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Abstract: The drying process of polymeric coatings, particularly in the presence of surfactants, poses
a complex challenge due to its intricate dynamics involving simultaneous heat and mass transfer.
This study addresses the inherent complexity by employing Artificial Neural Networks (ANNs) to
model the surfactant-enhanced drying of poly(styrene)-p-xylene coatings. A substantial dataset of
16,258 experimentally obtained samples forms the basis for training the ANN model, showcasing
the suitability of this approach when ample training data is available. The chosen single-layer feed-
forward network with backpropagation adeptly captures the non-linear relationships within the
drying data, providing a predictive tool with exceptional accuracy. Our results demonstrate that the
developed ANN model achieves a precision level exceeding 99% in predicting coating weight loss for
specified input values of time, surfactant amount, and initial coating thickness. The model’s robust
generalization capability eliminates the need for additional experiments, offering reliable predictions
for both familiar and novel conditions. Comparative analysis reveals the superiority of the ANN over
the regression tree, emphasizing its efficacy in handling the intricate dynamics of polymeric coating
drying processes. In conclusion, this study contributes a valuable tool for optimizing polymeric
coating processes, reducing production defects, and enhancing overall manufacturing quality and
cost-effectiveness.

Keywords: ANN modeling; surfactant enhanced drying; thin films; poly(styrene); triphenyl phosphate

1. Introduction

Chemical substances known as surfactants are used to reduce the interfacial tension
between a solution and another phase by forming micelles. Ionic and non-ionic surfactants
are the primary kinds of surfactants [1]. Different categories of surfactants can only be
used if they are compatible with the coating solution. Because of their interactions, drying
rate, film formation, wetting performances, and other uses, polymer-surfactant systems
are currently of significant research interest. The hydrophobicity of polymer influences the
interaction between polymers and surfactants. The aggregate number of polymer bounds
is independent of the bound surfactant concentration [2].
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In polymeric films, even a modest amount of surfactant causes a noticeable alteration.
Surfactant–polymer interaction requires a specific surfactant concentration. If the value is
less than this, aggregation causes the addition of surfactant to increase the viscosity of the
solution. Above this point, increasing the amount of surfactant results in steric hindrance
in the association, which results in a low aggregation number, and the viscosity drops
below its ideal level [3]. By reducing surface tension close to the edges, surfactant produces
a surface tension gradient between the edges and the center of the film. Because of the
Marangoni force, a flow is produced that moves the solute back to the film’s center. This
makes the polymeric coatings flat [4]. Surfactants significantly lower the glass transition
temperaturereduced. Amphiphilic compounds, which are typically used as plasticizers,
are known for this behavior [5].

The drying process of polymeric films is crucial for manufacturing products like
photographic films, adhesive tapes, and coatings. Controlled evaporation of solvents is the
key, with temperature, humidity, and drying equipment playing vital roles. The process
influences film thickness, uniformity, and microstructure, impacting the final product’s
quality. Techniques such as spectroscopy ensure quality control during drying. Overall,
understanding and optimizing the drying mechanism is essential for achieving consistent
product quality, energy efficiency, and cost-effective manufacturing. Our previous research
groups studied the effect of various surfactants, including anionic, non-ionic, and fluoro-
surfactants, to minimize the residual solvent and enhance the drying rate of organic and
water-based coatings [6–9]. Triphenyl phosphate (TPP) was used as a plasticizer in one of
the studies to modify the drying behavior of the poly(styrene)-p-xylene system in order to
minimize the residual solvent [8]. The amount of plasticizer present significantly impacts
the amount of residual solvent left after drying. A machine learning technique based on a
regression tree model was also used to develop a drying model for a poly(styrene)-p-xylene
system enhanced by triphenyl phosphate as the surfactant [9]. The predictions of the
developed model based on regression trees were obtained by MATLAB software (R2014a).
It was robust and acceptable to be employed with the system regardless of composition
or thickness. With regard to estimating weight loss for a specific time, TPP, and initial
thickness values, the model derived results. Within 1% of the experimental data, the model
predictions were accurate.

Artificial Neural Networks (ANNs) have recently gained popularity and have proven
to be a useful model for classification, clustering, pattern recognition, and prediction in a va-
riety of fields [10]. ANNs, a machine learning model, are now comparable with traditional
statistical and regression models in terms of usefulness [11]. The ANN is discovered to be a
very new and practical paradigm applied to machine learning and problem-solving. ANN
is comparable to how the human brain’s nervous system operates [12]. A neural network
is a computational model in which many nodes (or neurons) are interconnected [13]—a
distinct output function known as the activation function is represented by each node.
Every connection between two nodes represents a weight for the signal traveling across the
connection, comparable to the Artificial Neural Network’s memory. The output will change
depending on the network’s connectivity, weight value, and incentive function [14,15].

