processes

Article

Reinforcement Learning-Based Multi-Objective of Two-Stage
Blocking Hybrid Flow Shop Scheduling Problem

Ke Xu 12, Caixia Ye 3, Hua Gong '>* and Wenjuan Sun 2

check for
updates

Citation: Xu, K;; Ye, C.; Gong, H.; Sun,
W. Reinforcement Learning-Based
Multi-Objective of Two-Stage
Blocking Hybrid Flow Shop
Scheduling Problem. Processes 2024,
12,51. https://doi.org/10.3390/
pr12010051

Academic Editors: Raul D. S. G.
Campilho, Jie Zhang and Olympia

Roeva

Received: 19 October 2023
Revised: 15 December 2023
Accepted: 22 December 2023
Published: 25 December 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Science, Shenyang Ligong University, Shenyang 110159, China; xuke@sylu.edu.cn (K.X.);
sunwenjuan@sylu.edu.cn (W.S.)

Liaoning Key Laboratory of Intelligent Optimization and Control for Ordnance Industry,

Shenyang 110159, China; yecaixial102@163.com

School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
* Correspondence: gonghua@sylu.edu.cn

Abstract: Consideration of upstream congestion caused by busy downstream machinery, as well
as transportation time between different production stages, is critical for improving production
efficiency and reducing energy consumption in process industries. A two-stage hybrid flow shop
scheduling problem is studied with the objective of the makespan and the total energy consumption
while taking into consideration blocking and transportation restrictions. An adaptive objective
selection-based Q-learning algorithm is designed to solve the problem. Nine state characteristics
are extracted from real-time information about jobs, machines, and waiting processing queues. As
scheduling actions, eight heuristic rules are used, including SPT, FCFS, Johnson, and others. To
address the multi-objective optimization problem, an adaptive objective selection strategy based on
t-tests is designed for making action decisions. This strategy can determine the optimization objective
based on the confidence of the objective function under the current job and machine state, achieving
coordinated optimization for multiple objectives. The experimental results indicate that the proposed
algorithm, in comparison to Q-learning and the non-dominated sorting genetic algorithm, has shown
an average improvement of 4.19% and 22.7% in the makespan, as well as 5.03% and 9.8% in the total
energy consumption, respectively. The generated scheduling solutions provide theoretical guidance
for production scheduling in process industries such as steel manufacturing. This contributes to
helping enterprises reduce blocking and transportation energy consumption between upstream
and downstream.

Keywords: blocking; hybrid flow shop scheduling problem; transportation time; multi-objective
reinforcement learning; adaptive objective selection

1. Introduction

The hybrid flow shop scheduling problem (HFSP), which combines the features of
traditional flow shop scheduling and parallel machine scheduling, is widely employed in
the auto industry, food processing, steel forging [1], and other industries. The HFSP buffer
is always intended to be infinite; however, owing to product processes and technological
restrictions, the buffer is sometimes non-existent or confined. As a result, when all the
machines in the following stage are in the processing state, the jobs processed in the previous
stage will be blocked on the present machine until an idle machine in the next stage becomes
available [2]. This is referred to as the blocking hybrid flow shop scheduling problem
(BHFSP). Blocking increases the waiting time for jobs, resulting in a longer makespan
and an increase in energy consumption, both of which have an influence on production
efficiency. With increased worldwide environmental consciousness and the implementation
of China’s carbon peak and carbon neutrality goals, energy consumption is increasingly
being emphasized as a critical green production metric for enterprises. At the same time,
the transportation time of materials between different stages in the process industry cannot

Processes 2024, 12, 51. https:/ /doi.org/10.3390/pr12010051

https://www.mdpi.com/journal /processes

https://doi.org/10.3390/pr12010051
https://doi.org/10.3390/pr12010051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr12010051
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12010051?type=check_update&version=1

Processes 2024, 12, 51

2 of 20

be ignored. As a result, in the production of hybrid flow shops, considering the impact of
blocking, coordinating production, transportation times, and energy consumption, drawing
up production plans can efficiently utilize resources, reduce production costs, and enhance
enterprise competitiveness.

We take the heating—rolling stage in a steel enterprise as an example. When there is a
need for processing, the slab is first heated in the heating furnace and then transported by
trolley to the rolling stage. Steel rolling includes hot rolling, tube rolling, structural steel
rolling, and wire rolling, etc. Semi-finished slabs will be blocked in the heating furnace
for insulation when the slab is heated in the heating furnace and all the machines in the
rolling stage are in processing mode to prevent material deterioration. The job blocking on
machines can lead to energy waste and delay the delivery time. Therefore, a multi-objective
scheduling problem for a hybrid flow shop considering transportation time was refined by
jointly considering economic and green indicators. Figure 1 depicts the process flowchart
for the heating-rolling stage.

| I
| I
| I
B(ITY &
F' ? : LIIXI)
|
: Hot rolling : m
| I
s e —
I |
| — i
| I
: | Finished-parts
| : storage
: Pipe rolling :

Figure 1. Process flowchart for the heating—rolling stage.

From the past to the present, the majority of scholars have focused on research-
ing the blocking flow shop scheduling problem (BFSP). Du et al. [3] investigated a dis-
tributed BFSP with an assembly machine and optimized it for total assembly comple-
tion time. They proposed an effective discrete monarch butterfly optimization algorithm.
Miyata et al. [4] aimed to minimize the total completion time subject to total maintenance
costs in BFSP and introduced a mixed-integer linear programming method to solve the
problem. Cheng et al. [5] aimed to minimize the total completion time and proposed an
effective metaheuristic algorithm to solve BFSP with sequence-dependent setup times.
Zhao et al. [6] studied the distributed assembly BFSP with the total tardiness criterion and
employed a mixed-integer linear programming approach for problem modeling. They
introduced a constructive heuristic algorithm and a water wave optimization algorithm
based on problem-specific knowledge. Niu et al. [7] addressed the distributed group
BFSP with carryover sequence-dependent setup time constraints. They proposed a two-
stage cooperative coevolutionary algorithm aiming to minimize the makespan and total
energy consumption. Zhao et al. [8] investigated the distributed BFSP with sequence-
dependence, taking into account makespan, total tardiness, and total energy consumption.
They introduced a cooperative whale optimization algorithm for solving this problem.
Bao et al. [9] focused on the sequence-dependent BFSP with energy-aware considerations
and constructed a mixed-integer linear programming model to minimize makespan and
total energy consumption. They proposed a cooperative iterated greedy algorithm based
on Q-learning. Nagano et al. [10] addressed the permutation flow shop problem with
process blocking and setup times and presented an improved branch-and-bound algorithm
with the objective of minimizing total flow time and tardiness. However, traditional flow
shop scheduling lacks flexibility, and production lines are often singular. In contrast, the
BHFSP allows for one or more parallel machines at each operation, providing adaptability

Processes 2024, 12, 51

30f20

to various production tasks. This not only reduces costs for enterprises but also enhances
production efficiency.

Many researchers have conducted studies on HFSP with blocking constraints in recent
years. Wang et al. [11] proposed a hybrid decode-assisted mutation iterative greedy algo-
rithm for BHFSP with the objective of minimizing the makespan. Qin et al. [12] proposed a
mathematical model of BHFSP based on energy-saving criteria and an improved iterative
greedy algorithm based on an exchange strategy to minimize total energy consumption.
Shao et al. [13] studied the distributed heterogeneous BHFSP, where the objective function
is to minimize the makespan, and proposed a learning-based selection hyper-heuristic
framework. Missaoui et al. [14] studied BHFSP where the objective function is to minimize
the sum of weighted earliness and tardiness and proposed an efficient iterated greedy
approach. Aqil et al. [15] studied BHFSP under the constraint of sequence-dependent
setup time where the objective function is to minimize the total tardiness and earliness
and proposed six algorithms based on the migratory bird optimization and water wave
optimization. Qin et al. [16] established a mathematical model of BHFSP, where the ob-
jective is to minimize the makespan, and designed an iterative greedy algorithm with a
double-level mutation strategy. Zhao et al. [17] proposed a cooperative monarch butterfly
optimization algorithm to solve the distributed assembly blocking flow shop scheduling
problem, where the optimization objective is to minimize the assembly completion time.
Wang et al. [18] investigated the BHFSP on batch processing machines. Their objective was
to minimize the total energy consumption of machines and the makespan. They designed a
hybrid meta-heuristic algorithm based on ant colony optimization and genetic algorithms
to solve this problem. It can be observed that most research on BHFSP primarily focuses
on single-objective optimization, where the main optimization objectives are makespan,
tardiness, or energy consumption. In light of the increasingly severe environmental chal-
lenges, the consideration of coordinated optimization among multiple objectives, such
as completion time and energy consumption, is not only crucial for enhancing economic
benefits for enterprises but also contributes to achieving sustainable development goals
and alleviating environmental burdens.

