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Abstract: Hydrodistillation is traditionally a green technology for the manufacturing of natural prod-
ucts that are volatile. As well as acknowledged process intensification methods such as microwave
support for energy efficiency to move towards climate neutral operation, digital twins combined
with process analytical technology for advanced process control enables reliable operation of an
optimal operation point regarding lowest cost of goods, as well as lowest global warming potential
equivalent. A novel process control enabled by digital twin technology has shown to reduce the
ecological footprint of the extraction by up to 46.5%, while reducing the cost of extraction by 22.4%.
Additionally, skilled operator time is reduced, and the sustainable plant material is utilized most
efficiently. The approach is ready to apply, but broad industrialization seems to be held back by
unclear business cases and lack of comprehension of decision makers. This is in drastic contrast to
the political demand for climate neutrality goals and the cost pressure by worldwide completion.

Keywords: green technology; hydrodistillation; phytochemicals; natural products; digital twin;
autonomous operation; process analytical technology; sustainability; climate neutrality

1. Introduction

“Green extraction is based on the discovery and design of extraction processes which
will reduce energy consumption, allows use of alternative solvents and renewable natural
products, and ensure a safe and high quality extract/product.”—Farid Chemat [1].

Plant material is used in modern and ancient pharmaceutical and aromatic applica-
tions [2]. In comparison to synthesis, feedstock in phytochemicals has a lower carbon foot
print and environmental impact [3-5]. Distillation processes for the recovery of volatile
phytochemicals are divided into steam distillation and hydrodistillation and are by defi-
nition green extraction technologies. However, both process variants require energy for
continuous evaporation of water. Given the definition of green extraction above, it is
important to develop technologies and solutions for optimized, sustainable processes.
Process intensification with microwave, ultrasonic sound and pulsed electric fields is one
feasible approach [6]. In addition, digital twins on the basis of rigorous models enable the
realization of reliable operation at optimized conditions, based on quantitative design and
control strategies obtained and defined by Quality-by-Design (QbD) principles [7].

In order to meet targets of climate neutrality while still remaining economically
sustainable, process efficiency is one of the most important factors to be worked on. This
can be achieved by upgrading process equipment [8] or implementing efficient process
control [9]. A novel approach to process control is model predictive control via digital twin
(DT), which has improved process sustainability [10,11]. In previous studies it was found
that this control can reduce global warming potential (GWP) and the production cost of
plant extraction processes [12].

This work shows the reduction of environmental footprint and increased economic
competitiveness enabled by digital twins technology for autonomous operation. This is
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demonstrated by the example of fragrances as a typical application for hydrodistillation;
however, the methodology can and has been transferred to other processes in chemical and
pharmaceutical engineering.

1.1. Hydrodistillation

Distillation as a separation or extraction process was found for the first time 79 AD in
the literature [13,14]. Distillation was described not only as the extraction of alcohols, but
also as the extraction of oils from plant material. Continuous development of extraction
equipment and separation of the subordinated processes took place, along with the increase
in their economic and social relevance. In this process, equipment is developed from small
glass apparatuses [15] to columns made of stainless steel for large-scale production and
separation of liquids [16,17]. Rectification, steam distillation and hydrodistillation emerged
from the superordinate distillation [18,19].

Distillation processes for the recovery of volatile phytochemicals are divided into
steam distillation and hydrodistillation.

In steam distillation, the plant material is packed into the distillation column and
then passed through by rising steam. Together with the steam, oil components from the
plant material rise to the top of the column, are condensed and subsequently separate
from the aqueous phase in the separator. In laboratory scale and according to Ph. Eur. a
clevenger-type is used for condensation (see also Figure 1) [20-22].

Hydrodistillation is used if the plant material is present directly in the heated water
vessel. The plant material is extracted by maceration, whereby the oil components evaporate
together with the water and are then condensed and separated from the aqueous phase in
the separator, as in the case of steam distillation [23]. The aqueous phase after condensation
and phase separation may contain portions of oil in small amounts (<50 mg/L) and this is
referred to as a hydrolate or hydrosol [24].