The immense potential of Artificial Neural Networks (ANNs) lies in their high-speed
processing through massively parallel implementation, prompting increased research in this
field. ANNs, known for their exceptional attributes such as self-learning, adaptivity, fault
tolerance, and non-linearity, are primarily utilized for universal function approximation
in numerical paradigms. In direct comparison, statistical models offer few advantages
over ANNs. The ANN approach does not necessitate a deep understanding of underlying
phenomenological mechanisms, established mathematical equations, explicit expressions,
or input–output interactions. Unlike statistical models, there are no presumptions about
the distribution or characteristics of the data in ANN models. ANNs serve as highly
adaptable data reduction models, encompassing discriminant and non-linear regression
models [16,17].
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In surface coatings, ANNs have a broad range of applications, including coating
thickness prediction, coating hardness prediction, microstructure analysis, roughness,
particle characteristics, etc. They can also predict the hysteresis effect in sputtering processes
and coating oxidation behavior. By rejecting undesired sounds and making up for the
modified variables, ANN is a key player in the process modeling of surface coatings [18].
In order to assess the predictions regarding the wear amounts of surface coatings applied
by the welding melting method, Ulas et al. [19] developed models using four different
machine learning algorithms (ANN, extreme learning machine, kernel-based extreme
learning machine, and weighted extreme learning machine). The study showed that,
to differing degrees, machine learning systems can accurately anticipate the wear loss
quantities of various coated surfaces. Barletta et al. [20] used a multi-layered perceptron
(MLP) neural network to model the electrostatic fluidized bed coating process to predict
the thickness trends with respect to time, voltage, and airflow.

The extensive use of Artificial Neural Networks (ANNs) in drying applications has
been historically driven by their advantageous properties. In various drying technology
methods such as batch convective thin-layer drying, fluidized bed drying, osmotic dehy-
dration, osmotic-convective drying, spray drying, freeze drying, rotary drying, and spout
bed drying, ANNs have been employed to model, predict, and optimize heat and mass
transfer. They have also played a crucial role in studying thermodynamic parameters and
physiochemical properties of dried products [21–26]. However, despite this widespread
application, there has been a notable gap in the literature concerning the drying of binary
polymeric solutions and surfactant-enhanced drying of polymeric solutions using the ANN
approach. This indicates an untapped potential for leveraging ANNs in understanding
and optimizing these specific drying processes, marking an opportunity for future research
endeavors in this domain.

The drying of polymeric solution coatings is a complex phenomenon involving simul-
taneous heat and mass transfer, further complicated by intricate thermodynamics spanning
from dilute solutions to highly concentrated, i.e., glassy state. This process encompasses
the diffusion of solvent(s) within the coating, followed by evaporation from the surfaces.
The diffusion in binary polymeric coatings is well-characterized using the Vrentas and
Duda free volume theory [27,28]. A typical binary diffusion model involves 13 free volume
theory parameters, with 9 being pure component properties and the remaining 4 estimated
from drying experiments through regression.

To minimize production defects in coatings, it is crucial to reduce residual solvent
contents. This can be achieved by optimizing drying conditions, incorporating additives to
enhance drying [6,8], or a combination of both. The addition of any material to the coating
solution significantly affects the solution’s thermodynamics, diffusion, and available free
volume. Currently, no diffusion model is available to predict the drying behavior for
surfactant-enhanced drying.

The drying process of polymeric coatings, inherently intricate due to the multitude of
components involved, including polymers, solvents, binders, pigments, leveling agents,
and drying enhancers like surfactants, has been a subject of conceptual modeling. The
gradual nature of polymeric coating drying often results in a significant accumulation of
residual solvents during the later stages. This surplus amount of solvent, if not effectively
managed, can lead to coating defects and substantial solvent losses. To address this
challenge, surfactants are introduced into the coatings to expedite the drying process,
facilitating the removal of a maximum amount of solvent within a shorter timeframe.

Remarkably, despite the critical role of surfactants in enhancing drying rates and
minimizing solvent retention, a notable gap exists in the form of a lack of a comprehensive
mathematical model. The current body of knowledge lacks a predictive tool that can
accurately forecast the intricate dynamics of drying and the specific impact of surfactants
on the drying rate in this complex system.

This work aims to bridge this gap by developing a sophisticated mathematical model
tailored to this specific context. Leveraging existing drying data, this endeavor seeks to
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provide a comprehensive and predictive understanding of the drying process in polymeric
coatings, shedding light on the nuanced influence of surfactants on drying rates. This novel
approach represents a significant advancement in the field, offering valuable insights and
practical applications for optimizing polymeric coating processes.