In the research on multi-objective HFSP, Feng et al. [19] studied HFSP based on the
parallel sequential movement mode, where the optimization objective is to maximize
both the makespan and handling events, and proposed an improved non-dominated
sorting genetic algorithm (NSGA-II) to find Pareto solutions. Lei et al. [20] focused on the
optimization objectives of minimizing the makespan and maximizing the tardiness and
designed an optimization algorithm based on multi-class teaching to solve the distributed
HFSP with sequence-dependent setup times. Geng et al. [21] aimed to minimize the
makespan and maximize the average agreement index and designed a hybrid NSGA-II
algorithm to solve the fuzzy re-entrant HFSP. Wu et al. [22] studied the re-entrant HFSP
with continuous batch processing machines and proposed an improved multi-objective
evolutionary algorithm based on decomposition to reduce the production cycle and energy
consumption in the production of cold-drawn seamless steel pipes. Wang et al. [23]
aimed to minimize the makespan, the total energy consumption, and the processing
cost of the machine and proposed an improved decomposition-based multi-objective
evolutionary algorithm to solve the HFSP. Song et al. [24] aimed to minimize both the
energy consumption and the makespan and proposed an improved fast NSGA-II to solve
the HFSP. Lei et al. [25] solved the distributed two-stage HFSP considering sequence-
dependent setup times and proposed an improved shuffled frog leaping algorithm to
minimize the number of tardy jobs and the makespan simultaneously. Song et al. [26]
aimed to minimize completion time and energy consumption and proposed a hybrid
multi-objective teaching-learning-based optimization algorithm based on decomposition
to solve the HFSP with an unrelated parallel machine. Li et al. [27] investigated energy-
efficient HFSP with uniform machines and formulated a new multi-objective mixed-integer
nonlinear programming model to minimize total tardiness, total energy cost, and carbon
trading cost. They introduced the NSGA-II based on Q-learning and general variable

Processes 2024, 12, 51

4 0f 20

neighborhood search. Wang et al. [28] explored HFSP with dynamic reconfiguration
processes and the dual objectives of minimizing the makespan and the whole device’s
energy consumption. They obtained a Pareto-based optimal solution set using an improved
multi-objective whale optimization algorithm. Cui et al. [29] studied a multi-objective HFSP
with unrelated parallel machines, considering minimum makespan and total tardiness, and
designed an enhanced multi-population genetic algorithm for solution optimization. In
summary, it is essential to consider the impact of transportation time on scheduling results
in the context of multi-objective HFSP.

Traditional HFSP solving methods often employ intelligent optimization algorithms
and heuristic algorithms. For complex shop scheduling problems that are difficult to solve,
reinforcement learning can learn the optimal strategy through interaction with the environ-
ment, and its application in the field of scheduling is becoming increasingly widespread.
Currently, reinforcement learning has been researched in various settings, including single
machines [30], parallel machines [31], flow shops [32,33], job shops [34,35], and flexible job
shops [36]. Particularly in the context of reinforcement learning for solving multi-objective
problems, Zhang et al. [37] conducted research on the distributed HFSP with a certain
degree of symmetry. The objective is to minimize both the makespan and the number of
tardy jobs and propose a dual-population genetic algorithm based on Q-learning. Cheng
et al. [38] designed a multi-objective Q-learning hyper-heuristic algorithm based on Bi-
criteria selection, where the objective is to optimize both production efficiency and energy
consumption simultaneously. Chang et al. [39] studied the multi-objective dynamic flexible
job shop scheduling problem (MODF]JSP) and proposed a hierarchical reinforcement learn-
ing approach to solve the MODFJSP considering the arrival of random jobs. Li et al. [40]
conducted research on the multi-objective flexible job shop scheduling problem with fuzzy
processing times, where the optimization objectives are makespan and total machine work-
load, and proposed a reinforcement learning-based multi-objective optimization algorithm.
Yuan et al. [41] studied the multi-objective optimization scheduling problem in hetero-
geneous cloud environments and proposed a multi-objective reinforcement learning job
scheduling method with AHP-based weighting. Wu et al. [42] studied the green dynamic
multi-objective scheduling problem in a re-entrant hybrid flow shop and proposed an
improved Q-learning algorithm. To sum up, when dealing with multi-objective problems,
reinforcement learning algorithms typically employ a weighted summation of multiple
objectives to transform them into a single objective. Objective weights are typically de-
termined according to expert experience or experimentation. However, fixed weights are
challenging to adapt in real time to changes in the state of the problem, thereby affecting
the quality of the solutions.

As mentioned above, previous research in BHFSP has predominantly focused on
single-objective optimization, with limited consideration for the coordinated transportation
between upstream and downstream. Since the machines are at different geographical loca-
tions, transportation times have an impact on scheduling systems. Moreover, optimizing a
single objective has inherent limitations when dealing with complex and diverse problems.
Therefore, this paper investigates a multi-objective scheduling problem in a two-stage
blocking hybrid flow shop with transportation constraints. In multi-objective optimization,
determining objective weights often relies on expert experience or experiments. However,
fixed weights are challenging to adapt in real time to changes in problem states, affecting
the quality of solutions. This paper introduces a Q-learning algorithm based on adaptive
objective selection. The algorithm better adapts to dynamic problem changes, enhancing
solution flexibility and robustness. The detailed contributions of this paper are as follows:

(1) For the problem of modern industrial process manufacturing, due to production pro-
cess requirements, downstream machine congestion can result in upstream blocking,
and the transportation time between upstream and downstream cannot be ignored.
This paper formulates the HFSP with both transportation and blocking constraints.
With the optimization objectives of minimizing the makespan and the total energy
consumption, a two-stage BHFSP model incorporating transportation is established.

Processes 2024, 12, 51

50f 20

(2) We have designed an improved multi-objective Q-learning algorithm to address
this model. Additionally, an adaptive object selection strategy based on t-tests has
been developed for handling multi-objective optimization problems. This strategy
coordinates the selection of different objectives by evaluating the confidence of the
objective functions under the current job and machine state, thus optimizing both
completion time and energy consumption indicators effectively.

The rest of this paper Is organized as follows: Section 2 establishes the mathematical
model of the two-stage BHFSP with transportation times. Section 3 describes the implemen-
tation details of the Q-learning algorithm based on adaptive object selection. In Section 4,
numerical experiments are conducted to demonstrate the effectiveness of the proposed
algorithm. Finally, in Section 5, conclusions are drawn, and future research directions
are proposed.

2. Problem Formulation

The two-stage BHFSP with transportation times can be described as follows: There
are n jobs that need to go through s (s = 1, 2) processing stages, each of which has multiple
identical parallel machines, and each machine is located at a different geographical location.
The processing sequence for all jobs is the same, and each job can be processed on any
machine at each stage. The jobs processed in the first stage are transported to the production
machines in the next stage by the transport vehicles. There is no buffer between stages,
meaning that once a job completes its processing in the previous stage, it can only leave
the machine when the next stage has available machines. The waiting time of the job is
referred to as the blocking time. The objective function is to minimize both the makespan
and the total energy consumption.

We assume that:

(1) Alljobs have arrived at time zero and can begin processing.

(2) There is no limit to the number of transport vehicles that can be used after the job
leaves the first-stage machine.

(38) Once the job begins processing or transporting, it cannot be interrupted.

