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Abstract: In this paper, the low energy cost synchronization control strategy of Markovian switch-
ing complex systems/networks is mainly studied and analyzed through multiple perspectives. 
Firstly, in order to achieve synchronization of Markovian switching complex networks with low 
energy cost, a control scheme based on the optimal node selection strategy that does not depend on 
the network coupling strength is improved, and a finite-time controller with a simpler structure is 
constructed. Secondly, based on the event-triggered control strategy an effective trigger event is 
designed to achieve the low energy cost synchronization of Markovian switching complex networks 
on the basis of reducing the information transmission and interaction between networks. Finally, 
the two control strategies mentioned in this paper are compared and analyzed from multiple per-
spectives through numerical simulations to better guide practical engineering. 

Keywords: Markovian switching; complex systems/networks; pinning control strategy; event-trig-
gered control strategy 
 

1. Introduction 
Complex systems and networks have received increasing recognition as an im-

portant tool for portraying and understanding real systems, especially in various fields 
such as biology, social systems, and engineering technology. Real systems often suffer 
from unexpected situations during operation, such as sudden changes in the environ-
ment, connection failure of the system, and system failure or maintenance, etc. [1–3]. 
These unexpected situations may cause the network topology to be re-linked, and thus 
the network operation state will be changed. The Markovian switching process can accu-
rately describe such system/network topology switching process, and the system/network 
can be switched from one mode to another by Markov Process, which also coincides with 
the topology changes of the system/network [4–6]. Therefore, the complex network model 
with Markovian switching process gradually attracts the attention of many scholars and 
becomes a hot topic of current research. 

Synchronization is an important class of clustering phenomena among the many dy-
namical behaviors of Markovian switching complex networks and has received more at-
tention [7]. With the increasing standard of practical engineering requirements, the syn-
chronization performance of the network is no longer the only criterion to measure net-
work synchronization, as low control cost and low energy loss have become another con-
cern of practical engineering. The commonly used control strategies are pinning control 
[8], linear (nonlinear) feedback control [9], adaptive control [10], intermittent control [11], 
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impulse control [12], event-triggered control [13], etc. The characteristics of low energy 
consumption and low control cost of pinning control and event-triggered control have 
attracted the attention of many scholars. This paper will analyze the low-energy synchro-
nous control problem of Markovian switching complex networks from multiple perspec-
tives (optimal node selection strategy and event-triggered control strategy), to provide 
some theoretical basis for practical engineering. 

It is well known that the pinning control strategy mainly reduces the control cost of 
the network on the basis of achieving synchronization by controlling a small number of 
nodes. However, how to select the control nodes of the network has been the focus of 
pinning control strategy research. In order to achieve the synchronization of the proposed 
multi-weight network model, an effective pinning controller was proposed in Ref. [14]. 
Same as Ref. [14], Ref. [15] only aims to achieve the synchronization behavior of the net-
work by designing an effective and reliable pinning controller, but the importance of net-
work pinning nodes selection is ignored. The problem of controlled node selection for 
pinning control strategy has been considered in Refs. [16–18], and the authors have pro-
posed effective controlled node selection schemes while using pinning control strategies. 
However, during the Markovian switching complex network synchronization process, the 
performance metrics of each node in the network are dynamically changing, and how to 
track and exert control over these important nodes at each moment must also be consid-
ered. Moreover, the event-triggered control strategy reduces the information transmission 
and interaction between networks mainly through the designed trigger function, thus re-
ducing the cost and energy loss of network control while achieving network synchroniza-
tion [19,20]. Therefore, this paper will establish a node performance measure to track and 
control the important nodes at each moment, thereby achieving network synchronization 
with low energy consumption and low control cost, and better guide practical engineer-
ing. 

Based on the above discussion, this paper mainly analyzes the pinning control (opti-
mal node selection strategy) and event-triggered control strategy through multiple per-
spectives, and studies how to synchronize the network with low energy cost and low con-
trol cost, so as to better provide a theoretical basis for practical engineering. To the best of 
the knowledge of the authors, there are few studies on the node selection problem of pin-
ing control strategy, and there is currently no comparative study on optimal node selec-
tion strategy and event-triggered control strategy. Therefore, this research has certain the-
oretical and practical value. 

This paper aims to achieve Markovian Switching complex network synchronization 
under low energy control cost and gives the basis for using the optimal node selection 
strategy and event-triggered control strategy under different actual conditions. For 
weakly coupling strength medium scale networks, the optimal node selection strategy can 
control less nodes to achieve faster low energy cost synchronization. For large scale net-
works with strong coupling strength, the event-triggered control strategy can achieve low 
energy cost synchronization faster, but requires slightly more nodes to be controlled than 
the optimal node selection strategy. 

The rest of this paper is organized as follows. Some necessary formulas and mathe-
matical models of network are given in Section 2. In Section 3, the control scheme based 
on the optimal node selection strategy is improved, and a controller with a simpler struc-
ture is constructed to achieve network synchronization with low control cost and low en-
ergy consumption. The theoretical proof of finite-time synchronization is given via the 
event-triggered control strategy in Section 4. In Section 5, the advantages and disad-
vantages of the two control methods are discussed through numerical simulations, and 
some conclusions are drawn for practical engineering purposes. Finally, Section 6 con-
cludes the paper. 
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2. Network Models and Mathematical Preliminaries 
In this section, some necessary assumptions and lemmas are given to complete the 

theoretical proof of Sections 3 and 4. 
We define a right-continuous Markovian process {r(t), t ≥ 0} in the complete proba-

bility space (Ω, F, {Ft}t≥0, P), which takes values in the finite state space C = {1, 2, …, m} with 
generator Π = (πpq)m×m(p, q∈C). Define the transition probability (from the p-th mode at time 
t to the q-th mode at time t + ∆t) in the following form: 

π
π

 Δ + Δ ≠+ Δ = = =  + Δ + Δ =

( )  
{ ( ( ) }

1 ( )  
pq

pq

t o t if q p
P r t t q r t p

t o t if q p
 (1) 

where 
→

= >
Δ 0

(Δ )lim 0(Δ 0)
Δt

o t t
t

, and πpq ≥ 0 is the transition rate that satisfies: 

π π
= ≠

= − 
1,

m

pp pq
q q p

 (2) 

Consider a multiple weights Markovian switching complex dynamical network com-
posed of N nodes with stochastic perturbations, in which each node is an n-dimensional 
dynamical system. 