In this work, we report the application of Artificial Neural Networks (ANN) to model
surfactant-enhanced drying in a binary solution. The system employed uses triphenyl
phosphate as a surfactant to study the drying behavior of poly(styrene)-p-xylene coatings,
with experimental data points sourced from our earlier work [8]. In today’s context, a major
task is to develop simple and robust methods for the online control of dryers, manipulating
control variables such as temperature or airflow to achieve the best quality product at a
minimum cost. This work aims to test these algorithms on a laboratory scale.

2. Materials and Methods

Before the emergence of machine learning techniques, researchers have used design of
experiment (DOE) methods to determine the relationship between various factors affecting
the process and its outputs; in other words, causal analysis is used to identify cause-and-
effect relationships. There are multiple approaches to DOE, like Taguchi and response
surface methodology (RSM). For example, the precipitation of barium sulfate salt was
investigated through dynamic tube-blocking tests using RSM [29].

After the emergence of artificial intelligence and machine learning techniques (MLTs),
more competitive methods have been developed, which can be adapted to complement
or replace traditional RSM methods. In contemporary scientific and engineering research,
MLTs and artificial intelligence have gained widespread popularity for modeling complex
systems. Various MLTs, including Artificial Neural Networks (ANN), support vector
regression machines (SVM), and regression trees (RT), among others, are available for this
purpose. Numerous instances in the literature showcase the successful application of these
techniques across diverse scientific and engineering domains.

For instance, an ANN was employed to develop a model predicting the physical and
chemical properties of aqueous extracts from nine medicinal plants. This model considered
dynamic experiments based on extraction conditions (time and temperature) and plant
species [30]. Another study utilized an ANN and multiple regression-based model to pre-
dict organic potato yield based on the tillage system and soil properties [31]. Accurate solar
irradiance forecasts, crucial for solar energy system operators, were achieved using an ANN
to capture the non-linear relationship between solar irradiance and atmospheric variables [32].

In assessing groundwater suitability for irrigation, various methods, including indexi-
cal approaches, statistical computing, graphical plotting, and machine learning algorithms,
were compared, with the ANN outperforming other techniques [33]. A support vector
machine-based model was employed to assess the behavior of waste tire rubberized con-
crete [34]. Different approaches, such as ANN and regression tree simulations, were
used to investigate the I-V characteristic of an ion-sensitive field-effect transistor based on
graphene [35].

A regression tree-based model successfully predicted these quantities to overcome
the laborious process of experimentally determining a compound’s water solubility and
Setschenow coefficient [36]. Another model based on a regression tree was developed
to assess the importance of plant, soil, and management factors affecting potential milk
production on organic pastures [37].

These MLTs, functioning on the black box principle with historical/experimental
data, eliminate the need for explicit system knowledge. When mathematical modeling for
complex processes is challenging, conducting numerous experiments to generate sufficient
input–output data enables the development of machine learning models. These models ex-
hibit good generalization, accurately predicting output for given inputs, and are applicable
to unseen data.

This study chose an ANN model due to its popularity and high prediction accuracy to
forecast weight loss in coatings. This prediction was based on input variables such as time,
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the amount of triphenyl phosphate (TPP) used as a surfactant, and the initial thickness of
the coating. In a previous study, a regression tree was used for the same system [9]. While
an ANN has more parameters than a regression tree, its flexibility allows for capturing
complex non-linear relationships. However, drawbacks include the empirical nature of
model creation, increased computational load, and the risk of overfitting. In contrast, the
regression tree is a straightforward method, building rules based on features in the data.

Model Development

A brief description of ANN has been provided in this section. For a detailed descrip-
tion, the reader can refer to [38].

A neural network is a group of interconnected neurons that are taught from their
environment to take in linear and non-linear trends in complicated data to produce reliable
results for unseen situations containing even noisy and incomplete information [39].

In an Artificial Neural Network (ANN), there are three layers: the input, hidden, and
output. There may be more than one hidden layer. Each layer contains multiple neurons.
Each neuron in a layer has an activation function. The activation function is the basis of
non-linearity in the relationship.

A neuron emits one signal, known as output, after ingesting many signals, collectively
called inputs. Figure 1 depicts the McCulloch and Pitts (MCP) simple neuron.
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Figure 1. A simple MCP neuron.

Each input is assigned a weight. Each input’s impact on the decision-making process
is influenced by its weight. Weighted input is created by multiplying the input by its
weight. The MCP neuron can adjust to a given circumstance by altering its weights. Several
methods are available for that aim, including the Delta rule and back error propagation.
Thus, a neuron comprises two main components: weight and activation function. The
weights decide the input vector’s strengthdetermined. The output of the node is excited by
a +ve weight and inhibited by a −ve weight.

φ = xTw = x1w1 + x2w2 + x3w3 + . . . + xnwn = ∑n
i=1 xiwi (1)

In order to create the final output (y), a mathematical procedure involving an activation
function ( f ) is applied to the signal output.

y = f (φ) = f
{
∑n

i=1 xiwi

}
(2)

Linear (or ramp), hyperbolic tangent, and sigmoid activation functions are the most
frequently employedcommonly.

