug signatures in unseen cells—cell lines not in the reference datasets—are
still lacking. In this work, we developed a simple-yet-efficacious computational strategy, called
CrossTx, for predicting the drug transcriptomic signatures of an unseen target cell line using drug
transcriptome data of reference cell lines and unlabeled transcriptome data of the target cells. Our
strategy involves the combination of Predictor and Corrector steps. The Predictor generates cell-line-
agnostic drug signatures using the reference dataset, while the Corrector produces target-cell-specific
drug signatures by projecting the signatures from the Predictor onto the transcriptomic latent space
of the target cell line. Testing different Predictor–Corrector functions using the CMap revealed the
combination of averaging (Mean) as a Predictor and Principal Component Analysis (PCA) followed
by Autoencoder (AE) as a Corrector to be the best. Yet, using Mean as a Predictor and PCA as a
Corrector achieved comparatively high accuracy with much lower computational requirements when
compared to the best combination.
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1. Introduction

A critical step in the drug discovery process is identifying compounds that are able
to elicit a desired activity toward disease-modifying targets. In this regard, data-driven
strategies play an important role in mining and integrating the literature, knowledge base,
and omics data (e.g., transcriptome) for prioritizing and matching drugs to molecular
targets [1–5]. These strategies typically require an abundance of cellular signatures of
drugs, preferably those from the specific human cell types or tissues that are affected by the
disease. Of note is the Connectivity Map (CMap) dataset that contains 1.5 million human
transcriptomic signatures from roughly 20,000 drug treatments and chemical perturbations
for 71 different cell lines [6]. Although impressive in terms of its size, the majority of
drug signatures in the CMap dataset are from immortalized cancer cell lines. Cancer
cells are known to exhibit abnormalities in drug responses. Even among cancer cells,
there exists a significant variability of molecular signatures in terms of their responses to
drugs [6]. Complicating the matter further, cells’ responses to drugs are known to be context-
specific [7,8]. The question of whether the CMap signatures can be used to accurately
predict drug responses in cell types and tissues of interest that are not among those in the
dataset (i.e., unseen cells) is still unanswered. Despite the practical relevance of predicting
drug response in an unseen cell line, this problem has not received much attention.

The drug signature prediction method of interest is illustrated in Figure 1a. The
task involves predicting transcriptomic drug signatures in an unseen target cell line using
drug signatures from reference cell lines and transcriptome data from the target cells. The
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transcriptome data of the target cells are considered unlabeled (i.e., no information about
the original experiments is required). Thus, such data can be compiled from the literature
and public databases (e.g., GEO database [9]) as well as from one’s own experiments. The
prediction in Figure 1a is akin to data imputation but with a key difference that makes most
of the existing imputation algorithms previously developed for the CMap inapplicable:
the data from the target cell line are unlabeled, and they do not necessarily come from
drug treatments.
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Weight Optimization) is able to generate drug signatures for unseen cells (referred to as 
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Figure 1. Transcriptomic drug signature prediction by CrossTx. (a). An overview of drug signature
prediction in an unseen target cell line. Reference transcriptome signatures comprising gene expres-
sion data from different reference cell lines treated with various drugs and drug loads (shaded in
blue) are displayed as a 3-D matrix. The combinations of drugs and drug loads may not be the same
across the reference cell lines, displayed as missing data samples (shaded in grey). Background gene
expression data of the target cell line (shaded in green) do not have any overlapping conditions (drug
treatments) with the reference signatures. The drug signature slated to be predicted is highlighted in
red. (b). The Predictor generates cell-line-agnostic gene expression via averaging or through a linear
regression model. (c). The Corrector projects cell-line-agnostic signatures from the Predictor using
PCA and/or AE, producing target-specific gene expression signatures.