The parameters and decision variables are defined as follows:

J:setofjobs, J=1{1,2,...,n};

M: set of machines, M; ={1, 2, ..., ms};

jrindexofajob,j=1,2,...,n;

i: index of the first-stage machine, i=1,2, ..., my;

k: index of the second-stage machine, k=1, 2, ..., my;

psj: the processing time of job j at stage s;

ti: the transportation time of the job from machine i to machine k;

SP;: the blocking power of a job on machine i in the first stage per unit of time;

TPj: the transportation power of a job from machine i to machine k per unit of time;

M: the large positive number;

Aj: the arrival time of job j;

Byj: the start time of job j at stage s;

Csj: the completion time of job j at stage s;

Lyj: the leave time of job j in the first stage;

7t: the feasible overall scheduling solution;

tj(7): the transportation time of job j under the scheduling solution 7;

wj(7r): the waiting time of job j before processing in the first stage under the scheduling
solution 7t;

bj(rr): the blocking time of job j on the first-stage machine under the scheduling
solution 7t;

Cinax: the makespan of job j;

TEC: the total energy consumption;

Xij: it is equal to 1 if job j is processed on machine i; otherwise, it is equal to 0;

Yji: it is equal to 1 if job j is processed on machine k; otherwise, it is equal to 0;

Processes 2024, 12, 51

6 of 20

1. Makespan: The factors affecting the completion time of the job include processing
time, transportation time, waiting processing time, and blocking time. The formula is
defined as follows:

minf; = Cmax = max(Cl,...,Cj,...Cn) (1)
C]' = p1]'+P2]‘+t]'(7T)+w]'(7‘[)+b]'(71’) (2)
mq myp
ti(m) =Y) XijYiti 3)
i=1k=1
wj(7) = Byj — A (4)
bi(r) = Lyj — Cyj (5)

where Equation (1) represents the objective function to minimize the makespan. Equation (2)
defines the completion time of job j as the sum of processing time, transportation time,
waiting processing time, and blocking time. Equation (3) represents the transportation
time of job j. Equation (4) defines the waiting processing time of job j before the first stage
as the difference between its start processing time in the first stage and its arrival time.
Equation (5) defines the blocking time of job j on the first-stage machine as the difference
between its leave time on the first-stage machine and its completion time.

2. Total energy consumption: TEC includes blocking energy consumption (ECy), trans-
portation energy consumption (EC;), and processing energy consumption (ECs).
Notably, EC3 for each job is solely dependent on its processing time. Since each stage
is equipped with identical parallel machines, EC3 is not affected by different process-
ing sequences and remains constant. Therefore, Equation (6) shows that minimizing
TEC requires minimizing ECy and EC;. The second objective function is as follows:

minf, = TEC = ECy + ECy (6)
n mp
EC1 =)) (XjjL1j — XiiCyj)SP; @)
j=1i=1
n.omp mp
EC; =Y)) XiYjtyTPy 8)
j=1i=1k=1

where Equation (7) defines EC; as the energy consumed when a job is blocked on a machine.
It is equal to the product sum of the blocking time of the job and the corresponding blocking
power of the machine. Equation (8) defines EC; as the energy consumed when a vehicle
transports a job. It is equal to the product of the transportation time of the job and the
transportation power.

The following mathematical model is established based on the above problems:

min{Cax, TEC} 9)
s.t
my my
Y Xi=1Y Yyp=1Vje]J (10)
i=1 k=1
my
Cij=Bij+) pi;XijVic My,j€] (11)
i=1
ny
Ci=By+ Y pjY k€M, j€] (12)
k=1
Lij+tj(m) =By Vj €] (13)
By > Ly — M2 = X;; — X;5) Vj,j €] (14)

Processes 2024, 12, 51 7 of 20

Clj < Llj vie] (15)
B;j >0Vje] (16)
1,if job j is processed on machine i . .
Xij = { 0 ot]herx]/visf vieMyje] (17)
~_ [1,ifjob jis processed on machine k, .
Vi = { 0, otherwise Vke My, je] (18)

where Equation (9) is the objective function and Equations (10)-(16) are constraints.
Equation (10) represents a job that can only be processed by one machine at each stage.
Equations (11) and (12) define the completion time of a job as the sum of its start process-
ing time and its processing time. Equations (13) and (14) represent blocking constraints.
Equation (13) defines the start processing time of a job in the second stage as the sum of
its transportation time and its leave time in the first stage. Equation (14) represents when
the start time of the latter processing job j on the same machine cannot be shorter than the
leave time of the former processed job j. Equation (15) represents a job that can only leave
after the operation is finished. Equation (16) represents when the start processing time of
a job must be greater than or equal to 0. Equations (17) and (18) represent constraints on
decision variables.

3. Adaptive Objective Selection Q-Learning Algorithm

The two-stage BHFSP model with transportation time established in Section 2 is formu-
lated as a multi-objective mixed-integer programming model. HFSP has been proven to be
an NP-hard problem [43], and due to the complexity of the problem studied in this paper, it
is also NP-hard. Reinforcement learning enables autonomous learning through interaction
between agents and the environment. It can adapt to diverse tasks and environments while
achieving continuous improvement, giving it an advantage in intelligent decision-making
and scheduling. In this section, an adaptive objective selection Q-learning algorithm (AQL)
for solving multi-objective scheduling problems is designed. The confidence of the two
objective functions is computed using a t-test, allowing for a focus on optimizing the object
with the highest confidence.

3.1. Problem Transformation
3.1.1. State

The state feature mainly shows the environmental features of the blocking hybrid flow
shop, including real-time information on machines, jobs, and the waiting processing queues
before the two stages. f; 1 represents the state of job j; f; » represents the working state of
machine i in the first stage; fi 3 represents the working state of machine k in the second
stage; and fs4—f9 represents the environmental state features of the waiting processing
queues. Therefore, this paper studies the two-stage BHFSP with transportation time, and
there are n + mq + my + 11 states in the whole environment. The definitions of various state
features are shown as follows: Q represents the waiting processing queue before the first
stage and Q, represents the processing queue blocked on the machines.

State 1 The five states of the job j.

0, wait for the first stage of machine processing
1, is in the first stage of machine processing
fj,l = —1, is blocking on the machine in the first stage ,j=1,2,...,n (19)
1/2, is in the sec ond stage of machine processing
—1/2, complete the sec ond stage of processing

State 2 The working state of machine 7 in the first stage.

0, the machine i is idle

fi,ZZ{ i:1,2,...,m1 (20)

1, the machine i is busy ’

Processes 2024, 12, 51 8 of 20
State 3 The working state of machine k in the second stage.
0, the machine k is idle
fk3_{ 1, the machine k is busy k=12 m; @b

State 4 The ratio of the number of all jobs in queue Qs to the total number of jobs.

fon = @,s =1,2 (22)

State 5 The ratio of the average processing time of all jobs in queue Qs to the average
processing time of the job on the machine at this stage.

éém] .
fis=—Frv 5 Q1 #0s =12 (23)
17(Qs) jgl psi

State 6 Whether the job with minimum processing time is in queue Q.

0, the job with the minimum processing
fs6 = time is not in queue Qs ,s=1,2 (24)
1, otherwise

State 7 The ratio of the maximum processing time of a job in queue Qs to the maximum
processing time of all jobs.

_%g@w

%%@w

fS,7 7 s = 1/ 2 (25)

State 8 The ratio of the minimum processing time of a job in queue Qs to the maximum

processing time of all jobs.
min(ps;
J€Qs (ps)

fss = 7~
Ijrg\?((psﬂ

s=1,2 (26)

State 9 The ratio of the number of jobs in queue Q, whose processing time in the first
stage exceeds that in the second stage, to the number of jobs in queue Q.

_ 1(JQ1)
S=")

JQ1={Jjlpj > p2j] € Q1 Q1 #0 (27)

3.1.2. Action

The actions are designed based on scheduling rules such as SPT, FCFS, Johnson, etc.
These scheduling rules are primarily adopted to allocate waiting jobs to machines. When
a machine is idle, a job can select it for processing; when a machine is busy, a job cannot
choose that machine. If there are no available machines at a certain moment, the job can
only be blocked at the current stage. Based on this, six actions are set in the first stage and
four actions are set in the second stage, for a total of twenty-four joint actions.

e The First Production Stage

Action 1 SPT: Process the jobs in queue Q; in py; ascending order, selecting the job
with the shortest processing time.

Action 2 LPT: Process the jobs in queue Q; in py; descending order, selecting the job
with the longest processing time.

Action 3 SPT + S50: Process the jobs in queue Qy in py; + poj ascending order, selecting
the job with the shortest total processing time.