The recirculation of the aqueous hydrolate phase serves, on the one hand, to pre-
vent the water reservoir from completely emptying through evaporation and can also
serve to increase the yield of the process by recovering oil components in the hydrolate
through renewed evaporation [25]. This process variant is called hydrodistillation with
cohobation [26].
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Figure 1. Laboratory distillation column (a) [27]; hydrodistillation pilot plant (b).
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The content of long-chain fatty acids (e.g., myristic acid, etc.), determines the melting
point and physical state of the organic extract. If the extract is liquid at room temperature,
it is called oil or essential oil. The general monograph was adoped in a chapter dedicated
to essential oils in the Ph. Eur. [28]. After hydrodistillation, the extract of iris rhizome
is present in liquid form (oil) at temperatures above 45 °C. At room temperature, the oil
solidifies. The solid thus obtained is called iris butter [29]. Analysis of the oil and hydrolate
is usually performed by gas chromatography (GC) [30,31].

Steam distillation was used in the 10th century as a process for the extraction of rose
water [32]. The vast majority of the models discussed in the literature, despite the long-
standing, widespread application of these processes, are nevertheless comparatively simple
and are mostly based on a first order kinetics approach [33-35].

These models usually do not separately account for the core phenomena that actually
take place, such as the s/1 extraction that initially takes place, the subsequent evaporation,
the condensation, and the 1/1 phase separation.

A common core equation of such a kinetic model, often takes a form as shown in
Equation (1).

DT (1-p)xe™ (1)
q0

Here g represents the initial loading of the plant material, g represents the current
loading, and t represents the process time. b and k are effectively fit factors that are
fitted to known process trajectories. It is obvious that such models cannot separately
represent the different influences of fluid dynamics, phase equilibrium, or kinetics on the
process outcome.

There is little work in the literature that links these individual elementary processes.
Sovova and Aleksovski [36], for example, published a study in which different particle
morphologies and the influence of the oil location on the extraction process were investi-
gated in detail. However, the yield after subsequent distillation was just described on the
basis of retrofitted profiles.

The vapor pressure of the mixture is one of the most important equilibrium parameters
for predicting the distillation process. For steam distillation, it can be obtained from the
Hausbrand diagram for different organic components and temperatures [37]. It represents
the total vapor pressure of the mixture as the sum of the vapor pressures of the organic
and aqueous phases. If the components are almost completely immiscible, this relationship
simplifies to [38]:

Ptot:POOrg+POzu:Porg+PW 2)

1.2. Process Analytical Technologies

In the application of Quality by Design-based process design, the development of a
process analytical technologies (PAT) concept represents the interface between the digital
twin and the process [39,40]. By means of PAT, critical process parameters can be measured
and adjusted in combination with the digital twin within the framework of Advanced
Process Control [41]. In this course, the process status and the further course of the
extraction can also be predicted [41].

A challenge here is the choice of the spectroscopic measurement method. For example,
DAD is suitable for the detection of small concentrations in solutions, whereas FTIR is
better suited to differentiate between substances and substance groups [42].

Another point to consider when designing a PAT concept is the nature of the process
and the parameters to be determined. For example, the corresponding probe can be
installed directly in the process or a flow cell can be operated in a bypass. In the specific
case of hydrodistillation, care must be taken to ensure that the oil remains liquid during
measurement. This can be achieved with a temperature-controlled measuring cell, for
example. When operating in the bypass, it is also necessary to determine the height of the
phase interface so that the essential oil sample is not contaminated with aqueous hydrolate.
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1.3. Digital Twin

Digital twins are based on validated, rigorous process models [43]. These, again,
must be able to separately describe the different contributions of fluid dynamics, phase
equilibrium, and mass transfer kinetics to the process outcome. They are available for
all units used in common separation processes, such as SLE, LLE, membrane processes,
precipitation, chromatography, and steam distillation. Distinct and quantitative validation
criteria and workflows are available [39,44].

In addition to the process model, the development of a digital twin also requires PAT.
PAT is used to make the necessary process information available to the process model
online and in real time in order to make process predictions and, if necessary, to recognize
changing optimal process conditions and to pass them on to the process control system [42].
Suitable PAT detectors and selection criteria for different processes have been described
in many cases. The control of the process directly, the latter variant, shows that a digital
twin requires not only the process information interface from the physical to the digital
representation of the process, but also the interface from the digital back to the physical
process. As for the demonstration of validated process models, the implementation and
validation of digital twin technology has also been shown in a number of publications [12]
and the general workflow is shown in Figure 2.
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Figure 2. Workflow for the development and validation of digital twins [12,39].