The computational methods for drug signature prediction that have previously been
developed and applied to the CMap dataset address a more common imputation problem;
this problem is illustrated in Figure 1a by the 3-D matrix with missing samples. Several
imputation strategies rely on the 3-D matrix representation of the CMap drug signature
data, where genes, cell lines, and drug conditions make up the three axes. The simplest
approach is averaging, which can be either 1-D (across reference cell lines for the same
drug) or 2-D (across drugs from the same cell line and across reference cell lines for the
same drug) [10]. More sophisticated strategies rely on tensor decompositions of a 3-D
matrix [10,11]. Notably, the tensor decomposition method called TT-WOPT (Tensor-Train
Weight Optimization) is able to generate drug signatures for unseen cells (referred to as
‘missing cells’ in the original publication) [11]. Another group of methods are based on
a supervised learning strategy wherein a linear regression model or machine learning is
trained to produce drug signatures of a target cell line given drug signatures from the
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reference cell lines. Some examples include GeneDNN, GeneGAN, GeneLASSO, and
SampleLASSO [12]. GeneDNN and GeneGAN address a gene-wise data imputation, a
wherein a deep neural network and a generative adversarial network model, respectively,
are built for imputing missing expression data of select genes. Finally, GeneLASSO and
SampleLASSO rely on LASSO regression modeling [13] to impute missing expression data
for genes and samples, respectively. These supervised learning-based methods require
training data that comprise drug signatures of the reference and target cell lines obtained
under the same set of conditions.

Except for the TT-WOPT method, the drug signature prediction considered in this
work cannot be addressed by the imputation methods mentioned above since there are
no overlapping conditions between the reference dataset and the transcriptomic data of
the target cells. Also, in the case of unseen cells, the TT-WOPT method was previously
shown to yield poor accuracy [11]. To address the lack of viable algorithms, in this work,
we developed CrossTx for cross-cell-line transcriptomic signature prediction. Considering
the features of the CMap dataset, we considered drug load as a covariate in generating drug
signature predictions. CrossTx is a simple-yet-efficacious method that involves two steps:
Predictor and Corrector. Given a drug at a specific drug load, the Predictor produces cell-
line-agnostic drug signatures by averaging or conducting a regression of the reference drug
signatures. The Corrector is based on the idea of correcting cell-line-agnostic signatures
from the Predictor by projecting those onto the transcriptomic latent space of the target
cell line and in essence producing target-specific drug signatures. The transcriptomic
latent space is constructed from the (unlabeled) gene expression data of the target cell line
using Principal Component Analysis (PCA) and/or an Autoencoder (AE). Borrowing from
machine learning, this latent space refers to the compressed representation of transcriptomic
data [14]. For demonstration, we applied different Predictor–Corrector combinations to
the CMap dataset using a Leave-One-Cell-line-Out (LOCO) procedure and assessed the
accuracy of the predicted drug signatures using the Pearson correlation coefficient (ρ) and
area under the receiver operating characteristics and precision–recall curve (AUROC and
AUPR, respectively).

2. Materials and Methods
2.1. Prediction of Drug Signatures by CrossTx

The CrossTx comprises two components, a predictor and a corrector, that are applied
in sequence. The Predictor (see Figure 1b) generates a cell-line-agnostic transcriptome signa-
ture for a given drug at a specific drug load—defined as the drug concentration multiplied
by the treatment duration—via averaging or a linear regression model, hereon referred
to as the ‘Mean’ and ‘Regression’ methods, respectively. Here, the same transcriptome
signature is generated for a given drug and drug load regardless of the target cell lines. The
Corrector subsequently projects the cell-line-agnostic drug signature from the Predictor to
the transcriptomic latent space of the target cell line using PCA and/or AE, producing a
target-specific signature (see Figure 1c). The details of the Predictor and Corrector steps are
detailed below.

Given a drug and drug load, the Predictor produces a vector of cell-line-agnostic gene
expression y ∈ Rm, where m is the number of genes. The Mean method produces the gene
expression value y = µd,l by averaging the gene expression vectors in the reference dataset
for the specified drug d and drug load l (see Figure 1b). An obvious drawback of the Mean
method is that it is unable to produce any predictions when the reference dataset does not
have samples for a drug for a specified drug load. In such a case, the Regression method
should be used.

The Regression method relies on a linear regression model rg,d(l), in which the expres-
sion of gene g is the dependent variable and the drug load l is the independent variable,
according to the following formulation:

rg,d(l) = β
g,d
1 l + β

g,d
0 , (1)
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where β
g,d
1 and β

g,d
0 are the slope and intercept, respectively. Note that a linear regression

model is built for each gene–drug g-d combination. The outcome is arranged into a vector
of gene expression y. In the application to the CMap dataset, the intercept was set to zero
since the drug signatures in the dataset were normalized to have a zero mean (z-scores).
The unknown slope was obtained using ordinary least squares method [15].