Processes 2024, 12, 51

9 of 20

Action 4 LPT + LSO: Process the jobs in queue Q1 in py; + ppj descending order, selecting
the job with the longest total processing time.

Action 5 Johnson—Bellman: Divide the set of jobs in queue Q; into two subsets, SJ;
and SJ,. §J1 contains the set of jobs where py; < py;, and S], contains the remaining jobs.
Then, apply the SPT rule to select jobs from SJ; and the LPT rule to select jobs from SJ5.

Action 6 Select no job: Select this action when there are no jobs in queue Q; or the
machines in the first stage are busy.

e The Second Production Stage

Action 7 SPT: Process the jobs in queue Q, in p,; ascending order, selecting the job
with the shortest processing time.

Action 8 LPT: Process the jobs in queue Q; in p,; descending order, selecting the job
with the longest processing time.

Action 9 FCFS: Process the jobs in queue (; in an ascending order of completion time,
selecting the job that finishes first.

Action 10 Select no job: Select no job: Select this action when there are no jobs in queue
(0, or the machines in the second stage are busy.

3.1.3. Reward

The reward function represents the immediate feedback received after performing
an action in the current state and is usually related to the objective function. Therefore,
rewards based on the makespan and the energy consumption are defined as follows: r}
represents reward 1 obtained at decision moment t and 77 represents reward 2 obtained at

decision moment ¢. They are defined as follows:
=A(t=1) = f() (28)
= fa(t=1) = fo(t) (29)

where f1(t) represents the makespan of the currently processed job at decision moment ¢
and f5(t) represents the energy consumption already generated at decision moment ¢. They
are represented as follows:

f(t) = max{Cy lj € CI(D) } (30)
) =Y Y (XL —XiCij)SPi+ Y Y. Y. XiYVitiTPy 31)
JECI(t) ieMy jeCJ(t) iEM; keMy

where s;(t) represents the number of operations completed on job j at decision moment ¢
and CJ(t) represents the set of jobs processed at decision moment .

Based on the rewards at each decision moment, the cumulative rewards obtained are
as follows:

T T
Ry=) rp=) filt=1)~fi(t) = f1(0) = fi(T) = ~Crmax (32)

t=1 t=1
Ry = Zrt Zfz (t=1) = fo(t) = f(0) = fo(T) = ~TEC (33)
t=1

where T represents the last decision moment when all the jobs have been processed and
f1(T) and f»(T) represent Cmax and TEC, respectively. Since no processing operations have
been performed at the initial moment, f1(0) = f2(0) =0

3.2. Value Function Approximation

The basic idea of the Q-learning algorithm is to guide the agent to make decisions
by learning a Q-value function to maximize long-term cumulative rewards. The Q-value
function Q(s, 4) represents the expected cumulative reward achievable by taking action a in

Processes 2024, 12, 51

10 of 20

state s. To simplify the problem and reduce computational complexity, state discretization
is employed. In this paper, a parameterized approximation approach is used to update the
state-value function by updating the weight of the basis function. The update formula is

as follows:
my+my+n+11

Q(s,a) =) w4 (s) (34)
z=1
where ¢,(s) represents the vector of basis functions in the state space and w7 is the weight
for selecting action a in the current state s,. The normalization of the basis functions is
shown in Equation (35).

f1,1<z<n

fz,z,n—|—1§2§n+m1

fean+m+1<z<n+m+m
frant+my+my+1<z<n+m+my+2

p=(5) =4 fasn+m+my+3<z<n+m+m+4 (35)
fron+my+my+5<z<n+m+m+6
fogon+my+m+7<z<n+m+m+38
fegn+mp+my+9<z<n+m +m+10
fro,z=n+my+my+11

3.3. T-Test-Based Adaptive Objective Selection

Multi-objective reinforcement learning often employs a linear scalarization approach to
address multiple objectives, with the primary challenge lying in determining the objective
weights. In reinforcement learning, objective weights are typically globally fixed and do not
adapt to the dynamically changing problem state space. To address this issue, we integrate
objective weights with the problem state, representing the weights as functions of the state.
By combining t-tests with confidence, we propose an adaptive objective selection strategy.

The basic idea of adaptive objective selection is the parallel estimation of the Q-
function for object 0. When action selection is required, a t-test is employed to calculate the
confidence of the objective function in the current state, determining the objective where the
agent has the highest confidence. As a result, the Q-value of the current object is selected to
make action decisions. By using a t-test to calculate confidence, it is possible to demonstrate
the significant differences in distributions based on each sample. This allows for a more
targeted object selection and weight allocation. The specific steps of the algorithm are
as follows:

Step 1: Select x = 10 most recently observed r° + maxQ(s’, 4, 0) and add them to the
sample set SA,.

Step 2: Calculate the confidence levels of each objective function using a f-test. The
calculation formula is as follows:

Xo — Q(s,a0,0)
%

ty = L0 € [1,24] (36)

where ¥, is the mean of samples in SA, and g, is the standard deviation of samples in SA,.
Find p, in the T-bound table with confidence level 1-p,.

Step 3: Put the confidence level 1-p, of all objective functions at state s into the set c,,
and the expression is as follows:

co = confidence((s,a1,0),...,(s,a24,0)) (37)

Step 4: Define y,(s) as the weight of the o-th objective function at state s. Select the
objective function with the highest confidence level.

1o (5) = {1 if o = argmaxc, (38)

0 else

Processes 2024, 12, 51

11 of 20

Step 5: Select an action based on the objective function with the highest confidence level.

3.4. Algorithm Framework

The visualization in Figure 2 shows the specific implementation process of the algo-
rithm. The scheduling system is in the initial state sy at the start of the processing time. At
this point, all jobs are in the waiting processing queue Qj, and all machines are idle. Then,
an action is selected based on the e-greedy strategy, which involves selecting a job from
queue Q; and an idle machine from the first stage for processing until either the set of idle
machines or the set of jobs in queue Q1 becomes empty. Following this, the blocking queue
;> and the set of idle machines before the second stage are evaluated. If they exist, the
machine and the job are selected based on the actions. The scheduling system reaches the
termination state s, where all processing queues are empty and all jobs have been handled,
resulting in a scheduling solution.

e-greedy strategy

Execute the action of the Execute the action of the
‘} first stage 4 second stage
Fm— = — = 2 EEmemetee== 1
| |
| Blocking qu eueQz: : :
| E—— |
| | (I | : ————————————— 1
|]] I | | | |
|| machinel A I I machinel | Processing ! |:| |:| |:| I
Waiting for processing | —0—:- | : | completed : :
o dmeee@h | I 1 _]—! ! > ! |
| : machine2 : A | : _ | machine2 ! I |:| |:| |:| |
A A A e | | |
| | | | [[: | |
- | T T | | | ! D |
: machinerm: : A : I : machinem> | | : :
| C__T | ' L T
L |) e 1
S finfisfisfi fin fifisfosfosfusfor, oo
l | Scheduling environment
State Reward =AED-A®

7
 / 72 =HE-D—£®)

Q-learning parameter update Adaptive objective selection

w! =w’ +adE ¢, = confidence((s,a,,0),...,(s,a,,,0))
8=r1/(s,,a,,s,,)+ymaxQ(s,,,,4,,,0)—Q(s,,a,,0) Q(s,a,0) © {1,“’0 =argmaxc,
u,(s)=

E=AE(a,)+V ,Q(s,,4,,0) (e

selects the \ J v
bined acti
commmecadion (Q(s,a)=1Q(s,8,1)+112Q(5,2,2))4—@
| Scheduling agent

Figure 2. The specific implementation procedure of the algorithm.

The specific steps of the AQL algorithm are as follows:

Step 1: Initialize parameters.

Step 1.1: Input parameters of the scheduling problem: the number of jobs 1, the
number of machines in the first stage m;, the number of machines in the second stage
1y, the processing time of each job in the two-stage machines py;, the transportation time
between machines t;, the blocking power of the machine in the first stage SP;, and the
transportation power of the transporter TPy.

Step 1.2: Input parameters of the Q-learning algorithm: learning rate «, discount
factor v, greedy factor ¢, decay rate A, and two m; + my + n + 11 dimensional vectors
E@)=(,0,..., O)T, w=(,1,..., 1)T,' max_episode, with the current iteration g = 1.

Step 2: Set the initial time f(and initial state sy, and initialize two Q(s, a) tables.