ANNs contain many simple, highly interconnected neurons. There are two different
kinds of networks: feed-forward networks and feedback networks. Signals move from
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the input via hidden layers to the output in a feed-forward network, while in a feedback
network, signals are fed back from the output to hidden layers. Only feed-forward neural
networks have been used in this study due to their simplicity.

Feed-forward ANNs only allow one direction of signal flow: from input to output. No
feedback loops exist at all. Figure 2 depicts a feed-forward network.
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Figure 2. An example of feed-forward network with hidden layer.

The nodes are images of neurons. Arrows show the connections between nodesindi-
cated. The input nodes of the network are input variables (x1,x2,. . ., xn), which only
transmit values to processing nodes without performing any computations, while the
output variables (y1,. . ., yn) are the output nodes. Nodes can be placed in layers, such as
the input layer, which comprises nodes 1, 2, and 3; the hidden layer, which includes nodes
4 and 5; and the output layer, which consists of nodes 6 and 7. Several hidden layers could
be present in a neural network.

A set of weights ( wij) are present in the jth node of a network. As an illustration, node
4 has weights w14, w24, and w34. A network is considered complete if the set of all weights
(wij), the topology (or graph), and the activation function of each node are all known.

In this investigation, the chosen neural network architecture is the most typical
type—an Artificial Neural Network (ANN) with one hidden layer. This configuration
is widely used and comprises an input, hidden, and output layer. The hidden layer has a
fixed number of nodes, but determining the optimum number of hidden nodes is a crucial
aspect of network design. Additionally, more complex configurations, such as multilayer
networks with multiple hidden layers, are plausible. However, establishing the ideal num-
ber of hidden layers and neurons within each layer lacks a universally accepted method.

The connections’ strengths within the network, represented by weights, are determined
through various methods. One prevalent technique is supervised learning, a process
wherein the neural network is trained by exposing it to teaching patterns, allowing it to
adjust its weights based on a specified learning rule. In this method, the network receives
a set of input data and a corresponding set of desired output data (target values). The
network’s output is then compared to the expected output. If any discrepancy arises,
the weights are adjusted by the learning rule until the network’s output aligns with the
desired output.

In contrast, unsupervised learning is another training approach where the network
adapts to structural elements in input patterns without explicit target outputs. The network
learns autonomously through this method. However, for this investigation, the chosen
approach is supervised learning.

Various strategies can be employed to minimize the discrepancy between the network’s
output and the desired output (target value) in supervised learning. These strategies include
the sum of squared errors, least absolute deviation, asymmetric least squares, percentage
differences, and least fourth powers. Among these, the sum of squared errors is the most
commonly used metric for training neural networks, serving as a measure to guide the
adjustment of weights during the learning process.

The backpropagation technique is a crucial mechanism employed to reduce prediction
errors within a neural network. This iterative process involves the successive adjustment
of weights based on the computed errors, ultimately refining the network’s performance.
The technique unfolds through the network’s layers, starting from the first hidden layer,
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which receives inputs, calculates outputs, and forwards them to subsequent layers until
reaching the output layer.

At each output layer unit, activation is determined by summing the weighted inputs
from all preceding layers. The difference between the desired output and the actual network
output is termed as the error. This error is then used to adjust the weight matrix, and the
process iterates until the error is minimized.

A key parameter in this process is the number of epochs, indicating how often the
weights have been updated during the network training. The number of epochs plays a
pivotal role in influencing the model’s performance. As the number of epochs increases,
the data may transition from underfitting to optimal fitting and potentially to overfitting.
However, the number of epochs alone is not a decisive factor; more critical are the validation
and training errors. Training should continue as long as these errors consistently decrease.

Another essential hyperparameter is the learning rate, representing the step size
during the minimization of a loss function. This parameter metaphorically signifies how
rapidly a machine learning model “learns”. The learning rate determines the extent to
which new information supersedes previous knowledge. Selecting an appropriate learning
rate involves a trade-off between convergence rate and overshooting. A high learning rate
may lead to skipping minima, while a low learning rate might result in slow convergence
or getting stuck in an unfavorable local minimum. Striking the right balance is crucial for
effective and efficient neural network training.

Assume a training set {(x1, t1)...(xr, tr)} that consists of r-ordered pairs of n × m
dimensional vectors, referred to as input and output patterns. A continuous and differen-
tiable activation function is required at each network node. Random initialization is used
for the weights. For the given input pattern (xi) from the training set, the network will
produce output yi, which will be compared with the target value (ti). The final objective is
to use a learning algorithm to reduce the disparity as much as possible between yi and ti
for i = 1...r. To be more precise, we want to minimize the network’s error function. ANNs
can be trained by using any one of the following learning algorithms.