σ ω
= =

= + +

+ = …

 


1

1 1
1

2 2( ) ( , ( )) ( ( ))Γ ( ) ( ( ))Γ ( )

         ( , ( ), ( )) ( ), 1,2, , .

N

i i ij j ij j

i

N

j j

i

x t f t x t c a r t x t c b r t x t

t x t r t t i N
 (3) 

where xi(t) = (xi1(t), xi2(t), …, xin(t))T ∈ Rn is the state vector of node i; f: Rn→Rn is a nonlinear 
vector function on x(t); c1, c2 > 0 denote the coupling strength of the network. Here, Γ1∈Rn×n 
and Γ2∈Rn×n are inner coupling matrices. A(r(t)) = (aij(r(t)))N×N ∈ RN×N and B(r(t)) = (bij(r(t)))N×N ∈ RN×N are the matrices representing the topological structure of the network at time t of 
mode r(t). ( )ω ω ω ω= …1 2( ) ( ), ( ), , ( )

T

nt t t t   is an n-dimensional Brown motion; 

σ ( , ( ), ( ))i it x t r t  is the noisy intensity function, mainly used to describe the interference 
brought by the actual environment to the system. 

The uncoupled node of the network (3) is given by: 

=( ) ( , ( ))s t f t s t  (4) 

Here, the uncoupled node s(t) can be regarded as an isolated node system of the net-
work (3). 

Then, some lemmas and assumptions are given as follow. 

Lemma 1 [21]. Assume that b1, b2, …, bn are positive numbers, and c(0 < c < 1) is a positive 
constant. Then the following inequality holds 

( )+ +…+ ≤ + + +1 2 1 2

c c c c
n nb b b b b b  (5) 

Assumption 1. There exists a non-negative constant ν and a symmetric positive matrix P, for 
∀ ∈( ), ( ) nx t y t R , the nonlinear function f(·) satisfies 

ν− − ≤ − −( ( ) ( )) ( ( , ( )) ( , ( ))) ( ( ) ( )) ( ( ) ( ))T Tx t y t f t x t f t x t x t y t P x t y t  (6) 

Assumption 2. There exists a non-negative constant ρi, and the noise intensity function 
( )σ , ( ), ( )i it e t r t  satisfies the uniform Lipschitz condition, such that 
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( ) ( )σ σ ρ  ≤ , ( ), ( ) , ( ), ( ) ( ( )) ( ) ( )T T
i i i i i i itrace t e t r t t e t r t r t e t e t  (7) 

3. Finite-Time Synchronization of Markovian Switching Complex Networks with 
Low Control Cost and Low Energy Consumption Based on Optimal Nodes Control 
Strategy 

Based on the optimal node control strategy proposed in the previous research of the 
authors [22], combined with the Markovian switching complex network characteristics, 
sorting according to the node importance measurement indicators at different time inter-
vals, some important nodes (nodes with greater impact on system synchronization) are 
selected as controlled nodes, and we then establish network models at different time in-
tervals and design a controller with a simpler structure to achieve synchronization with 
low control cost and low energy consumption. 

The Markovian switching complex network model based on the optimal node selec-
tion strategy in the time interval (tk−1, tk] can be written as 

δσ ω
= =

=

= + +

+ + = …

= + +
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max max max
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1

( ) ( , ( )) ( ( ))Γ ( ) ( ( ))Γ ( )
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j
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t x t r t t u t i o o o l

x t f t x t c a r t x t c b r t

σ ω
=







+









1
( )

          ( , ( ), ( )) ( ),

k
j

k k

N

i i

j
x t
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 (8) 

where ι ι = …max( ), 1,2, ,k ko l  denote the number of control nodes; ( )k
ix t  and ( )k

iu t  are the 
state variables and controller at time tk. 

According to Equations (4) and (8), the state error equation of the i-th node in net-
work at time tk is described as 

= − = …( ) ( ) ( ), 1,2, , .k k
i ie t x t s t i N  (9) 

We then bring (9) into (8), and the synchronization error dynamics system in the time 
interval (tk−1, tk] can be obtained 

σ ω
= =

=

= − + +

+ + = …

= − + +

 









1 1
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e t f t x t f t s t c a r t e c b

σ ω
=










+




2
1

( ))Γ

         ( , ( ), ( )) ( ),

k
j

k k
i i

N

j
r t e

t e t r t t other

 (10) 

Obviously, as the above formula is the error system in the time interval (tk−1, tk], then 
only when the error system (9) converges to zero in a finite time interval k = 1, 2, …, 
∆(∆→∞), can the network (3) achieve finite-time synchronization through the optimal 
node selection strategy. Therefore, it is particularly important to design an efficient con-
troller based on the optimal node selection strategy. 

Theorem 1. Based on optimal node selection strategy, the following controller is designed. 

η ϕ = − − ≠


= =
 = … = … max max max

( ) ( ( )) ( ) ( ( )) ( ( ))| ( )| ,  ( ) 0
( ) 0,  ( ) 0

(1), (2), , ( ), 1,2, Δ

k k k k k k
i i i i i i
k k
i i

k k k k

u t r t e t r t sign e t e t if e t
u t if e t
i o o o l k

 (11) 
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where = …1 2( ( )) { ( ( )), ( ( )), , ( ( ))}k k k k
i i i insign e t diag sign e t sign e t sign e t ; ( )η ( )i r t  and ( )ϕ ( )r t  are pos-

itive constants, r ∈ C. If the following inequalities are formed 

( ) ( )

( )π
=

  + + + + − ⊗ ≤  
  

 − ≤



1

1Ω ˆΛ Θ ( ) Ξ ( ) 0
2

( )

ˆ

( ) 0

N

pq
q

m

A B r t r t I

D q Q p
 (12) 

where =
 

1
( ) ( )ˆ ( )

2

TA r A rA r c  , = ⊗Γ
1( ) ( )A r A r  ; =

 
2

( ) ( )ˆ( )
2

TB r B rB r c  , = ⊗Γ
2( ) ( )B r B r  ; 

( )


ρ ρ
−

=


max1 ( )Θ ( ) { ( ( )),..., ( ( )) ,0,...,0}

k k

k

l N l

o lr t diag r t r t  ; η η
−

= … …
 

max1 ( )Ξ( ( )) { ( ( )), , ( ( )) ,0, ,0}

k k

k

l N l

o lr t diag r t r t  ; 

νΩ = ⊗NI P ; υ= ⊗Λ N pI , 
1

1 ( ( ) ( ))
2

m

p pq
q

D q Q pυ π
=

= − , D(q) is an appropriate positive definite 

matrix, Q(p) is any symmetrical matrix; I is an identity matrix; 
−

= {1,...1,0,...,0}
k kl N l

NI diag . Thus, 
the synchronization of (3) can be achieved within a finite time t∗. 