The first Corrector uses PCA as the projection method. The transcriptomic latent
space of the target cell line is anticipated to be highly complex, limiting the ability of PCA
to represent the complete latent space well. As illustrated in Figure 1c, only a subset of
the gene expression data of the target cell line—samples nearest to the cell-line-agnostic
expression from the Predictor y—is used in the PCA projection. Specifically, a subset
of k transcriptional profiles from the target cell line with the highest correlations with y
are chosen for the projection (default k = 5). PCA is applied to the selected expression
profiles from the target cells, and the top p principal components (PCs) are finally used
for projection. The parameter p is set to the minimum number of PCs that cumulatively
explain at least a given percentage of the total variance (default 80%). PCA projection onto
the latent space is performed as follows:

ŷPCA = WWT(y − m) + m, (2)

where W ∈ Rm×p denotes the loading matrix for the selected PCs, m ∈ Rm denotes the
average expression of the selected target transcriptome profiles, and ŷPCA denotes the
target-specific drug signature via PCA projection.

The second Corrector using an AE employs the entire set of transcriptome data to
ascertain the transcriptomic latent representation of the target cell line. Autoencoders
(AEs) and their many variants have been successfully applied to transcriptomic data for
various purposes, ranging from dimensionality reduction to the imputation of missing
values [16–19]. The AE architecture comprises an encoder and a decoder (see Figure 1c);
each is a perceptron with one hidden layer using the same number of hidden nodes. In
CrossTx, the AE employs the hyperbolic tangent (tanh) activation function for both the
encoder and the decoder, and thus is able to account for non-linearity in the latent space
projection. The number of nodes in the hidden layer nnodes, the dimension of the latent
representation nz, the batch size nbatch (i.e., the size of data the subgrouping during the
training), and the number of epochs nepoch (i.e., the number of iterations during training)
are hyperparameters that need to be optimized. The encoder and the decoder are trained
together to minimize the Mean Squared Error Φ

Φ =
1
N ∑N

j=1

∥∥∥∼x j − xj

∥∥∥2

2
, (3)

which has successfully been used for building AEs for gene expression data in other
studies [20–22]. Here, xj ∈ Rm denotes a vector of gene expression of the target cell line,
∼
x j ∈ Rm denotes the gene expression reconstructed by the AE, N is the number of samples,
and ∥·∥2 denotes the L-2 norm. The output of the Predictor y is passed through the trained
AE, as illustrated in Figure 1c, to produce the target-specific gene expression ŷAE.

2.2. Application to the CMap Dataset

The CMap drug transcriptomic signature dataset comprises gene expression data for
978 landmark genes measured using the L1000 assay [6]. For assessing the performance
of the proposed CrossTx, we employed the processed the CMap drug signatures from a
previous study by Pham et al. [19]. This dataset was generated using a peak deconvolution
procedure based on a Bayesian-based approach that generates more robust expression
profiles [23]. This dataset includes seven cell lines with the most samples in the CMap,
namely, MCF7, A375, HT29, PC3, HA1E, YAPC, and HELA, and samples from the six
most-frequent drug concentrations taken after 24 h of treatment. The sample sizes for each
cell line are given in Table 1.
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Table 1. Sample sizes of the CMap dataset in CrossTx assessment.

Size MCF7 A375 HT29 PC3 HA1E YAPC HELA

Total: 1000 817 596 833 792 456 800

Test 1:

Mean/Regression 250/253 354/377 263/272 240/246 267/280 209/210 173/174
1 The number of test samples for the Mean method is different from that for the Regression method since the
Mean method requires at least one sample in the reference data for a given drug load.

To train the AE-based corrector, we performed hyperparameter tuning using the
Bayesian optimization method [24] and identified the following optimal settings: nnodes
of 150, nz of 100, nbatch of 40, and nepoch of 300. We trained the AE using the Adam
optimizer [25] with a learning rate of 10−3. The AE models were built using Keras (version
2.10.0) [26] with a TensorFlow backend (version 2.10.0) [27].