• Gradient descent
• Levenberg–Marquardt algorithm
• Newton method
• Quasi–Newton method
• Conjugate gradient

In this study, the widely used structure of the neural network, i.e., the backpropagation
feed-forward network with one hidden layer, has been used.

3. Results and Discussion

ANN-based methods are widely used. Numerous trustworthy open-source libraries,
including Python and R software, are readily available. However, MATLAB® (The Math-
Works, Inc., Natick, MA, USA) was used in this work to generate the results.

By entering the command nnstart, one can launch the Neural Network GUI (guide
user interface) in MATLAB. A window with launch buttons for the following apps: Neural
Net Fitting, Neural Net Pattern Recognition, Neural Net Clustering, and Neural Net Time
Series are displayed. Links to lists of data sets, examples, and other helpful resources are
also provided. The Neural Net Fitting software can be chosen for the regression model.
Once the input and output data have been loaded, you can choose the percentage of the
data for training, validation, and testing, the number of neurons in the hidden layer, and
the training algorithm. Then, one can begin training. If not getting the results someone is
looking for, you can vary the number of neurons in the hidden layer.

In this study, all 16,258 experimentally obtained samples underwent processing in
the Neural Net Fitting software. This software, adapts at handling large datasets, sys-
tematically divides the data into three subsets: 70% (11,380 samples) for training, 15%
(2439 samples) for validation, and another 15% (2439 samples) for testing. The decision to
adopt a 70/15/15 split instead of the more common 80/20 rule was driven by the specific
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characteristics of our dataset and the research objectives. While the 80/20 rule is often
employed, especially with limited data, our larger dataset allowed for a nuanced approach
that prioritized a substantial training set (70%) while allocating reasonable portions for
validation and testing. This balance aimed to ensure effective model training and robust
evaluation of its performance.

The software utilizes a sophisticated algorithm that systematically and randomly
selects data for each phase—training, validation, and testing. This algorithm ensures a
comprehensive representation of the dynamics inherent in the underlying process for each
category. By introducing randomness into the selection process, the algorithm prevents
biases that might arise from specific temporal or spatial patterns in the data. This approach
enhances the model’s capacity to learn underlying patterns within the training data and
validates its performance on unseen data through a well-curated validation set. The testing
set, derived with the same strategic randomness, serves as a rigorous benchmark for
assessing the model’s overall predictive accuracies.

In terms of the neural network architecture, a single hidden layer backpropagation
neural network was employed in this study. The architecture featured sigmoid hidden neu-
rons and linear output neurons. A learning rate of 0.01 was chosen to provide the optimal
trade-off between convergence and overshooting during the training process. The careful
consideration of data splitting and neural network parameters reflects a deliberate and
systematic approach to ensure the reliability and generalizability of the developed model.

Table 1 shows the performance of ANN with variations in the number of neurons in
the hidden layer.

Table 1. Performance of ANN with variation in number of neurons in hidden layer.

Number of
Neurons

CPU/Training
Time (s) MSE R2 Value

5 54 2.55 × 10−06 1
10 187 5.61 × 10−08 1
15 211 2.37 × 10−08 1
20 255 1.09 × 10−08 1
25 81 2.68 × 10−08 1
30 356 7.19 × 10−09 1
35 373 5.50 × 10−11 1
40 273 7.32 × 10−11 1
45 101 1.19 × 10−08 1
50 326 5.50 × 10−09 1
100 467 2.05 × 10−09 1

In this table, the second column shows the time required to train the neural network.
On increasing the number of neurons, the number of weights increases, in general, which
leads to an increase in training time. However, in some cases, fewer iterations are required
to find the optimum values of the weights, which causes a reduction in training time.
As we can see in Table 1, a network with 25 neurons took less time to be trained than
a network with 10, 15, and 20 neurons. It is advised to use the fewest possible hidden
neurons to complete the task. Complexity will increase if we use more hidden neurons than
we need. Just with 10 neurons in the hidden layer, we could achieve the best performance
in terms of complexity, training time, and R-value. The neural network’s training was
performed using the Levenberg–Marquardt technique. R-value and Mean Squared Error
(MSE) were used as performance criteria (see Table 1). The average squared difference
between outputs and targets is known as the MSE. A zero MSE value indicates no error.
Regression R values quantify the relationship between outputs and targets. An R-value of
“1” indicates a strong association, while “0” indicates a random relationship. The following
is the formula for MSE:

MSE =
1
n ∑n

i=1(yi − ti)
2 (3)
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where yi is the predicted output (predicted by the model), ti is the actual output (target) for
the specified sample, and n is the total number of samples. The following formula can be
used to determine the R2 value after computing MSE and variance in output data (y).