( )
γ

γμ γ

−
∗ ≤

−

1(0, (0), (0))
2 1

V e rt  (13) 

where σ = min(φ(r(t))); γ = (1 + β)/2; βμ σ λ += (1 )/2min( , / 2 ,1) ,   is an appropriate positive 

constant; 
1

1(0, (0), (0)) (0) (0)
2

N
T
i i

i
V e r e e

=

=  ; ei(0) is the initial condition. 

Proof. In the time interval (tk−1, tk], the following Lyapunov function is constructed: 

1

1( , ( ), ) ( ( )) ( )
2

N
k k k T k

i i
i

V t e t p e t e t
=

=   (14) 

According to the differential operator L [23], the above Lyapunov function can be 
written as 

( )

( )

π

σ σ

= = =

=

= +

+
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1
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Bringing the error system (10) and the controller (11) into the above equation, we 
have 

( ) ( ) { ϕ

η
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+
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i i

i
m
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t e t p t e t p

e t e t

 (16) 

Assuming that the suitable D(q) is a positive definite matrix, and according to As-
sumptions 1 and 2, Equation (16) can be written as: 
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Based on Lemma 1, we can get 

β β
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− = − …
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Then, inequality (17) can be further reduced to 
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β

π ϕ
+
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=
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  ≤ + + + − − ⊗  
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For any suitable dimension matrix Q(p) = QT(p)(p ∈ S), have 
1

( ) 0
m

q
pqQ pπ

=

= . Then de-

note 
1

( ( ) ( ))
2

m

q
p

pqv
D q Q pπ

=

−
= . Therefore, from Lemma 1 we have 
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112
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1
, ( ), ( ) ( ) ( ) ( )2 , ( ),k k T k k k

i i

N

i
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ϕ ϕ
+
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   (20) 

According to (12), denote γ = (1 + β)/2, then taking the expectation on both sides of 
Equation (20), we have 

( ) ( )γ γϕ  ≤ −   , ( ), 2 [ , ( ), ]k k k kV t e t p V t e t p
 

(21) 

Assume that there exists a positive constant    that satisfies 

( ) ( )(γ
γ  ≥   0 0 0 0, ( ), [ , ( ), )k k k kV t e t p V t e t p  and denote μ ϕ=  . Thus 

( ) ( )( )γ
γμ   ≤ −     , ( ), 2 , ( ),k k k kV t e t p V t e t p  (22) 

We integrate both sides of inequality (22) in the time interval (tk−1, tk], and we then 
have 

( ) ( )
( )( )

γ γ

γμ γ

− −
− −

− − −

−

   ≤   
− − −

1 1
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1 1 1

1
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Then, in the time interval (tk−1, tk], we have 

( ) ( )γ γδ

γμ γ

− −− −
− − −

−

−
− ≤
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In the time interval (tk−2, tk−1] we have 
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Similarly, the inequalities in (tk−3, tk−2], (tk−4, tk−3], …, (t1, t2], (t0, t1] can be obtained.  
We add k + 1 inequalities to get 

γ δ γ

δ γμ γ

− −−
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−
 0 0 1 1

0 0 0
0

([ ( , ( ), ( ))]) ([ ( , ( ), ( ))])
2 (1 )

k
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Then, when ∆→∞, we have 

( )
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γμ γ

− −  −     − ≤
−

 1 1
0 0 0
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( ( , ( ), ( )) ) ( ( , ( ), ( )) )
2 1

V t e t r t V t e t r t
t t  (27) 

If V(t, e(t), r(t)) = 0 exists for any t0, the V(t) will converge to zero in a finite time t∗. 
Therefore, the finite time t∗ at t0 = 0 can be estimated by 

( )
γ

γμ γ

−
∗ ≤

−

1(0, (0))
2 1

V rt  (28) 

where ( )
1

10, (0) (0) (0)
2

N
T
i i

i
V r e e

=

=  . Hence, the synchronization of multi-weight Markov-

ian switching complex network (3) under the optimal node selection strategy can be 
achieved in a finite time t∗. 

The proof is completed. □ 

Remark 1. The speed of network synchronization depends on the parameters η(r(t)) and φ(r(t)) in 
the controller (11). Moreover, the inequality (12) in Theorem 1 is a sufficient condition rather than 
a necessary condition to achieve finite-time synchronization of Markovian switching complex net-
work via the optimal node selection strategy. 

4. Finite-Time Synchronization of Markovian Switching Complex Networks Based on 
Event-Triggered Control Strategy 

In the previous section, the node selection method based on the traction control strat-
egy is proposed and the sufficient conditions for the network to achieve finite time syn-
chronization are obtained. This section will mainly design an effective trigger function 
and construct an event-triggered control strategy based on this with low control cost and 
low energy loss to achieve the synchronization of the network. 