For the performance assessment, we used the Leave-One-Cell-line-Out (LOCO) pro-
cedure. Briefly, we selected one of the cell lines in the dataset to be the target cells, while
the remaining six were assigned as the reference cell lines. We applied CrossTx using the
CMap data for the reference cell lines for the Predictor and the transcriptome data from the
selected target cell line for the Corrector. The above procedure was repeated for each of the
cell lines in the dataset. We assessed the drug signature prediction accuracy (see Section 2.3)
for the top 100 drugs in the dataset. The test sample size of the drug signature predictions
for each target cell line is provided in Table 1. Since the Mean method is unable to produce
cell-line-agnostic signature when the reference dataset does not have any samples from the
drug at the drug load of interest, the test sample size for the Mean method is expectedly
smaller than that for Regression. But the differences in the test sample sizes are small (with
an average difference of 2.7%): the largest difference is 6.1% for cell line A375. Note that
when predicting the gene expression signature for a drug treatment, all samples of the
respective drug were excluded from the Corrector step; that is, the transcriptome data of
the target cell line did not include any samples from the investigated drug.

2.3. Performance Scoring

The first accuracy score is the Pearson correlation coefficient ρ. Given the ground truth
drug signature y ∈ Rm and the predicted signature ŷ ∈ Rm, ρ is calculated as follows:

ρ =
∑m

i=1
(
yi − µy,i

)(
ŷi − µŷ,i

)√
∑m

i=1
(
yi − µy,i

)2
√

∑m
i=1

(
ŷi − µŷ,i

)2
, (4)

where µy and µŷ denote the average of the elements of y and ŷ, respectively (i.e., µy =
1
m ∑m

i=1 yi). A higher ρ value suggests a more accurate prediction.
Another set of accuracy scores are the area under the Receiver Operating Charac-

teristics (AUROC)—the curve of true the positive rate (TPR) vs. the false positive rate
(FPR)—and the area under the precision–recall (AUPR) curve. These scores were computed
for genes that were up- or downregulated by drugs separately. To compute the AUROC
and AUPR of the upregulated (downregulated) genes, a ranked list of genes was created
by sorting the genes based on the predicted gene expression in decreasing (increasing)
order, spanning from the most positive (negative) to the most negative (positive). The
ROC and PR curves were then generated by computing the numbers of true-positive (TP),
false-positive (FP), false-negative (FN), and true-negative (TN) results among the top k
genes in the ranked list for an increasing k. TPs correspond to the intersection of the top k
genes and the ground-truth gene set (up-downregulated genes), while FPs are those among
the top k genes that are not in the ground-truth set. Genes that are not in the top k of the
list but are in the ground-truth gene set are the set of FNs. Finally, genes that are not among



Processes 2024, 12, 332 6 of 12

the top k nor in the ground-truth set are TNs. For ROC, the TPR and FPR are computed
as follows:

TPR =
TP

TP + FN
, (5)

FPR =
FP

FP + TN
. (6)

The ROC is constructed by plotting TPR versus FPR for increasing k.
Meanwhile, for the PR curve, precision and recall are computed according to:

Precision =
TP

TP + FP
, (7)

Recall = TPR =
TP

TP + FN
. (8)

As the name suggests, the PR curve is the plot of Precision versus Recall for increasing
k. AUROC and AUPR values range between 0 and 1, where a value of 1 corresponds
to a perfect prediction. Note that a random (binary) predictor has an expected value of
AUROC equal to 0.5. The expected value of AUPR for a random prediction is equal to
the proportion of positives (i.e., the number of genes in the ground-truth set over the total
number of genes m). When the number genes in the ground truth set is much smaller than
the total number of genes—that is, when classes are highly imbalanced—the AUPR is a
more informative metric of accuracy than the AUROC as it accounts for the ratio between
positives and negatives [28].