R2 =

[
1 − MSE

variance(y)

]
(4)

Figure 3 presents the validation performance curve depicting the Mean Squared Error
(MSE) as the chosen loss function for the neural network in this study. The visualization
of both training and validation losses on the graph is a common practice to assess the
model’s performance at selected parameter values. High losses in both categories suggest
underfitting, while low training loss and high validation loss indicate overfitting. Optimal
model fit is achieved when training and validation losses stabilize at a specific point. This
study obtained the best fit at the 139th epoch, where the MSE reached an exceptionally low
value of 7.3258 × 10−8.
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Figure 4 showcases the regression curves generated by the Artificial Neural Network
(ANN) for the training, validation, test sets, and the overall dataset. Following the training
phase with 11,380 samples and validation with 2439 samples, the model’s predictive efficacy
was evaluated using a separate set of testing data comprising 2439 samples. Notably, these
testing samples were not utilized in the ANN model’s training or validation stages.

These regression curves visually represent the ANN’s performance across different
datasets, offering insights into how well the model generalizes to unseen data. The distinct
curves for training, validation, and testing sets, along with the overall dataset, contribute
to a comprehensive understanding of the model’s predictive capabilities. The visual assess-
ment aids in gauging the ANN’s ability to capture underlying patterns and make accurate
predictions across diverse scenarios, reinforcing the reliability of the developed model.



Processes 2024, 12, 260 10 of 15

Processes 2024, 12, x FOR PEER REVIEW 10 of 15 
 

 

 

 

 

 

Figure 4. ANN regression curves with training, validation, testing sets, and overall dataset. 

These regression curves visually represent the ANN’s performance across different 

datasets, offering insights into how well the model generalizes to unseen data. The dis-

tinct curves for training, validation, and testing sets, along with the overall dataset, con-

tribute to a comprehensive understanding of the model’s predictive capabilities. The 

Figure 4. ANN regression curves with training, validation, testing sets, and overall dataset.



Processes 2024, 12, 260 11 of 15

In Figure 4, the ANN regression curves offer a detailed insight into the predictive
prowess of the model across different datasets—training, validation, testing sets, and the
overall dataset. These curves juxtapose the actual output (Target, T) against the model-
predicted output (Output, Y), with the x-axis representing target values and the y-axis
representing outputs.

The curves serve as a critical tool for assessing the model’s accuracy, with a perfect
prediction represented by a straight line passing through the origin with a slope of 1. In
Figure 4, the dotted line illustrates this ideal scenario where Y equals T. The ‘o’ markers
depict the model-predicted output against the actual target value, while the solid line
represents the fit to the data. Significantly, all four curves—training, validation, testing, and
the overall dataset—exhibit straight lines passing through the origin with a slope of 1. This
consistency indicates that the outputs predicted by the network closely match the target
values. Each ‘o’ marker precisely aligns with the dotted line, underscoring the model’s
remarkable accuracy, surpassing a 99.9% precision rate in each curve.

Transitioning to Figure 5, the error histogram provides a granular view of prediction
errors for all training, validation, and testing samples. The x-axis represents the error,
indicating the disparity between target and output values, while the y-axis denotes the
instances or samples. A discernible pattern emerges from the histogram, illustrating that
the prediction error for each sample is exceptionally low, hovering around zero. This
implies that the variance between target and output values is either less than zero or very
close to zero for every sample.
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Figure 5. Error histogram for all the samples/instances.

In summary, the regression curves and the error histogram affirm the robustness
of the developed ANN model. The consistent achievement of near-perfect predictions
across diverse datasets underscores the model’s reliability and accuracy in capturing
the underlying patterns of the studied phenomenon. The combination of these analyses
provides a comprehensive understanding of the model’s performance, instilling confidence
in its practical applicability for optimizing polymeric coating processes by ensuring accurate
predictions of drying rates under various conditions.

Table 2 shows the results of a few samples because it is impossible to show the results in
tabular form for all the 16,258 samples, but Figure 5 indicates the results for all the samples.



Processes 2024, 12, 260 12 of 15

Table 2. Target and predicted values for given inputs.