The first l nodes of the network are selected as controlled nodes in this section, then 
the error equation of the network can be written as: 

σ ω
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= =

= =

= − + +

+ + = …

= − + +

+
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N

j j
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j
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e t f x t f s t c a r t e t c b r t e t

t ω = +









 + …, ( ), ( )) ( ), 1, 2, ,ie t r t t i l l N

 (29) 
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Theorem 2. We aim to design proper event-triggered control scheme, which can effectively ensure 
the networks (3) to realize finite-time synchronization. In the following, the triggered time sequence 
of the i-th node is assumed to be =  0 1 20, , , , ,k

i i i it t t t . Then, we can design the following event-
triggered control protocol: 

βη ϕ

+

 = − − ≠


== =
 = … ≤ <

1

( ) ( ( )) ( ) ( ( ) ( ( ))| ( )| ,  ( ) 0
( ) 0,  ( ) 0

1,2, , ;

k k k k k k k
i i i i i i i i i i i i i

k k
i i i i

k k
i i

u t r t e t r t sign e t e t if e t
u t if e t
i l t t t

 (30) 

where control parameters ( )η ( )k
i ir t  and ( )ϕ ( )k

ir t  are positive constants, r ∈ C; ( )k
i ie t  is the 

systematic error of the i-th agent at time tk; k
it  is the latest triggered time instant of node i at time 

t; = …1 1 2 2( ( )) { ( ( )), ( ( )), , ( ( ))}k k k k
i i i i i i in insign e t diag sign e t sign e t sign e t . Then the control law of node i 

can be continuously updated at its own event time k
it  until the network is synchronized. However, 

under the action of the pinning control strategy, we only need to control a small number of nodes 
in the network to achieve network synchronization. 

According to the established event-triggered controller, a reasonable and reliable 
trigger function is designed, so that the network can be continuously updated according 
to certain conditions in the process of achieving consistency. Then, the event trigger func-
tion of the agent in any time interval [tk, tk+1) can be designed as follows: 

ξ= − = −( ) ( ) ( ); ( ) | ( )| | ( )|k
i i i i i i ig t e t e t g t g t e t  (31) 

where gi(t) is defined by the measurement error of node i, ξ (0 < ξ < 1) is the control pa-
rameter of the trigger function, then the trigger moment of agent i can be set according to 
the above triggering rules: 

{ }+ = > >1 inf , ( ) 0k k
i i it t t g t  (32) 

Obviously, when the set trigger function is satisfied, the i-th node in the network will 
retrigger the event and update the controller in the network synchronization process, i.e., 

>( ) 0g t . This also means that ≤( ) 0g t  always holds in the time interval [tk, tk+1). In addi-
tion, when the value of the control parameter ξ of the trigger function is larger, the set 
trigger conditions will be more difficult to satisfy and the frequency of controller updates 
will be reduced, which may affect or even destroy the synchronization behavior of the 
network; on the contrary, when the value of the control parameter ξ of the trigger function 
is smaller, the set trigger conditions will be easier to satisfy and the frequency of controller 
updates will increase, which will increase the control cost of the network. Therefore, in 
the event triggering control, the selection of the control parameters of the trigger function 
is particularly important. 

According to the designed event-triggered controller, and if the following inequali-
ties are formed 

( ) ( )

( )π
=

  + + + + − ⊗ ≤  
  

 − ≤



1

1Ω Λ Θ ( ) Ξ ( ) 0
2

( ) )

ˆˆ ˆ

0

ˆ

(
m

q

N

pq

A B r t r t I

D q Q p
 (33) 
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where 


ρ ρ
−

= …


1Θ( ( )) { ( ( )), , ( ( )) ,0,...0}ˆ
l N l

lr t diag r t r t  ; 


η η
−

= …


1Ξ( ( )) { ( ( )), , ( ( )) ,0,...0}ˆ
l N l

lr t diag r t r t  ; 
−

= 1,..., }{ ,0,...01
l N l

NI diag . The rest of the parameters are the same as defined in Theorem 1. 
Thus, the synchronization of (3) can be achieved within a finite time t*. 

( )
γ

γμ γ

−
∗ ≤

−

1(0, (0))
2 1

V rt  (34) 

where β γσ ϕ ξ= − )min( ( ( ))(1 )2k
ir t ; γ = (1 + β)/2; βμ σ λ += (1 )/2min( , / 2 ,1) ,   is an ap-

propriate positive constant; 
1

1(0, (0), (0)) (0) (0)
2

N
T
i i

i
V e r e e

=

=  ; ei(0) is the initial condition. 

Proof. The Lyapunov function constructed as follows: 

1

1( , ( ), ) ( ) ( )
2

N
T
i i

i
V t e t p e t e t

=

=    

According to the differential operator L [23], the above Lyapunov function can be 
written as 

( ) π

σ σ

==

=

=

= +

 +  

 




1 1

1

1

1, ( ), ( ) ( ) ( ) ( )
2

1                      ( ( , ( ), )) ( , ( ), )
2

N
T T
i i pq i i

N m

i i

N
T T
i i i i

i

q
V t e t p e t e t e t e t

trace t e t p t e t p


 (35) 

Bringing the error system (29) and the event-triggered controller (30) into the above 
equation, we have 

( ) { )

( )

ϕ

η

σ σ

=

=

=

= − −

− + + 


+






1

1 1 2 2
1 1

, ( ), ( ( )) ( , ( )) ( , ( )) ( ) ( ( ))| ( )|

                      ( ) ( ) ( )Γ ( ) ( )Γ ( )

1                      ( , ( ), )
2

N

i

N N

j j

T k k k
i i i i i

i

k
i i i ij j ij j

TT
i i

V t e t p e t f t x t f t s t p sign e t e t

p e t c a p e t c b p e t

trace t e t p



π
= = =

  +    
1 1 1

1( , ( ), ) ( ) ( )
2

N m N
T

i i pq i i
i q i

t e t p e t e t

 (36) 

Based on the above theoretical analysis to the process, the above inequality can be 
further simplified as: 

( ) ( )
β

ν η ρ

ϕ π

= = =

= = =

≤ − +

− +

+

  

  
1 1 1

1 1 1

1 1

1, ( ), ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1                      ( ) ( ) ( ( ))| ( )| ( ) ( ) ( )
2

                      ( )Γ

N N N
T T k T
i i i i i i i i i

i i i
N m N

T k k T
i i i i i pq i i

i q i

ij

V t e t p e t Pe t e t p e t p e t e t

p e t sign e t e t e t D q e t

c a p



= =

+ 2
1 1

2( ) ( )Γ ( )j ij

N N

j
j

j
e t c b p e t

 (37) 