Processes 2024, 12, 51

12 of 20

Step 3: Utilize a t-test to calculate the confidence of the objective function in the current
state and determine the object 0 where the agent has the highest confidence.

Step 4: Use the e-greedy strategy, where we obtain a probability of ¢ to randomly select
an action and a probability of 1 — ¢ to select the action with the highest Q-value from the
Q-table.

Step 5: Confirm the state transition time, calculate the reward, and update the Q-table.
The reward r(s, a, st+1) is gained by taking action a; from state s; to s;,1, then updating the
basis function weights w,?, hence updating the Q-table. The update process is as follows:

w? = w} + adE (39)
5 =r1{(st,at,8t41) + ymaxQ(sty1,ar41,0) — Q(st, at,0) (40)
E=)\E(ﬂt) + ngQ(St, ag, 0) (41)

Step 6: If the number of jobs that the machine processed in the second stage < 1, return
to Step 3; otherwise, execute Step 7.

Step 7: If the current iteration number < max_episode, g = g + 1, return to Step 2;
otherwise, the algorithm is terminated.

4. Numerical Experiments
4.1. Experimental Environment and Parameter Setting

To validate the effectiveness of the Q-learning algorithm, we designed the following
instances for simulation analysis. The experiments are carried out on an Intel(R) Core(TM)
i5-7200U CPU 2.50 GHz processor, 20 GB RAM, PyCharm2017.3.2 compiler, and python3.7
interpreter software.

The parameter settings are as follows: n =15, m; =2, mp =3, Psj and tj; are generated
at random between [1, 50], and SP; and TPj; are generated at random between [1, 10].

The initial parameter settings for the AQL algorithm, including «, v, €, and A, are
shown in Table 1. These NP values are obtained using an orthogonal experiment conducted
according to the Lo(3%) rule.

Table 1. The initial parameter level table.

14 0% £ A
K1 0.001 0.1 0.01 0.1
K2 0.1 0.9 0.1 0.5
K3 0.9 0.99 0.2 0.9

Table 2 shows the values of the two objective functions for nine different parameter
selections. The performance of the proposed model is evaluated using the Normalized
Performance (NP). A smaller NP indicates better performance. The definition of NP is
as follows:

C — minMC TEC — minMT
Np = —=& : } (42)
maxMC — minMC maxMT — minMT
Table 2. Orthogonal experimental results.

No [0% € A Cmax TEC NP
1 0.001 0.1 0.01 0.1 276 1548 1.84
2 0.001 0.9 0.1 0.5 268 1396 0.56
3 0.001 0.99 0.2 0.9 268 1396 0.56
4 0.1 0.1 0.1 0.9 266 1502 0.87
5 0.1 0.9 0.2 0.1 264 1380 0.18
6 0.1 0.99 0.01 0.5 271 1566 1.54
7 0.9 0.1 0.2 0.5 263 1538 0.80
8 0.9 0.9 0.01 0.9 276 1584 2.00
9 0.9 0.99 0.1 0.1 269 1356 0.46

Processes 2024, 12, 51

13 of 20

In Equation (42), MC represents the set of all Cryax values and MT represents the set of
all TEC values.

Upon summarizing the results from Table 2, for o« = 0.001, the K1 result is the sum
of the total NP when the parameter is set to 0.001. The summarized results are shown in
Table 3.

Table 3. NP values of parameters.

o 0% € A
K1 2.96 3.51 5.38 2.49
K2 2.59 2.74 1.89 2.89
K3 3.26 2.56 1.54 3.43
optimal 0.1 0.99 0.2 0.1

Note: The bolded values in the table represent the best results.

From Table 3, the minimum values are & = 2.59, v = 2.56, ¢ = 1.54, and A = 2.49. The
final parameter values obtained are « =0.1, ¥ =0.99, e =0.2,and A = 0.1.

Figure 3 shows the convergence of the objective value when the algorithm iterates
up to 1000 generations under the above experimental parameters. It can be seen that the
algorithm tends to converge around the 200th iteration. Hence, for this experiment, a
maximum of 200 iterations is chosen.

2.0

Object

T T T T
0 200 400 600 800 1000
Generation

Figure 3. Graph of AQL algorithm convergence.

4.2. Experimental Results and Analysis

To validate the effectiveness of the model and the algorithm, experiments are con-
ducted with the machine set to m; =2 and m; =3 and the job setton =4 and n = 6. As
shown in Table 4, the two objective function values for this problem are obtained using the
Gurobi solver and the AQL algorithm. Notably, a computation time limit of 1800 s is set for
the Gurobi solver.

As we can see, when 1 = 4, Gurobi finds the optimal solution in less than 1 s. For
n =7, it consumes a significantly longer computation time, close to 1195 s. For n = 8, the
computation time has already reached its limit, and an optimal solution cannot be achieved.
The proposed AQL algorithm performs less effectively than the Gurobi solver in solving
the first objective value. However, as the problem scale increases, the performance between
AQL and Gurobi narrows. More importantly, AQL has a much lower computation time
compared to the Gurobi solver. Therefore, as the instance scale increases, AQL can provide
optimal solutions in a shorter time compared to the Gurobi solver.

Processes 2024, 12, 51

14 of 20

Table 4. The calculation results of objective function values and CPU time for small-scale instances.

Gurobi AQL

Job

Crmax TEC T/s Cmax TEC T/s
n=4 97 354 0.78 118 354 0.57
n=>5 110 540 5.22 122 440 1.74
n==6 122 560 60 129 474 1.78
n=7 145 644 1195 149 542 2.60
n=28 — — 1800 170 696 3.62

Note: The bolded values in the table represent the best results.

Experiments are conducted with n = 30 in three sets of machine: m; =3, my =5, my =5,
my =5; and my =7, mp = 5. Table 5 shows the scheduling solutions obtained by the AQL
algorithm for these three sets of experimental scales. Figures 4-6 show the corresponding
scheduling Gantt charts, where the black areas represent the blocked portions.

Table 5. Scheduling solution and object values.

Machine Scheduling Solution Cmax TEC

[26,10, 19,17, 12, 30, 3, 22, 4, 8, 29], [25, 23, 5, 27, 21, 20,
7,13,9, 18], [2, 15, 16, 24, 11, 6, 28, 14, 1]
[26,27,21,20,7,22,9,18], [25, 15, 24, 30, 3, 4, 8, 29], [2,
17,6,28,1],[23,5, 19, 12, 13], [10, 16, 11, 14]

[23, 5,27, 24,13, 29], [26, 6, 11, 17, 30, 14, 9], [25, 12, 21,
28,8], 2,15, 16, 7, 1], [10, 19, 22, 20, 3, 4, 18]
[26,15,16,7,1,18],[23, 5, 6, 22, 21, 3, 8], [25, 19, 20, 13],
[10, 12, 27, 30, 28, 14, 9], [2, 11, 17, 24, 4, 29]

[26, 23, 16,7, 4], [25, 5,29, 20, 8], [2, 3, 17, 28], [10, 19, 21,
13],[11, 9, 12, 18], [6, 27, 30, 1], [22, 15, 24, 14]

[26, 23,19, 12, 30], [25, 6, 3, 17, 7, 18, 1], [10, 27, 24, 14],
[2,22,9,15,20,28,13],[11, 5,29, 16, 21, 8, 4]

my=3,my=5 325 2218

247 2838

mq =5,1’I12=5

my=7,my=5 237 3515

v T M) 0 ew o=

= jl0 3 J20
e |0 I I =k =
=m 17 ==)13
-5 Bl WE1 1 ==
) 30 @3)18
g _ -3 w2
s O] M DHMEBID (20 =5
(]
==y [B

M1-3)25 w6
mE 23 = 28
| == 5 O 14

mm 27)

M1 -2

= 4 16
C10 HE 1T = =
/= 29 C)11
30 60 90 120 150 180 210 240 270 300 330
Time

M1 -1

0

Figure 4. Gantt chart of optimal scheduling for m; =3, my = 5.

Figures 4-6 show that the performance of the AQL algorithm is influenced by different
production configurations. As the number of machines increases in the first stage, the
blocking time also increases, leading to higher TEC. Therefore, in real-world production
environments, it is possible to reduce the risk of job blocking and improve the efficiency
and stability of production by designing the layout of the production line.