X1 × 104

(Time, s)

X2 × 104

(Amount of
Surfactant, gm)

X3 × 104

(Initial Coating
Thickness, µm)

T, (Experimental
Weight of

Coating, gm)

Y, (Model
Predicted Weight of

Coating, gm)
|% error|

0.1861 0.00015 0.2005 0.26 0.26 0
0.2151 0.0002 0.2009 0.26 0.26 0
0.1905 0 0.2021 0.26 0.26 0
0.1856 0.00015 0.2005 0.26 0.26 0
0.2146 0.0002 0.2009 0.26 0.26 0

0.19 0 0.2021 0.26 0.26 0
0.1851 0.00015 0.2005 0.26 0.26 0
0.2141 0.0002 0.2009 0.26 0.26 0
0.1895 0 0.2021 0.26 0.26 0
0.2136 0.0002 0.2009 0.26 0.26 0
0.1846 0.00015 0.2005 0.26 0.26 0
0.189 0 0.2021 0.26 0.26 0

0.2131 0.0002 0.2009 0.26 0.26 0
0.1841 0.00015 0.2005 0.26 0.26 0
0.1885 0 0.2021 0.26 0.26 0
0.2126 0.0002 0.2009 0.26 0.26 0
0.1836 0.00015 0.2005 0.26 0.26 0
0.2121 0.0002 0.2009 0.26 0.26 0
0.188 0 0.2021 0.26 0.26 0

0.1831 0.00015 0.2005 0.26 0.26 0
0.2116 0.0002 0.2009 0.26 0.26 0
0.1705 0 0.2021 0.26 0.26 0

0.17 0 0.2021 0.26 0.26 0
0.1695 0 0.2021 0.26 0.26 0
0.169 0 0.2021 0.26 0.26 0

0.1761 0.00005 0.2011 0.26 0.26 0
0.1685 0 0.2021 0.26 0.26 0
0.1756 0.00005 0.2011 0.26 0.26 0
0.168 0 0.2021 0.26 0.26 0

0.1751 0.00005 0.2011 0.26 0.26 0
0.1675 0 0.2021 0.26 0.26 0
0.1746 0.00005 0.2011 0.26 0.26 0
0.0835 0.0002 0.2009 0.28 0.28 0
0.075 0.00005 0.2011 0.28 0.28 0
0.072 0 0.2021 0.28 0.28 0
0.083 0.0002 0.2009 0.28 0.28 0

0.0745 0.00005 0.2011 0.28 0.28 0
0.0715 0 0.2021 0.28 0.28 0
0.0825 0.0002 0.2009 0.28 0.28 0
0.074 0.00005 0.2011 0.28 0.28 0
0.071 0 0.2021 0.28 0.28 0
0.082 0.0002 0.2009 0.28 0.28 0

0.0735 0.00005 0.2011 0.28 0.28 0
0.0815 0.0002 0.2009 0.28 0.28 0
0.0705 0 0.2021 0.28 0.28 0
0.073 0.00005 0.2011 0.28 0.28 0
0.081 0.0002 0.2009 0.28 0.28 0

0.0165 0.00015 0.2005 0.30 0.30 0
0.0165 0.00005 0.2011 0.30 0.30 0
0.016 0.00015 0.2005 0.30 0.30 0

The exemplary results presented in Table 2 offer a glimpse into the accuracy and
reliability of the ANN model’s predictions for weight loss in polymeric coatings. Notably,
the % error for all samples is consistently zero, indicating a perfect match between the
model-predicted weight of the coating (Y) and the experimentally determined weight (T).
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This exceptional precision across diverse input conditions underscores the robustness and
effectiveness of the developed neural network.

One of the key advantages of the ANN model lies in its ability to capture complex
non-linear relationships between input variables (X1, X2, X3) and the output variable (Y).
The intricate dynamics involved in the drying process of polymeric coatings, influenced
by factors such as time, amount of surfactant, and initial coating thickness, are effectively
encapsulated by the model. This capability is crucial for understanding and optimizing the
drying behavior under a multitude of conditions.

The absence of any non-zero % error in the predictions is particularly significant. It
signifies not only the model’s accuracy but also its generalization capabilities. The ANN
has successfully learned the underlying patterns in the training data and demonstrated
its ability to make precise predictions on previously unseen testing samples. This is a key
attribute for any predictive model, especially in fields where conditions vary widely.

Moreover, the consistent accuracy across training, validation, and testing sets, as
evidenced by the regression curves in Figure 4 and the low prediction errors displayed in
the error histogram in Figure 5, reinforce the model’s reliability. These analyses provide
a holistic view of the model’s performance, assuring its competence in making accurate
predictions while avoiding overfitting or underfitting issues.

In practical terms, the ability of the ANN model to predict weight loss in polymeric
coatings with such high precision has significant implications. It can aid in optimizing
drying processes, minimizing production defects, and reducing solvent content in coatings,
all of which enhance the manufacturing process’s overall quality and cost-effectiveness.

While the results presented focus on a subset of samples due to tabular constraints, the
visual representation in Figure 5 and the comprehensive analysis of regression curves offer
confidence that the model’s accuracy extends to the entire dataset. This validation is crucial
for the model’s applicability in real-world scenarios, where it can serve as a valuable tool
for researchers and engineers working on polymeric coating processes.

4. Conclusions

The intricate and multifaceted nature of drying processes in coatings often defies the
derivation of accurate models using conventional first principles. This study successfully
addressed this challenge by developing a robust model for the surfactant-enhanced drying
of poly(styrene)-p-xylene coatings using Artificial Neural Networks (ANN).