3. Results

CrossTx is a method for predicting the drug transcriptional signatures of an unseen
target cell line given data from reference cell lines and gene expression data of the target
cells. The transcriptome data of the target cells are unlabeled; that is, the conditions used
when generating the data are not required nor used in the drug signature prediction. The
drug signature prediction of interest is unlike the common imputation since the gene
expression data of the reference cell lines and the transcriptome data of the target cell
lines, highlighted in blue and green in Figure 1a, respectively, do not share any common
conditions. The CrossTx method comprises two steps: a Predictor and a Corrector. The
Predictor uses the reference dataset to produce cell-line-agnostic transcriptional signatures
via averaging or linear regression (see Figure 1b). The Corrector leverages the transcriptome
dataset of target cells to reconstruct the transcriptomic latent space of the target cell line
using either PCA and/or an autoencoder (see Figure 1c) and projects the cell-line-agnostic
signatures from the Predictor onto this latent space to produce target-specific signatures. In
the following, we assess the performance of CrossTx and compare it with TT-WOPT [11].
As noted earlier, most existing imputation methods cannot be applied to the problem
described in Figure 1a.

We evaluated the accuracy of the CrossTx predictions for drug signatures in seven
cancer cell lines: MCF7, A375, HT29, PC3, HA1E, YAPC, and HELA. Preprocessed and
filtered drug signatures were obtained from the study by Pham et al. [19]. For testing, we
followed the LOCO procedure (see Section 2.2), where we systematically picked one cell
line as the target and treated the remaining six cell lines as the reference. We generated drug
signature predictions for 100 drugs with the most samples in the dataset (see Table 1). When
making a signature prediction for a drug, we removed all samples of this drug from the
transcriptome data of the target cells. For performance scoring, we employed the Pearson
correlation ρ and the area under the ROC (AUROC) and the PR (AUPR) curve. When using
the AUROC and AUPR, we performed accuracy assessments for the predictions of up-
and downregulated genes separately. In total, ten different drug signatures generated by
CrossTx were assessed, namely, two cell-line-agnostic signatures using either the Mean or
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the Regression method and eight different combinations of the Predictor–Corrector: (Mean
or Regression) + (PCA or AE or PCA + AE or AE + PCA).

Figure 2 gives the performance scores of CrossTx and TT-WOPT for all drug signature
predictions for different target cell lines. The scores for individual target cell lines are given
in Table 2 (see Supplementary Tables S1–S5 for the full results). The results show that
cell-line-agnostic drug signatures produced using the Mean and Regression methods have
reasonable agreement with the ground-truth data, with correlations ρ averaging 0.59/0.55
(Mean/Regression), AUROCs at 0.79/0.77 for up- and 0.80/0.78 for downregulated genes,
and AUPRs at 0.65/0.63 for up- and 0.67/0.65 for downregulated genes. In general, the
Mean method provides better accuracy than the Regression method (p-values < 10−4, two-
sided paired t-test). Still, the Regression method has an advantage over the Mean method
in that it can provide predictions for drug load values that are not in the reference dataset.
The Corrector using the PCA projection improves the cell-line-agnostic drug signatures
from the Mean (Mean + PCA) and Regression methods (Regression + PCA). In contrast, the
Corrector using the AE provides improvements only for cell-line-agnostic signatures from
the Mean method (Mean + AE). When starting with the relatively poorer cell-line-agnostic
signatures from the Regression method, the AE projection (Regression + AE) drug signature
predictions exhibit poorer accuracy than the Predictor.
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Figure 2. Accuracy of drug signature predictions by CrossTx and TT-WOPT. The accuracy of drug
signature predictions was assessed using (a) Pearson correlation ρ, (b,c) AUROC, and (d,e) AUPR.
AUROC (+)/AUROC (−) refer to values for up-/downregulated genes, respectively. Similarly, AUPR
(+)/AUPR (−) refer to values for up-/downregulated genes, respectively. Solid lines correspond
to medians, and dashed lines denote the inter-quartile range. Statistical significance was deter-
mined using two-sided paired t-test. Black *** indicates p-values < 10−3 for improved accuracy.
Red *** indicates p-values < 10−3 for decreased accuracy.
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Table 2. Accuracy of drug signature predictions by CrossTx. For each method, the accuracy of
drug signature predictions is assessed using Pearson correlation ρ (first row), AUROC (second row),
and AUPR (third row). The two values of AUROCs correspond to the accuracy of predicting up-
/downregulated genes. Similarly, the two values of AUROCs correspond to the accuracy of predicting
up-/downregulated genes. Bold values highlight the best-performing method for the respective
accuracy metric. Statistical significance was established via two-sided paired t-test to assess the
change in accuracy by adding a Corrector. For example, Mean + PCA was compared to Mean, while
Mean + PCA + AE was compared to Mean + PCA. Note that the addition of a Corrector may degrade
accuracy when using the AE method. *: p-values < 0.05.