Processes 2024, 12, 51

15 of 20

M2 -5
e 23 21
M2 -4 ==)5 w28
= 27 = 8
M2 -3 [24 w2
==)13 3)15
o a2 =29 w16
k= N 26 @ 7
5 M2 -1 . 6 [}t
2‘“ M1—5 D J11 == J10

=m J17 =3)19
)30 mm 22
O3 14 3 20
== jo w3
O 25 = 4
e 12 = 18

. 26 [19
- 23 w21
= jl6 [13
=m)7 31
=4 =)
O 25 @ 12
s I T s T
O3 29 = J6
O 20 @ 27
mm 8 3 J30
-2 =l
-3 .22
= 17 315
== 28 == 24
== Jl0 3 4

Figure 6. Gantt chart of optimal scheduling for m; =7, my = 5.

4.3. Experimental Comparison

To further validate the effectiveness of the algorithm, the performance of the AQL
algorithm is compared with individual scheduling rules at different experimental scales.
Furthermore, comparative analyses are conducted for AQL between Q-learning and NSGA-
II, where the Q-learning algorithm linearly weights multiple objective functions as rewards
for solving the problem.

Tables 68 show the comparative results of the two objective function values obtained
by the AQL algorithm and individual scheduling rules at different machine scales, where
n is set to 15, 30, 50, and 100, respectively. Figure 7 shows the comparison graph of the
frequency of selecting different actions under different machine scales when AQL solves
n =15.

From Tables 6-8, it is evident that in 92% of the test instances, AQL consistently
achieves lower makespan and TEC. Compared to individual heuristic rules, AQL shows an
average improvement in Cpmax values ranging from a maximum of 21.2% to a minimum of
7.4%. Similarly, for TEC values, AQL demonstrates an average improvement ranging from
a maximum of 37.4% to a minimum of 13.5%. This indicates that AQL can consistently find
scheduling rules that result in better objective values at different scales. From the results
with the superscript (*), it is apparent that the worst outcomes are evenly distributed across
rules other than the SPT + SSO in the first stage. That is, none of the results obtained under
the SPT + SSO rule are the worst. Combined with Figure 7, we can see that AQL selects the
SPT + SSO rule significantly more often than other scheduling rules. It shows that AQL can
find the scheduling rule that makes the objective value better at each decision point.

Processes 2024, 12, 51 16 of 20
Table 6. Comparison of objective functions of different algorithms for my =3, mp = 5.
n=15 n =30 n=>50 n =100
No. Rule
Cmax TEC Cmax TEC Cmax TEC Crmax TEC

R1 SPT-SPT 231* 1843 388 3461 615 5551 1236 11,585
R2 SPT-LPT 231 * 1843 374 3584 629 5379 1196 11,402
R3 SPT-FCFS 231* 1843 388 3461 629 5379 1207 11,789 *
R4 LPT-SPT 213 1791 390 * 3380 656 * 6205 1185 10,028
R5 LPT-LPT 214 1923 376 3289 650 5520 1235 11,638
R6 LPT-FCFS 213 1791 384 3617 651 6212 1250 * 11,557
R7 SPT + SSO-SPT 214 1696 363 2398 586 5962 1181 11,277
R8 SPT + SSO-LPT 214 1696 363 2398 577 5647 1178 10,478
R9 SPT + SSO-FCFS 214 1696 363 2398 586 5962 1178 10,466
R10 LPT + LSO-SPT 196 2097 * 356 2979 553 5611 1165 11,329
R11 LPT + LSO-LPT 196 2097 * 344 3402 574 5780 1141 10,670
R12 LPT + LSO-FCFS 196 2097 * 356 2979 557 5701 1132 11,029
R13 Johnson-SPT 194 1780 364 3653 * 575 5730 1186 10,041
R14 Johnson-LPT 194 1780 364 3653 * 591 6418 1183 11,526
R15 Johnson-FCFS 194 1780 364 3653 * 577 6492 * 1204 11,083
R16 AQL 159 954 325 2218 511 4059 1098 8483

Note: The bolded values in the table represent the best results, and the values marked with (*) represent the

worst results.

Table 7. Comparison of objective functions of different algorithms for m; =5, my = 5.

n=15 n =30 n =50 n =100
No. Rule
Cmax TEC Cmax TEC Crmax TEC Cmax TEC

R1 SPT-SPT 222 2248 317 4367 506 8006 1014 16,707
R2 SPT-LPT 222 2248 286 4215 542 8552 1026 17,178
R3 SPT-FCFS 222 2248 317 4367 541 8332 996 15,915
R4 LPT-SPT 220 2837 323 4124 553 8987 1020 17,465
R5 LPT-LPT 216 2884 327 * 4767 * 547 8913 1031 17,606
R6 LPT-FCFS 224 % 3364 * 322 4648 567 * 9078 1042 * 17,655
R7 SPT + SSO-SPT 180 1930 309 3952 514 7996 1025 16,060
R8 SPT + SSO-LPT 180 1930 283 3291 525 8634 970 15,731
R9 SPT + SSO-FCFS 180 1930 309 3952 526 8392 1018 15,741
R10 LPT + LSO-SPT 186 2665 311 4208 513 8758 1018 17,777
R11 LPT + LSO-LPT 186 2665 303 4276 523 8900 1000 16,819
R12 LPT + LSO-FCFS 186 2665 287 3894 520 9389 * 994 17,155
R13 Johnson-SPT 168 2457 283 4043 470 8022 1026 18,701 *
R14 Johnson-LPT 168 2457 291 4496 491 9242 1026 18,555
R15 Johnson-FCFS 168 2457 291 3957 491 9242 1000 17,756
R16 AQL 151 1653 247 2838 440 7327 936 14,899

Note: The bolded values in the table represent the best results, and the values marked with (*) represent the
worst results.

To validate the advantages of the AQL algorithm in solving multi-objective problems,
the performance of AQL is compared with NSGA-II and the Q-learning algorithm, re-
spectively. Table 9 shows the comparative results of the objective function values for each
algorithm at different scales.

Table 9 presents the experimental results comparing AQL with NSGA-II and Q-
learning algorithms. The experimental results indicate that, compared to the Q-learning
algorithm, the AQL algorithm achieves lower Crmax values in 66.7% of the test instances
when n = 15 and n = 30. As the number of jobs increases, both objective function values
under the AQL algorithm outperform the Q-learning algorithm. This suggests that linearly
weighting multiple objective functions as rewards is subjective. Compared to the NSGA-II,
the Cnmax values, on average, improved by 22.7%, and the TEC values increased by an aver-

Processes 2024, 12, 51

17 of 20

age of 9.8%. In summary, the AQL algorithm significantly outperforms both Q-learning
and NSGA in solving multi-objective problems, demonstrating its superiority.

Table 8. Comparison of objective functions of different algorithms for m; =7, mp = 5.