Artificial Neural Networks prove to be highly effective in modeling complex systems,
particularly when an ample amount of training data is available. In our investigation, an
extensive dataset comprising a large number of experimentally collected samples formed
the basis for training the ANN model. The chosen architecture, a single-layer feed-forward
network with backpropagation, demonstrated remarkable performance in capturing the
non-linearities inherent in drying data.

The developed ANN model exhibited exceptional accuracy in predicting the weight
loss of coatings, achieving a precision level exceeding 99% for specified values of time,
surfactant amount, and initial coating thickness. This high accuracy and the model’s robust
generalization capacity eliminate the need for additional experiments, providing a valuable
tool for predicting weight loss under both familiar and novel conditions.

Furthermore, our comparative analysis revealed that, despite being more parameter-
sensitive and computationally demanding, ANN outperformed the regression tree, which
was previously employed to model the same system. The superior performance of the
ANN underscores its efficacy in handling the intricate dynamics of polymeric coating
drying processes.

In conclusion, the ANN model developed in this study presents a significant ad-
vancement in predicting weight loss during the drying of polymeric coatings. Its accuracy,
generalization capability, and superiority over alternative modeling approaches position it
as a valuable tool for researchers and engineers seeking to optimize polymeric coating pro-
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cesses, reduce production defects, and enhance manufacturing operations’ overall quality
and cost-effectiveness.
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and Artificial Neural Network Modeling for Prediction of Physical and Chemical Properties of Medicinal Plants Aqueous Extracts.
J. Appl. Res. Med. Aromat. Plants 2020, 16, 100229.

31. Abrougui, K.; Gabsi, K.; Mercatoris, B.; Khemis, C.; Amami, R.; Chehaibi, S. Prediction of Organic Potato Yield Using Tillage
Systems and Soil Properties by Artificial Neural Network (ANN) and Multiple Linear Regressions (MLR). Soil Tillage Res. 2019,
190, 202–208. [CrossRef]

32. Pereira, S.; Canhoto, P.; Salgado, R. Development and Assessment of Artificial Neural Network models for Direct Normal Solar
Irradiance Forecasting using Operational Numerical Weather Prediction Data. Energy AI 2024, 15, 100314. [CrossRef]

33. Gobinder, S.; Singh, J.; Owais, A.W.; Egbueri, J.C.; Agbasi, J.C. Assessment of Ground Water Suitability for Sustainable Irrigation:
A Comprehensive Study using Indexical, Statistical, and Machine Learning Approaches. Groundw. Sustain. Dev. 2024, 24, 101059.

34. Jalal, M.; Jalal, H. Behavior Assessment, Regression Analysis and Support Vector Machine Modeling of Waste Tire Rubberized
Concrete. J. Clean. Prod. 2020, 273, 122960. [CrossRef]

35. Akbari, E.; Moradi, R.; Afroozeh, A.; Alizadeh, A.; Nilashi, M. A New Approach for Prediction of Graphene Based ISFET using
Regression Tree and Neural Network. Superlattices Microstruct. 2019, 130, 241–248. [CrossRef]

36. Stefano, C.D.; Lando, G.; Malegori, C.; Oliveri, P.; Sammartano, S. Prediction of Water Solubility and Setschenow Coefficients by
Tree-Based Regression Strategies. J. Mol. Liq. 2019, 282, 401–406. [CrossRef]

37. Zegler, C.H.; Renz, M.J.; Brink, G.E.; Ruark, M.D. Assessing the Importance of Plant, Soil, and Management Factors Affecting
Potential Milk Production on Organic Pastures Using Regression Tree Analysis. Agric. Syst. 2020, 180, 102776. [CrossRef]

38. Anderson, J. An Introduction to Neural Networks; MIT Press: Cambridge, MA, USA, 1995.
39. Samarsinghe, S. Neural Networks for Applied Sciences and Engineering, 1st ed.; Auerbach: New York, NY, USA, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/07373937.2015.1036288
https://doi.org/10.1081/DRT-120025512
https://doi.org/10.1021/ie0490435
https://doi.org/10.1007/s00226-013-0583-2
https://doi.org/10.1081/DRT-120028227
https://doi.org/10.1002/pol.1985.180230205
https://doi.org/10.1002/pol.1985.180230204
https://doi.org/10.1007/s13202-023-01679-2
https://doi.org/10.1016/j.still.2019.01.011
https://doi.org/10.1016/j.egyai.2023.100314
https://doi.org/10.1016/j.jclepro.2020.122960
https://doi.org/10.1016/j.spmi.2019.04.011
https://doi.org/10.1016/j.molliq.2019.03.029
https://doi.org/10.1016/j.agsy.2019.102776

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