As mentioned above, the event-triggered function (31) implies that the inequality 
ξ ξ= − ≤ ≤ < <| ( )| ( ) ( ) ( ) ( ) (0 1)i

i i k i i ig t e t e t e t e t  holds for any time interval [tk, tk+1), thus 

( )
ξ

= =

=

=

− = − + −

≤ − −

 




1 1

1

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

                     (1 ) ( ) ( )

N N
T k T T k
i i i i i i i i i

i i

N

N
T
i i

i

i
e t e t e t e t e t e t e t

e t e t
 (38) 
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Meanwhile, the event-triggered function (31) implies ≤| ( )| | ( )|i ig t e t  , and 

= +( ) ( ) ( )i
i k i ie t g t e t , then ≤| ( )| | ( )|i ig t e t  implies that the equation ( ) ( )=( ) ( )k

i i isign e t sign e t  

holds. According to Lemma 1 

( )

( )

β β

β β β

= =

= =

− = − ⋅

= ⋅ − − ⋅

≤ − ⋅

 

 
1 1

1 1

( ) ( ) ( ) ( ) ( )

                                           ( ) ( ) ( ) ( ) ( )

                                           ( )

N N
T k k T k
i i i i i i i i

i i
N N

T T k T T
i i i i i i

i i

T T
i i

e t sign e t e t e t e t

e t e t e t e t e t

e t e
β β

β β ββ βξ ξ
=

= =

+ + +

= =

+ ⋅ −

≤ − + = − −

 

 
1 1

1 1 1

1 11

( ) ( ) ( ) ( )

                                           ( ) ( ) (1 ) ( )

N N
T T k
i i i i

i i
N N

T T T
i i i

i i

N

i

t e t e t e t

e t e t e t

(39)

Then, the inequality (37) can be further written as 

( )

β

β

π

ϕ ξ

=

= =

+

=

  ≤ + + + − − ⊗  
  

+ −

 
− −  

 



 



1

1 1

1
2

1

1, ( ), ( ) Ω Λ Θ( ) Ξ( ) ( )
2

1                   ( )( ( ) ( )) ( )
2

                   ( )(1 ) ( )

ˆ

)

ˆ ˆ

(

ˆ
N

T
i N i

i

m N
T

pq i i
q i

N
T
i i

i

V t e t p e t A B p p I e t

e t D q Q p e t

p e t e t



 (40) 

For any suitable matrix = ∈( ) ( )( )TQ p Q p p , have 
1

( ) 0
m

q
pqQ pπ

=
= , and denote that

1

( ( ) ( ))
2

m
pq

p
q

D q Q pπ
υ

=

−
= . Therefore, from Lemma 1 we have 

( ) ( ) ( )
1

2

1
, ( ), ( )(1 ) ( ) , ( ),

N

i

T
i iV t e t p p e t e t V t e t p

β

γβϕ ξ μ
=

+

 
≤ − − = − 

 
′   (41) 

where β γμ ϕ ξ γ β′ = − = +( )(1 )2 , (1 ) / 2p , according to the sufficient conditions (33) of The-
orem 2, then taking the expectation on both sides of Equation (41), we have 

( ) ( )γ γμ    ≤ −   ′  , ( ), 2 , ( ),V t e t p V t e t p  (42) 

Assume that ( ) ( )γ γ≥ 0 0 0 0[ , ( ), ] ( [ , ( ), ])V t e t p V t e t p hold,   is a positive constant 

that satisfies and denote μ μ′=  . Thus 

( ) ( )( )γγμ   ≤ −     , ( ), 2 , ( ),V t e t p V t e t p  (43) 

Integrate both sides of inequality (43), we have 

( ) ( ) ( )( )γ γ γμ γ
− −

  ≤   − − −    
1 1

0 0 0 0( , ( ), ( )) ( , ( ), ( )) 2 1V t e t r t V t e t r t t t  (44) 

Then we can get 

( )
γ γ

γμ γ

− −  −     − ≤
−

 1 1
0 0 0

0

( ( , ( ), ( )) ) ( ( , ( ), ( )) )
2 1

V t e t r t V t e t r t
t t  (45) 

If V(t, e(t), r(t)) = 0 exists for any t0, the V(t) will converge to zero in a finite time t∗. 
Therefore, the finite time t∗ at t0 = 0 can be estimated by 
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( )
γ

γμ γ

−
∗ ≤

−

1(0, (0))
2 1

V rt  (46) 

where 
( )

1

10, (0) (0) (0)
2

N
T
i i

i
V r e e

=

= 
. 

Hence, the synchronization of Markovian switching complex networks under the 
event-triggered control strategy can be achieved in a finite time t∗. 

The proof is completed. □ 

Remark 2. Based on the event-triggered control strategy proposed in Theorem 2, the control cost 
and energy loss can be reduced while ensuring synchronization. Moreover, the inequality (33) in 
Theorem 2 is a sufficient condition rather than a necessary condition to achieve finite-time synchro-
nization of Markovian switching complex network via the event-triggered control strategy. 

Remark 3. The trigger function designed in this section implies that the trigger function (31) will 
not be satisfied in any time interval +∈ 1[ , )k kt t t , i.e., ≤( ) 0g t . When the trigger condition is sat-
isfied by the i-th node, the network will automatically trigger the function and update the controller 
into the next time interval + +∈ 1 2[ , )k kt t t  to continue the trigger control until the network achieves 
synchronization, and the trigger function (31) will not be satisfied again at that time. 

5. Illustrative Examples 
This paper proposes the optimal node selection strategy and an event-triggered con-

trol strategy for synchronization control of Markovian switching complex networks, both 
of which are low energy cost control schemes. The tcontrol energy cost mainly considers 
the number of control nodes. The smaller the number of control nodes, the lower the en-
ergy cost. In addition, in order to optimally achieve synchronization control under low 
energy cost mechanism, a control strategy with faster synchronization speed and fewer 
control nodes is better. 

In this section, two sets of comparative simulations will be performed to verify the 
correctness and effectiveness of the optimal node selection strategy and event-triggered 
control strategy, and the advantages of the two control strategies proposed in this paper 
will be analyzed through the simulation results. 