Method
Cell

MCF7 A375 HT29 PC3 HA1E YAPC HELA

Predictor: Mean (µ) + Corrector: PCA, AE, PCA + AE, AE + PCA

µ
ρ 0.59 0.58 0.6 0.59 0.58 0.58 0.62

AUROC 0.78/0.80 0.78/0.79 0.79/0.81 0.79/0.80 0.79/0.79 0.78/0.79 0.80/0.81
AUPR 0.66/0.65 0.65/0.67 0.66/0.67 0.65/0.65 0.65/0.66 0.65/0.68 0.68/0.69

µ + PCA
0.76 * 0.77 * 0.77 * 0.75 * 0.74 * 0.72 * 0.76 *

0.87 */0.89 * 0.88 */0.89 * 0.87 */0.89 * 0.87 */0.88 * 0.86 */0.87 * 0.85 */0.87 * 0.87 */0.89 *
0.78 */0.79 * 0.79 */0.82 * 0.79 */0.81 * 0.77 */0.78 * 0.77 */0.79 * 0.75 */0.79 * 0.79 */0.81 *

µ + AE
0.72 * 0.67 * 0.73 * 0.71 * 0.67 * 0.69 * 0.76 *

0.85 */0.87 * 0.84 */0.84 * 0.86 */0.87 * 0.85 */0.86 * 0.84 */0.84 * 0.84 */0.86 * 0.88 */0.89 *
0.75 */0.76 * 0.73 */0.74 * 0.76 */0.78 * 0.74 */0.74 * 0.72 */0.72 * 0.73 */0.76 * 0.78 */0.80 *

µ + PCA + AE
0.78 * 0.78 * 0.78 * 0.77 * 0.75 * 0.74 * 0.79 *

0.88 */0.90 * 0.89 */0.90 * 0.88 */0.90 * 0.88 */0.89 * 0.87 */0.88 * 0.86 */0.88 * 0.89 */0.90 *
0.79 */0.81 * 0.80 */0.83 * 0.80 */0.82 * 0.79 */0.80 * 0.78 */0.80 * 0.78 */0.81 * 0.81 */0.83 *

µ + AE + PCA
0.75 * 0.76 * 0.76 * 0.73 * 0.73 * 0.69 0.76

0.87 */0.88 * 0.87 */0.88 * 0.87 */0.89 * 0.86/0.87 * 0.86 */0.87 * 0.84/0.86 0.87/0.89
0.77 */0.79 * 0.78 */0.80 * 0.78 */0.81 * 0.76 */0.77 * 0.76 */0.78 * 0.74/0.77 0.79/0.80

Predictor: Regression + Corrector: PCA, AE, PCA + AE, AE + PCA

Regression
0.55 0.56 0.56 0.56 0.54 0.52 0.54

0.77/0.79 0.77/0.78 0.77/0.79 0.77/0.79 0.76/0.77 0.75/0.77 0.76/0.78
0.64/0.63 0.64/0.67 0.63/0.65 0.63/0.64 0.62/0.64 0.61/0.65 0.63/0.64

Regression + PCA
0.62 * 0.69 * 0.66 * 0.61 * 0.60 * 0.62 * 0.63 *

0.80 */0.83 * 0.84 */0.86 * 0.82 */0.84 * 0.80 */0.82 * 0.8 */0.81 * 0.80 */0.83 * 0.81 */0.83 *
0.67 */0.69 * 0.74 */0.76 * 0.71 */0.73 * 0.66 */0.68 * 0.66 */0.69 * 0.68 */0.72 * 0.69 */0.71 *

Regression + AE
0.46 * 0.25 * 0.44 * 0.35 * 0.23 * 0.38 * 0.49 *

0.73 */0.75 * 0.63 */0.61 * 0.72 */0.73 * 0.67 */0.68 * 0.62 */0.60 * 0.69 */0.70 * 0.74 */0.77 *
0.58 */0.59 * 0.51 */0.50 * 0.58 */0.58 * 0.52 */0.52 * 0.49 */0.48 * 0.55 */0.56 * 0.60 */0.63 *