n=15 n=30 n=>50 n =100
No. Rule
Cmax TEC Cmax TEC Cmax TEC Cmax TEC
R1 SPT-SPT 218 * 3119 280 5624 496 10,688 1032 23,859
R2 SPT-LPT 218 * 3119 261 5464 486 10,571 1014 24,350
R3 SPT-FCFS 218 * 3119 280 5624 510 11,360 1005 22,438
R4 LPT-SPT 212 3501 307 5256 559 * 12,694 * 1077 * 25,128
R5 LPT-LPT 212 3458 307 5914 551 11,466 1048 23,694
R6 LPT-FCFS 212 3501 313 5737 551 11,466 1067 23,831
R7 SPT + SSO-SPT 179 2382 258 3945 475 9553 1061 24,597
R8 SPT + SSO-LPT 202 2689 296 5217 499 10,796 1048 25,348
R9 SPT + SSO-FCFS 202 2689 260 4155 457 8329 1025 23,356
R10 LPT + LSO-SPT 190 3729 312 6512 521 12,498 1049 26,380 *
R11 LPT + LSO-LPT 190 3729 327 * 7087 510 11,741 1075 25,628
R12 LPT + LSO-FCFS 190 3729 327 * 7601 * 510 11,741 1050 25,382
R13 Johnson-SPT 190 3803 271 5192 481 10,031 1008 25,046
R14 Johnson-LPT 201 3905 * 286 5707 492 11,569 994 22,842
R15 Johnson-FCFS 201 3905 * 271 5192 482 11,593 991 22,391
R16 AQL 177 1937 237 3515 455 9238 872 19,876
Note: The bolded values in the table represent the best results, and the values marked with (*) represent the
worst results.
1750 1wl my=3,my=5
my=5nn=5
1500 { = Mm=7,my=5
1250
E 1000
£
z
750 +
500
250 4
SPT1 LPT1 SPT+5SOLPT+LSQ Johnson SPT2 LPT2 FCFS
Action
Figure 7. Comparison chart of action selection frequency.
Table 9. Comparison of objective functions for different multi-objective algorithms.
NSGA-II Q-Learning AQL
No. Job Machine
Cmax TEC Cmax TEC Cmax TEC
R1 n=15 my =3, =5 21 1330 161 1221 159 954
R2 n=15 my=5my;=>5 165 2070 151 1661 151 1653
R3 n=15 my=7,mp = 149 2000 168 2115 177 1937
R4 n =30 my=3,mpy=5 410 2846 321 2359 325 2218
R5 n =230 my=5mp=>5 254 3117 271 3215 247 2838
R6 n=30 m=7,my=5 239 3547 243 3895 237 3515
R7 n =50 my=3,mp=>5 704 4503 547 4527 511 4059
R8 n=>50 my=5,m =5 445 7413 466 7403 440 7327
R9 n =50 my=7,my=>5 456 10,187 475 9806 455 9238
R10 n =100 my=3,my=5 1356 9586 1132 9457 1098 8483
R11 n =100 my=5,mp=5 983 15,037 973 14,945 936 14,899
R12 n =100 my=7,mp=>5 913 20,223 945 20,472 872 19,876

Note: The bolded values in the table represent the best results.

Processes 2024, 12, 51 18 of 20

5. Conclusions

This paper, set against the backdrop of a steel manufacturing enterprise, focuses
on the various production processes and material transportation. Due to the stringent
temperature requirements of materials, we specifically investigated the two-stage BHFSP
with transportation times. It formulates a multi-objective scheduling model with the
objective of minimizing both the makespan and the total energy consumption. We designed
the AQL algorithm to solve the model. Nine state features were designed based on real-time
information about jobs, machines, and waiting processing queues in the blocked hybrid
flow shop environment. Ten actions were formulated based on heuristic rules like SPT,
FCFS, and Johnson. We proposed an adaptive objective selection strategy based on t-tests,
wherein the algorithm calculates confidence to determine the most confident goal for the
current action selection without relying on the fixed objective weights. Simulation analyses
were conducted at different experimental scales, comparing single scheduling rules, the
Q-learning algorithm, and NSGA-II. The experimental results demonstrate that the AQL
algorithm can achieve optimal scheduling solutions in 92%, 83.3%, and 91.7% of the test
instances, respectively. This research helps to optimize the production and transportation
processes in process industries, reducing the impact of blocking and transportation time
on completion time, and improving resource utilization. Additionally, this approach
allows enterprises to consume less energy in terms of blocking and transportation. This is
consistent with the research direction of green manufacturing mode in modern production.

The problem studied in this paper does not consider the number and capacity limita-
tions of transportation vehicles. Future research can explore the coordination of production
and transportation scheduling problems in multi-processing stage blocking hybrid flow
shop environments when transportation resources are constrained.

Author Contributions: Conceptualization, K.X.; methodology, C.Y. and K.X.; software, C.Y. and
W.S,; validation, K.X. and H.G.; formal analysis, H.G. and W.S,; resources, W.S.; data curation, C.Y,;
writing—original draft preparation, C.Y.; writing—review and editing, K.X.; super-vision, K.X;
project administration, H.G.; funding acquisition, H.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Project of Liaoning BaiQianWan Talents Program under
Grand No. 2021921089, the Science Research Foundation of Educational Department of Liaoning
Province under Grand No. LJKQZ2021057 and LJKZ2060, and the Liaoning Province Xingliao Talents
Plan project under Grant No. XLYC2006017.

Data Availability Statement: All data from the experiments are included in this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Cheng, Q. Liu, C.; Chu, H;; Liu, Z.; Zhang, W.; Pan, J. A New Multi-Objective Hybrid Flow Shop Scheduling Method to Fully
Utilize the Residual Forging Heat. IEEE Access 2020, 8, 151180-151194. [CrossRef]

2. Wardono, B; Fathi, Y. A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities. Eur. J.
Oper. Res. 2004, 155, 380—401. [CrossRef]

3. Du,S,; Zhou, W,; Wu, D.; Fei, M. An effective discrete monarch butterfly optimization algorithm for distributed blocking flow
shop scheduling with an assembly machine. Expert Syst. Appl. 2023, 225, 120113. [CrossRef]

4. Miyata, H.H.; Nagano, M.S.; Gupta,].N.D. Solutions methods for m-machine blocking flow shop with setup times and preventive
maintenance costs to minimise hierarchical objective-function. Int. J. Prod. Res. 2023, 61, 6308-6335. [CrossRef]

5. Cheng, C.-Y,; Pourhejazy, P; Ying, K.-C.; Huang, S.-Y. New benchmark algorithm for minimizing total completion time in blocking
flowshops with sequence-dependent setup times. Appl. Soft Comput. 2021, 104, 107229. [CrossRef]

6. Zhao, F;; Shao, D.; Wang, L.; Xu, T.; Zhu, N.; Jonrinaldi. An effective water wave optimization algorithm with problem-specific
knowledge for the distributed assembly blocking flow-shop scheduling problem. Knowl.-Based Syst. 2022, 243, 108471. [CrossRef]

7. Niu, W, Lj, J. A two-stage cooperative evolutionary algorithm for energy-efficient distributed group blocking flow shop with
setup carryover in precast systems. Knowl.-Based Syst. 2022, 257, 109890. [CrossRef]

8. Zhao, F.; Xu, Z.; Bao, H.; Xu, T.; Zhu, N.; Jonrinaldi. A cooperative whale optimization algorithm for energy-efficient scheduling

of the distributed blocking flow-shop with sequence-dependent setup time. Comput. Ind. Eng. 2023, 178, 109082. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3017239
https://doi.org/10.1016/S0377-2217(02)00873-1
https://doi.org/10.1016/j.eswa.2023.120113
https://doi.org/10.1080/00207543.2022.2127959
https://doi.org/10.1016/j.asoc.2021.107229
https://doi.org/10.1016/j.knosys.2022.108471
https://doi.org/10.1016/j.knosys.2022.109890
https://doi.org/10.1016/j.cie.2023.109082

Processes 2024, 12, 51 19 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Bao, H.; Pan, Q.; Ruiz, R.; Gao, L. A collaborative iterated greedy algorithm with reinforcement learning for energy-aware
distributed blocking flow-shop scheduling. Swarm Evol. Comput. 2023, 83, 101399. [CrossRef]

Nagano, M.; Takano, M.; Robazzi,]. A branch and bound method in a permutation flow shop with blocking and setup times. Int.
J. Ind. Eng. Comput. 2022, 13, 255-266. [CrossRef]

Wang, Y.; Wang, Y.; Han, Y. A Variant Iterated Greedy Algorithm Integrating Multiple Decoding Rules for Hybrid Blocking Flow
Shop Scheduling Problem. Mathematics 2023, 11, 2453. [CrossRef]

Qin, H.-X,; Han, Y.-Y.;; Zhang, B.; Meng, L.-L.; Liu, Y.-P; Pan, Q.-K.; Gong, D.-W. An improved iterated greedy algorithm for the
energy-efficient blocking hybrid flow shop scheduling problem. Swarm Evol. Comput. 2022, 69, 100992. [CrossRef]

Shao, Z.; Shao, W.; Pi, D. LS-HH: A learning-based selection hyper-heuristic for distributed heterogeneous hybrid blocking
flow-shop scheduling. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 111-127. [CrossRef]

Missaoui, A.; Boujelbene, Y. An effective iterated greedy algorithm for blocking hybrid flow shop problem with due date window.
RAIRO-Oper. Res. 2021, 55, 1603-1616. [CrossRef]

Aqil, S.; Allali, K. Two efficient nature inspired meta-heuristics solving blocking hybrid flow shop manufacturing problem. Eng.
Appl. Artif. Intell. 2021, 100, 104196. [CrossRef]

Qin, H.-X.; Han, Y.-Y;; Chen, Q.-D.; Li,].-Q.; Sang, H.-Y. A double level mutation iterated greedy algorithm for blocking hybrid
flow shop scheduling. Control Decis. 2022, 37, 2323-2332.