Example 1. The node system of complex network is described by the chaotic system (47). 

( )

 = − − +


= − + = …
 = −





1 1 2 3 3

2 2 1 3

3 1 3

( ) ( ) ( ) ( ) 20 ( )
( ) ( ) ( ) ( ) 1,2, ,
( ) 5.45 ( ) ( )

i i i i i

i i i i

i i i

x t x t x t x t x t
x t x t x t x t i N
x t x t x t

 (47) 

This numerical simulation will compare the proposed optimal node selection strat-
egy and event-triggered control strategy by numerical simulation of 20 nodes. In this sim-
ulation, the complex network, switching mode, and all parameters will remain consistent. 
The switching of two different modes in the complex network are shown in Figure 1, and 
the parameters of the network are also given in the following: 
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−   = = =     −     

1 2

0.5 0 0 0.8 0 0
2 2

Γ 0 0.5 0 ,Γ 0 0.8 0 ,Π ,
1 1

0 0 0.5 0 0 0.8
 

( )σ
  =  
  

1 2 3
2 2 2, ( ),1 ( ), ( ), ( )

2 2 2i i i i it e t diag e t e t e t  

( ) { }σ = 1 2 3, ( ),2 2 ( ), 2 ( ), 2 ( )i i i i it e t diag e t e t e t . 

 
Figure 1. Switching of the network mode. 

Example 2. Finite-time synchronization of a multi-weighted Markovian switching complex net-
work will be achieved by the optimal node selection strategy under different coupling strengths (c1 
= c2 = 10, 1, 0.1, 0.001). The maximum average error node in each time interval (tk−1, tk] is selected 
as the control node. That is, only one node in the network is selected as the controlled node in this 

simulation, i.e., 
−

=
20 1

1( ) ( ( ),0,0,...,0)iu t u t , then the other control parameters in Theorem 1 are: η(1) 

= 90, η(2) = 100; φ(1) = 50, φ(2) = 45; β = 0.6; 
−

=
20 1

(1) (90,0,0,...,0)Ξ , 
−

=
20 1

(2) (100,0,0,...,0)Ξ ; ρ(1) 
= 2, ρ(2) = 1.25. According to (13), we can get t∗ ≤ 8.3147 by simple calculation. 

The evolution curves of the network synchronization error with time for different 
coupling strengths (c1 = c2 = 10, 1, 0.1, 0.001) are given in Figures 2–5, respectively, from 
which it can be seen that the network synchronization error ei(t) basically converges to 0 
at t ≈ 0.6; Figures 6–9 show the update process of the pinning controller with time for 
different coupling strengths (c1 = c2 = 10, 1, 0.1, 0.001), from which it can be seen that the 
designed controller ui(t) are also gradually updated to zero at t ≈ 0.6. Then the synchroni-
zation of the multi-weight Markovian switching network can be achieved approximately 
at t ≈ 0.6. Therefore, under the optimal node selection strategy, when the coupling strength 
of the complex network changes, the synchronization time of the network does not change 
significantly.  
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Figure 2. The synchronization error ei(t) of the network (c1 = c2 = 10). 

   

Figure 3. The synchronization error ei(t) of the network (c1 = c2 = 1). 

   

Figure 4. The synchronization error ei(t) of the network (c1 = c2 = 0.1). 

   

Figure 5. The synchronization error ei(t) of the network (c1 = c2 = 0.001). 



Processes 2024, 12, 232 14 of 25 
 

 

   

Figure 6. The update process of pinning controller ui(t) with time (c1 = c2 = 10). 

   

Figure 7. The update process of pinning controller ui(t) with time (c1 = c2 = 1). 

   

Figure 8. The update process of pinning controller ui(t) with time (c1 = c2 = 0.1). 

   

Figure 9. The update process of pinning controller ui(t) with time (c1 = c2 = 0.001). 
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In general, synchronization of complex networks can be achieved with very few of 
the control nodes when the coupling strength is large enough, or with a sufficient number 
of control nodes when the coupling strength is small. For the optimal node selection strat-
egy proposed in this paper, not only the synchronization control of the complex network 
with Markovian switching is achieved with weak coupling strength (c1 = c2 = 0.001) and 
very few controlled nodes (1 controlled node), but also the synchronization efficiency of 
the network is improved, thus reducing the energy cost of the network. 

Example 3. In this simulation, finite-time synchronization of Markovian switching complex net-
work will be achieved by the event-triggered control strategy under different coupling strengths (c1 
= c2 = 10, 1, 0.4). According to the established event-triggered function to update the controller at 
all synchronization times, and the three nodes of the network are selected as controlled nodes, i.e., 

−

=
 3 0

1 2 3

2 3

( ) ( ,0,0,...,0)( ( ), ( ), ( )iu u t u tt u t . The parameter values in Theorem 2 are the same as those in 
Theorem 1. Especially, the control parameter ξ of the trigger function (31) is taken as ξ = 0.7; 

−

=
 3 20 3

(90,72,88 ,0,0,...,0)Ξ(1)  , 
−

=
 3 20 3

(101,83,98 ,0,0,...,0)Ξ(2)  . According to (34), we can get t∗ ≤ 
9.4628 by simple calculation. 

The evolution curves of the network synchronization error with time for different 
coupling strengths (c1 = c2 = 10, 0.1, 0.4) are given by Figures 10–12 respectively; the update 
process of the event-triggered controller with time for different coupling strengths (c1 = c2 
= 10, 0.1, 0.4) is given by Figures 13–15, respectively. We can find that the synchronization 
error curves and the controller update curves of the system converge to zero at different 
network coupling strengths (c1 = c2 = 10, 1, 0.4) are different. Where synchronization of the 
Markovian switching network can be achieved at t ≈ 0.2 when the coupling strength c1 = 
c2 = 10, at t ≈ 1.2 when the coupling strength c1 = c2 = 1, at t ≈ 5 when the coupling strength 
c1 = c2 = 0.4. When the coupling strength of the network is very weak (less than 0.1 in 
Example 3), the Markovian complex network will no longer be synchronized under the 
event-triggered control strategy. Therefore, under the event-triggered control strategy, the 
synchronization time of the network gradually increases as the coupling strength of the 
network decreases.  