Regression + PCA + AE
0.66 * 0.72 * 0.68 * 0.63 * 0.61 * 0.66 * 0.66 *

0.82 */0.85 * 0.86 */0.87 * 0.83 */0.85 * 0.81 */0.83 * 0.80 */0.82 * 0.82 */0.85 * 0.82 */0.85 *
0.71 */0.73 * 0.77 */0.78 * 0.73 */0.76 * 0.69 */0.70 * 0.69 */0.71 * 0.71 */0.75 * 0.72 */0.74 *

Regress + AE + PCA
0.45 0.28 * 0.55 * 0.39 * 0.23 0.47 * 0.47

0.73/0.75 0.64 */0.63 * 0.76 */0.79 * 0.69 */0.71 * 0.62/0.61 0.73 */0.74 * 0.73/0.77
0.58/0.58 * 0.54 */0.53 * 0.64 */0.66 * 0.54 */0.55 * 0.50 */0.49 * 0.59 */0.61 * 0.59/0.63

TT-WOPT

TT-WOPT
0.31 0.19 0.18 0.05 0.36 0.18 0.24

0.65/0.69 0.59/0.60 0.59/0.61 0.52/0.55 0.68/0.69 0.57/0.62 0.62/0.64
0.48/0.50 0.43/0.46 0.43/0.43 0.35/0.37 0.52/0.53 0.41/0.45 0.44/0.48

The observed trend for the AE suggests that the AE projection method can be a
viable Corrector strategy when the cell-line-agnostic signatures are relatively near the
transcriptomic latent space (manifold) of the target cells. This observation motivated us to
combine the two Corrector methods in series. We tested whether the accuracy of the PCA-
projected drug signatures could be improved further by a second projection using the AE, a
strategy referred to as PCA + AE. The basic premise here is that the PCA projection should
have brought the cell-line-agnostic prediction close to the transcriptomic latent space of the
target cells, for which the AE may offer further improvements. Indeed, in every target cell
line considered (see Table 2) and regardless of the method used to generate the cell-line-
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agnostic signatures, the PCA + AE combination yielded significant accuracy improvements
over the use of PCA alone. This improvement was also notable for every combination
using the Regression method as the Predictor (see Table 2). For the sake of completeness,
we also tested the AE + PCA combination as the Corrector, passing the cell-line-agnostic
signatures to the AE first, and then applying the PCA projection to the output of the AE.
In this case, the PCA projection did not always provide accuracy improvements for the
drug signatures produced by the AE. Overall, the best-performing method was the Mean +
PCA + AE combination. Lastly, the accuracy of the TT-WOPT-generated drug predictions
was consistently poorer than that of the CrossTx predictions, even when compared with
the drug signatures generated using the Mean method (p-values < 10−4; two-sided paired
t-test).

4. Discussion

Our work was motivated by the practical problem of predicting drug signature data
in disease-relevant cells. Specifically, we addressed the challenge of leveraging large
drug signature datasets, such as the CMap, to predict drug responses in unseen cell lines.
Since distinct gene, signaling, and metabolic networks operate in different tissues and cell
lines [29–31], one expects that the molecular signatures of a drug will exhibit cell-context
specificity. For applications in drug discovery, drug repurposing, and precision medicine,
there is a clear need for methods that are able to predict cell-line-specific drug response
accurately and not just for cancer cells. To the best of our knowledge, none of the existing
imputation algorithms, including those specifically developed for the CMap dataset, are
applicable to the problem at hand. We developed CrossTx to address the gap in the
available algorithms regarding the drug signature prediction above. Our method comprises
two key components: a Predictor that generates cell-line-agnostic drug signatures using the
reference data and a Corrector that produces target-specific drug signatures by projecting
cell-line-agnostic signatures from the Predictor onto the transcriptomic latent space of the
target cell line. Here, we tested two alternative methods for the Predictor, namely, Mean
and Regression, and two different latent projections for the Corrector, namely, PCA and AE.
However, our two-step strategy is fully generalizable to other algorithms. For example,
nonlinear regression models can be employed as the Predictor, and other machine/deep
learning models for latent space reconstruction and projection can be adopted as the
Corrector. Lastly, while this study focuses on predicting transcriptomic responses to drugs,
the task and our proposed method are also relevant for other important applications, for
example, predicting aging-related transcriptomic changes in inaccessible or difficult-to-
access tissues (e.g., the human brain) using gene expression data from more accessible cells
(e.g., blood and adipose tissue). Furthermore, the Predictor–Corrector approach can also be
applied to other omics datasets.