Zhao, F-Q.; Du, S.-L.; Cao, J.; Tang, J.-X. Study on distributed assembly blocking flow shop scheduling algorithm. J. Huazhong
Univ. Sci. Technol. (Nat. Sci. Ed.) 2022, 50, 138-142+148.

Wang, Y.; Jia, Z.; Zhang, X. A hybrid meta-heuristic for the flexible flow shop scheduling with blocking. Swarm Evol. Comput.
2022, 75,101195. [CrossRef]

Feng, Y.; Kong, J. Multi-Objective Hybrid Flow-Shop Scheduling in Parallel Sequential Mode While Considering Handling Time
and Setup Time. Appl. Sci. 2023, 13, 3563. [CrossRef]

Lei, D.; Su, B. A multi-class teaching-learning-based optimization for multi-objective distributed hybrid flow shop scheduling.
Knowl.-Based Syst. 2023, 263, 110252. [CrossRef]

Geng, K,; Wu, S,; Liu, L. Multi-objective re-entrant hybrid flow shop scheduling problem considering fuzzy processing time and
delivery time. J. Intell. Fuzzy Syst. 2022, 43, 7877-7890. [CrossRef]

Wu, X; Cao, Z. An improved multi-objective evolutionary algorithm based on decomposition for solving re-entrant hybrid flow
shop scheduling problem with batch processing machines. Comput. Ind. Eng. 2022, 169, 108236. [CrossRef]

Wang, J.; Wang, L.; Cai, J.; Li, J.; Su, X. Solution Algorithm of Multi-objective Hybrid Flow Shop Scheduling Problem. . Nanjing
Univ. Aeronaut. Astronaut. 2023, 55, 544-552.

Song, C. Improved NSGA-II algorithm for hybrid flow shop scheduling problem with multi-objective. Comput. Integr. Manuf.
Syst. 2022, 28, 1777-17889.

Lei, D.-M.; Wang, T. An improved shuffled frog leaping algorithm for the distributed two-stage hybrid flow shop scheduling.
Control Decis. 2021, 36, 241-248.

Song, C. A hybrid multi-objective teaching-learning based optimization for scheduling problem of hybrid flow shop with
unrelated parallel machine. IEEE Access 2021, 9, 56822-56835. [CrossRef]

Li, P; Xue, Q.; Zhang, Z.; Chen, Z.; Zhou, D. Multi-objective energy-efficient hybrid flow shop scheduling using Q-learning and
GVNS driven NSGA-IL. Comput. Oper. Res. 2023, 159, 106360. [CrossRef]

Wang, Y.; Wang, S.; Li, D.; Shen, C.; Yang, B. An improved multi-objective whale optimization algorithm for the hybrid flow shop
scheduling problem considering device dynamic reconfiguration processes. Expert Syst. Appl. 2021, 174, 114793.

Cui, H,; Li, X.; Gao, L.; Zhang, C. Multi-population genetic algorithm with greedy job insertion inter-factory neighbourhoods for
multi-objective distributed hybrid flow-shop scheduling with unrelated-parallel machines considering tardiness. Int. J. Prod. Res.
2023, 1-19. [CrossRef]

Wang, J.; Li, X.; Zhu, X. Intelligent dynamic control of stochastic economic lot scheduling by agent-based reinforcement learning.
Int. J. Prod. Res. 2012, 50, 4381—4395. [CrossRef]

Zhang, Z.; Zheng, L.; Li, N.; Wang, W.; Zhong, S.; Hu, K. Minimizing mean weighted tardiness in unrelated parallel machine
scheduling with reinforcement learning. Comput. Oper. Res. 2012, 39, 1315-1324. [CrossRef]

Lee, J.-H.; Kim, H.-J. Reinforcement learning for robotic flow shop scheduling with processing time variations. Int. J. Prod. Res.
2022, 60, 2346-2368. [CrossRef]

Zhao, E; Zhang, L.; Cao,]J.; Tang, J. A cooperative water wave optimization algorithm with reinforcement learning for the
distributed assembly no-idle flowshop scheduling problem. Comput. Ind. Eng. 2021, 153, 107082. [CrossRef]

Zhang, C.; Song, W.; Cao, Z.; Zhang,].; Tan, P.S.; Chi, X. Learning to dispatch for job shop scheduling via deep reinforcement
learning. Adv. Neural Inf. Process. Syst. 2020, 33, 1621-1632.

Li, Z.; Wei, X; Jiang, X.; Pang, Y. A kind of reinforcement learning to improve genetic algorithm for multiagent task scheduling.
Math. Probl. Eng. 2021, 2021, 1796296. [CrossRef]

Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

Zhang,].; Cai, J]. A Dual-Population Genetic Algorithm with Q-Learning for Multi-Objective Distributed Hybrid Flow Shop
Scheduling Problem. Symmetry 2023, 15, 836. [CrossRef]

https://doi.org/10.1016/j.swevo.2023.101399
https://doi.org/10.5267/j.ijiec.2021.10.003
https://doi.org/10.3390/math11112453
https://doi.org/10.1016/j.swevo.2021.100992
https://doi.org/10.1109/TETCI.2022.3174915
https://doi.org/10.1051/ro/2021076
https://doi.org/10.1016/j.engappai.2021.104196
https://doi.org/10.1016/j.swevo.2022.101195
https://doi.org/10.3390/app13063563
https://doi.org/10.1016/j.knosys.2023.110252
https://doi.org/10.3233/JIFS-221089
https://doi.org/10.1016/j.cie.2022.108236
https://doi.org/10.1109/ACCESS.2021.3071729
https://doi.org/10.1016/j.cor.2023.106360
https://doi.org/10.1080/00207543.2023.2262616
https://doi.org/10.1080/00207543.2011.592158
https://doi.org/10.1016/j.cor.2011.07.019
https://doi.org/10.1080/00207543.2021.1887533
https://doi.org/10.1016/j.cie.2020.107082
https://doi.org/10.1155/2021/1796296
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.3390/sym15040836

Processes 2024, 12, 51 20 of 20

38.

39.

40.

41.

42.

43.

Cheng, L.; Tang, Q.; Zhang, L.; Zhang, Z. Multi-objective Q-learning-based hyper-heuristic with Bi-criteria selection for energy-
aware mixed shop scheduling. Swarm Evol. Comput. 2022, 69, 100985. [CrossRef]

Chang, J.; Yu, D.; Zhou, Z.; He, W.; Zhang, L. Hierarchical Reinforcement Learning for Multi-Objective Real-Time Flexible
Scheduling in a Smart Shop Floor. Machines 2022, 10, 1195. [CrossRef]

Li, R.; Gong, W,; Lu, C. A reinforcement learning based RMOEA /D for bi-objective fuzzy flexible job shop scheduling. Expert
Syst. Appl. 2022, 203, 117380. [CrossRef]

Yuan, J.-L.; Chen, M.-C,; Jiang, T.; Li, C. Multi-objective reinforcement learning job scheduling method using AHP fixed weight in
heterogeneous cloud environment. Control Decis. 2022, 37, 379-386.

Wu, X,; Yan, X. An Improved Q Learning Algorithm to Optimize Green Dynamic Scheduling Problem in a Reentrant Hybrid
Flow Shop. J. Mech. Eng. 2022, 58, 246-259.

Wang, M.Y.; Sethi, S.P.; van de Velde, S.L. Minimizing makespan in a class of reentrant shops. Oper. Res. 1997, 45, 702-712.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.swevo.2021.100985
https://doi.org/10.3390/machines10121195
https://doi.org/10.1016/j.eswa.2022.117380
https://doi.org/10.1287/opre.45.5.702

	Introduction
	Problem Formulation
	Adaptive Objective Selection Q-Learning Algorithm
	Problem Transformation
	State
	Action
	Reward

	Value Function Approximation
	T-Test-Based Adaptive Objective Selection
	Algorithm Framework

	Numerical Experiments
	Experimental Environment and Parameter Setting
	Experimental Results and Analysis
	Experimental Comparison

	Conclusions
	References