   

Figure 10. The synchronization error ei(t) of the network (c1 = c2 = 10). 
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Figure 11. The synchronization error ei(t) of the network (c1 = c2 = 1). 

   

Figure 12. The synchronization error ei(t) of the network (c1 = c2 = 0.4). 

   

Figure 13. The update process of event-triggered controller ui(t) with time (c1 = c2 = 10). 

   

Figure 14. The update process of event-triggered controller ui(t) with time (c1 = c2 = 1). 
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Figure 15. The update process of event-triggered controller ui(t) with time (c1 = c2 = 0.4). 

The update process of the event-triggered controller is stepped, which is completely 
consistent with Remark 3. When the controller remains consistent, it means that the event 
trigger function condition is not satisfied, and the controller of the network remains un-
changed at this time. When the controller appears to step up or down, it means that the 
set event trigger function is satisfied, and the controller of the network is updated at this 
time; thus, the theoretical analysis and the simulation results are also mutually verified.  

Table 1 shows the comparison of the synchronization time of the two control strate-
gies in Example 1 (20-nodes network) with different coupling strengths. 

Table 1. Comparison of the synchronization time of two control strategies in Example 1. 

Control Strategy Coupling Strength Synchronization Time 
Optimal node selection (c1 = c2 = 10) t ≈ 0.6 

Event trigger control (c1 = c2 = 10) t ≈ 0.2 
Optimal node selection (c1 = c2 = 1) t ≈ 0.6 

Event trigger control (c1 = c2 = 1) t ≈ 1.2 
Optimal node selection (c1 = c2 = 0.1) t ≈ 0.6 

Event trigger control (c1 = c2 = 0.1) / 
Event trigger control (c1 = c2 = 0.4) t ≈ 5 

Optimal node selection (c1 = c2 = 0.01) t ≈ 0.6 
Event trigger control (c1 = c2 = 0.01) / 

The following conclusions can be obtained by analyzing the simulation results of Ex-
amples 2 and 3. When the network coupling is large enough (c1 = c2 = 10), the event-trig-
gered control can achieve the synchronization of the network faster. When the coupling 
strength of the network gradually decreases (c1 = c2 = 1), the optimal node selection strat-
egy can achieve the synchronization of the network faster. When the coupling strength of 
the network continues to decrease again (c1 = c2 = 0.1), the multi-weight Markovian switch-
ing complex network will no longer be able to achieve synchronization under the event-
triggered control strategy. Moreover, the event-triggered control strategy controls three 
nodes of the network to achieve network synchronization, while the optimal node selec-
tion strategy only needs to control one node to achieve network synchronization, which 
can also reduce the control cost of the network. Therefore, when the actual system needs 
to achieve fast network synchronization with low control cost, the optimal node selection 
strategy can be used. When the actual system is not concerned with control cost but only 
needs to achieve faster network synchronization, the event-triggered control method can 
be used. 
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Example 4. The node system of complex network is described by the Lorenz system (48). 

( )

 = −


= − − = …

 = −







1 2 1

2 1 1 3 2

3 1 2 3

( ) 10 ( ) ( )
( ) 28 ( ) ( ) ( ) ( )     1,2, ,

8( ) ( ) ( ) ( )
3

i i i

i i i i i

i i i i

x t x t x t
x t x t x t x t x t i N

x t x t x t x t

 (48) 

In order to further illustrate the advantages of the optimal node selection strategy 
and the event-triggered control strategy, this section will adopt the 100-node Markovian 
switching complex network model for simulation. In this simulation, the complex net-
work, switching mode and all parameters will remain consistent. The switching of two 
different modes in the complex network can be shown in Figure 16, and the parameters 
of the network are also given below. 

  
−   = = =     −     

1 2

0.8 0 0 1 0 0
2 2

Γ 0 0.8 0 ,Γ 0 1 0 ,Π ,
1 1

0 0 0.8 0 0 1
 

( )σ
  =  
  

1 2 3
2 2 2, ( ),1 ( ), ( ), ( )

2 2 2i i i i it e t diag e t e t e t  

( ) { }σ = 1 2 3, ( ),2 2 ( ), 2 ( ), 2 ( )i i i i it e t diag e t e t e t . 

 
Figure 16. Switching of network mode. 

Example 5. In this example, a multi-weight Markovian switching complex network model simu-
lation with 100 nodes was performed using the optimal node selection strategy, and the coupling 
strengths of the networks were c1 = c2 = 10, c1 = c2 = 1, c1 = c2 = 0.1 and c1 = c2 = 0.001, respectively. 
The maximum average error node (only one node) in each time interval (tk−1, tk] is selected as the 

controlled node in this simulation, i.e., 
−

= …
100 1

1( ) ( ( ),0,0, ,0)iu t u t , then the other control parameters 

in Theorem 1 are: η(1) = 90, η(2) = 100; φ(1) = 50, φ(2) = 45; β = 0.6; 
−

=
100 1

(90,0,0,...,0)Ξ(1) , 
−

=
100 1

(100,0,0,...,0)Ξ(2) ; ρ(1) = 2, ρ(2) = 1.25. According to (13), we can get t∗ ≤ 9.1316 by simple 
calculation. 
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Figures 17–24 show the network synchronization error curves and the pinning con-
troller evolution process under different coupling strengths (c1 = c2 = 10, 1, 0.1, 0.001), re-
spectively, from which it can be seen that the multi-weight Markovian switching complex 
network basically converges to zero at t ≈ 4. This again verifies the conclusion obtained in 
Example 2. Based on the optimal node selection strategy, on the one hand, the network 
synchronization time does not change significantly with the change of the network cou-
pling strength. On the other hand, synchronization can be achieved under weak coupling 
strength (c1 = c2 = 0.001) and very few controlled nodes (1 controlled node), which further 
reduces the network energy loss and control cost. 

   

Figure 17. The synchronization error ei(t) of the network (c1 = c2 = 10). 

 
  

Figure 18. The synchronization error ei(t) of the network (c1 = c2 = 1). 

   

Figure 19. The synchronization error ei(t) of the network (c1 = c2 = 0.1). 
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Figure 20. The synchronization error ei(t) of the network (c1 = c2 = 0.001). 