We tested the accuracy of ten different predictions produced by CrossTx using various
combinations of Predictor–Corrector algorithms. We applied CrossTx to drug signatures
from seven cell lines with the most samples in the CMap dataset. We found that averaging
reference drug signatures (i.e., the Mean method) is a simple and efficacious method for
the Predictor. When no reference samples at the specified drug load exist, the Regression
method is a viable alternative method for a Predictor. Between the two Corrector methods,
our tests showed that the PCA is superior to the AE not only in terms of the accuracy of
the resulting drug signatures but also in its computational simplicity and robustness with
respect to the accuracy of its input. As a Corrector, the AE projection induced improvements
when the input signatures were close to the transcriptome latent space (manifold) of the
target cell line. This observation is not surprising considering that the AE was trained
using transcriptional data of the target cells. The combination of PCA and AE, wherein
PCA-projected drug signatures were inputted to the AE, yielded the highest accuracy.
But the reverse implementation—applying AE projection and then PCA—did not lead to
superior performance using only the PCA projection. Finally, all drug signatures generated
by CrossTx had higher accuracies than those produced by a tensor-decomposition-based
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method called TT-WOPT. Here, the TT-WOPT method did not use any transcriptome data
of the target cell line for its prediction.

Despite the promising results achieved by CrossTx in predicting drug signatures in
unseen cell lines, our approach is subject to certain limitations. Firstly, the efficacy of
CrossTx is contingent upon the availability and quality of reference drug signature data. In
scenarios where such data are sparse or of low quality, the performance of the Predictor
component may be compromised, potentially diminishing the overall accuracy of the drug
signature predictions. Secondly, the effectiveness of the Corrector step, which is designed to
tailor drug signatures to specific cell lines, is significantly influenced by the characteristics
of the transcriptomic latent space. If this latent space fails to capture essential biological
variations due to limitations in the available gene expression data or the underlying
PCA or AE models, the precision of CrossTx predictions could be adversely affected.
Lastly, the emphasis on transcriptomic signatures in our work restricts CrossTx’s utility
for predicting drug effects that are primarily governed by non-transcriptional mechanisms.
Future work could focus on expanding this methodology to include other omics datasets,
thereby potentially mitigating these limitations and enhancing the predictive capacity and
applicability of this method across a wider spectrum of biological contexts and drugs.

5. Conclusions

In summary, we presented a simple-yet-efficacious Predictor–Corrector strategy, called
CrossTx, for cross-cell line/tissue transcriptome signature prediction. The method CrossTx
was specifically developed for leveraging large reference datasets of drug transcriptomic
signatures, such as the CMap, to predict drug response in unseen cells—cells that are in the
reference dataset. When applied to the CMap data, CrossTX was able to produce highly
accurate drug signatures, where the best combination was to use the Mean method for the
Predictor and the PCA + AE as the Corrector. Nevertheless, the Mean + PCA combination
was of note because of its simplicity and low computational cost while also being able to
provide drug signature predictions with relatively high accuracy when compared to the best
combination above. The simplicity of CrossTx is an advantage, enabling its adaptation to
other related applications and the use of other Predictor and Corrector algorithms with little
additional effort. CrossTx is available from https://github.com/cabsel/crosstx (accessed
on 4 January 2023).

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/pr12020332/s1. Table S1: Pearson correlations of drug signature
predictions by CrossTx and TT-WOPT for individual cell lines; Table S2: AUPRs of drug signature
predictions by CrossTx using the Mean method as Predictor and TT-WOPT for individual cell lines;
Table S3: AUPRs of drug signature predictions by CrossTx using the Regression method as Predictor
and TT-WOPT for individual cell lines; Table S4: AUROCs of drug signature predictions by CrossTx
using the Mean method as Predictor and TT-WOPT for individual cell lines; Table S5: AUROCs of
drug signature predictions by CrossTx using the Regression method as Predictor and TT-WOPT for
individual cell lines.
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