 
  

Figure 21. The update process of pinning controller ui(t) with time (c1 = c2 = 10). 

   

Figure 22. The update process of pinning controller ui(t) with time (c1 = c2 = 1). 

   

Figure 23. The update process of pinning controller ui(t) with time (c1 = c2 = 0.1). 
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Figure 24. The update process of pinning controller ui(t) with time (c1 = c2 = 0.001). 

Example 6. In this example, a multi-weight Markovian switching complex network model simu-
lation with 100 nodes was performed using the event-triggered control strategy, and the coupling 
strengths of the networks were c1 = c2 = 10, c1 = c2 = 1, and c1 = c2 = 0.4, respectively. According to 
the established event-triggered function to update the controller at all synchronization times, and 
the three nodes of the network are selected as controlled nodes, i.e., 

−

=
 

）

3 100 3

1 2 3( ( ), ( ), ( ,0,0,...,0)( )iu u t ut t u t . The control parameter ξ of the trigger function (31) is taken 

as ξ = 0.7; 
−

=
 3 100 3

(90,72,88 ,0,0,...,0)Ξ(1) , 
−

=
 3 100 3

(101,83,98 ,0,0,...,0)Ξ(2) . According to (34), we can 
get t∗ ≤ 9.3369 by simple calculation. 

The network synchronization error curves and the event-triggered controller update 
process for different coupling strengths c1 = c2 = 10, c1 = c2 = 1 and c1 = c2 = 0.4 are given by 
Figures 25–30, respectively. Synchronization of the Markovian switching network can be 
achieved at t ≈ 0.1 when the coupling strength c1 = c2 = 10, at t ≈ 1.2 when the coupling 
strength c1 = c2 = 1, at t ≈ 5 when the coupling strength c1 = c2 = 0.4. When the coupling 
strength of the network is very weak (less than 0.1 in Example 6), the Markovian complex 
network will no longer be synchronized under the event-triggered control strategy. This 
again validates the conclusion obtained in Example 3. Based on the event-triggered con-
trol strategy, the synchronization time of the network gradually increases as the coupling 
strength of the network decreases, and the event-triggered controller is also step-varying.  

  
 

Figure 25. The synchronization error ei(t) of the network (c1 = c2 = 10). 
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Figure 26. The synchronization error ei(t) of the network (c1 = c2 = 1). 

   

Figure 27. The synchronization error ei(t) of the network (c1 = c2 = 0.4). 

   

Figure 28. The update process of event-triggered controller ui(t) with time (c1 = c2 = 10). 

   

Figure 29. The update process of event-triggered controller ui(t) with time (c1 = c2 = 1). 
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Figure 30. The update process of event-triggered controller ui(t) with time (c1 = c2 = 0.4). 

Table 2 shows the comparison of the synchronization time of the two control strate-
gies in Example 4 (100-nodes network) with different coupling strengths. 

Table 2. Comparison of the synchronization time of two control strategies in Example 4. 

Control Strategy Coupling Strength Synchronization Time 
Optimal node selection (c1 = c2 = 10) t ≈ 4 

Event trigger control (c1 = c2 = 10) t ≈ 0.1 
Optimal node selection (c1 = c2 = 1) t ≈ 4 

Event trigger control (c1 = c2 = 1) t ≈ 1.2 
Optimal node selection (c1 = c2 = 0.1) t ≈ 4 

Event trigger control (c1 = c2 = 0.1) / 
Event trigger control (c1 = c2 = 0.4) t ≈ 5 

Optimal node selection (c1 = c2 = 0.01) t ≈ 4 
Event trigger control (c1 = c2 = 0.01) / 

The conclusions obtained in Example 1 can be verified again by analyzing the simu-
lation results of Examples 2 and 3. When the coupling strength is large enough (c1 = c2 = 
10, 1), the event-triggered control can achieve the synchronization faster. When the cou-
pling strength gradually decreases (c1 = c2 = 0.1, 0.001), the Markovian complex network 
will no longer be able to achieve synchronization under the event-triggered control strat-
egy, and the optimal node selection strategy can achieve the synchronization faster. 

In addition to the above conclusions, by comparing Examples 1 and 4, it can be seen 
that as the number of network nodes continues to increase, the synchronization time of 
the network also increases under the optimal node selection strategy, and the time to 
achieve network synchronization under the proposed event-triggered control strategy 
will not change significantly as the number of network nodes increases. 

6. Conclusions 
This paper focuses on the analysis of low energy synchronization of Markovian 

switching complex networks through multiple perspectives. Analysis and discussion is 
based on the two control strategies of optimal node selection and event-triggered control. 
(1) Considering that the Markovian switching process will change the dynamic of the 

complex network, the optimal node selection strategy based on network node im-
portance measurement is improved, and a controller with a simpler structure is de-
signed, which can quickly achieve low energy synchronization of the complex net-
work.  

(2) Considering the control cost problem caused by the large amount of information 
transfer between networks, a trigger function is designed that can eliminate invalid 
information intersection and transmission between networks based on the event-
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triggered control strategy, so as to achieve low energy synchronization of Markovian 
switching complex networks.  

(3) Based on the above two control strategies, important conclusions have been obtained 
through comparative simulation, which indicate that in order to optimally achieve 
synchronization control under low energy cost mechanism, a control strategy with 
faster synchronization speed and fewer control nodes is better. 
I. Compared with event-triggered control strategy, the optimal node selection strat-

egy can control less nodes (only one control node in Examples 2 and 5) to achieve network 
synchronization, which can further reduce the control cost of the network. 

II. With the continuous increase of the network, the network synchronization time 
under the optimal node selection strategy has also increased. However, under the event-
triggered control strategy, the time to achieve network synchronization will not change 
significantly with the growth of the network, but slightly more control nodes (three con-
trol nodes in Examples 5 and 6) are required compared to the optimal node selection strat-
egy. 

III. When the network coupling strength is large enough, the event-triggered control 
strategy can achieve synchronization faster. When the coupling strength of the network is 
very weak, the Markovian complex network can achieve synchronization faster under the 
optimal node selection strategy, and it will no longer be synchronized under the event-
triggered control strategy. 
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