Model predictive control has been established successfully in the chemical and phar-
maceutical industries and has proven to outperform conventional PID control [45-47].
Specific applications have been developed and tested in simulations [48,49] and implemen-
tation was successful in the laboratory [50] and production environment [51]. Therefore,
widespread adaptation of model predictive control in the industry has started and could
continue in the future.
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2. Material and Methods
2.1. Model Development
2.1.1. Model Equations

The basic path of the substances represented in this model is from absorption on the
plant material, to a solute in the aqueous bulk phase, to evaporation, to condensation
to an oil phase in the settler. In the bulk phase of the hydrodistillation, a thermody-
namic equilibrium is established between the concentration in the laminar boundary layer
around the particle and the loading on the particle. This thermodynamic equilibrium
of the loading/discharging of the plant particles is represented by a Langmuir isotherm
(Equation (3)) [52].

KL,i . Cw,i(t)
1+ KL,i . Cw,i(t) '

Here g; is the loading of component i, ¢, ; is the concentration in the laminar boundary
layer, Ky, is the Langmuir coefficient, g,y ; is the maximum loading and a is the capacity
factor. This form of the Langmuir isotherm has already been used by Sixt to simulate
extraction processes in percolation [39].

The mass transfer to the aqueous bulk phase is modeled with Equation (4). This de-
pends on the particle surface A, the mass transfer coefficient k¢ ;(T) and the concentration
gradient between the boundary film ¢, ; and the solution in the flask cp ;.

qi(t) = Gumaxi - a- 3)

mi,Extmction = kf,i(T) ' AP : (CB,i(t) - Cw,i(t)) (4)

At temperatures below 100 °C, no extraction from the plant material was observed. To
mimic this, temperature dependence of the mass transfer coefficient is assumed. This is
mapped in Equation (5) using an Arrhenius-based kinetic approach. The kinetic parameters
A; and D are introduced within Equation (5) [53].

D
kei(T)=A;-exp| — 5
f’( ) l P( TFlask) ()

The heat balance of the flask is shown in Equation (6). The change of heat in the
bubble Qg is described by the heat fluxes H of the water and the components i as well
as the evaporation heat of the water QEWP. The heat input QHeating over is described by
Equation (6). The heat loss Qlpss is assumed to be negligible for simplicity, all inefficiencies

are covered by the heat transfer coefficient k furthermore the heat transfer area is assigned
the symbol A.

7 = HH20,in - HHZO,out + Hi, in Hi,out + QHeating - QEvap - QLoss (6)

QHeating =A-k- (THeater - TFlask) (7)

From the solution of the heat balance, the evaporation rate of the water m H20,evap
can be calculated. This is used in Equation (8) to calculate the evaporation rates of the
components. For this, the material data saturated vapor pressure py and the molar mass
M; are required. Furthermore, an evaporation efficiency 7 is introduced [38].

poi M
Potot — Po,i Mmoo

(8)

moil,Evap = mHZO,evap .

The evaporated components are completely condensed in the condenser. An oil
phase forms in the separator, which is in equilibrium with the hydrolate. This is shown in
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Equation (9). The concentrations of components i in the aqueous hydrolate phase ¢, and
the organic oil phase are in equilibrium via the partition coefficient Ky g ; [54].

o
Kppp; = 237 )

aq,i

Equation (10) shows the mass balance of the separator with the mass flows m. Com-
plete phase separation can be assumed in the separator. Thus, in the mass balance of the
separator, the mass flow of the target and secondary components from the separator 7; o,
is negligible. To model inefficiencies of the separator, the coefficient ¢ is introduced here in
Equation (11). This coefficient represents the settling efficiency.

dms

5p = MH20in — MH200ut M, in = Miout (10)

mi, out — (1 - S) : mi,in (11)

2.1.2. Model Parameter Determination

The model parameters are divided into kinetic and equilibrium parameters. These are
determined experimentally. The equilibrium parameters of the isotherms are performed via
extraction with PHWE. This is performed exhaustively for the determination of maximum
loading. For the equilibrium parameter Kj, is performed with different volumes of solvent
to quantify the shift in equilibrium between the concentration in the solvent and the
loading of the plant material. Tempered shaking experiments are performed to determine
the liquid-liquid equilibrium parameter. A summary of the methodology is shown in
Figure 3.
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Figure 3. Summary of the model parameter determination concept.

The kinetic parameters are determined by hydrodistillation. The parameter # intro-
duced in the Hausbrandt-based evaporation rate of oil components is set to the value 1.
The mass transfer parameter k is calculated from the temperature-dependent Arrhenius
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approach. For the determination of the Arrhenius parameters, hydrodistillations are carried
out at different heating behaviors. For this purpose, the sheath temperature is varied. The
model can then be used to estimate these parameters. Heat transfer coefficients are obtained
from the documented literature data [55].

GC Analysis

An internal alpha ionone standard (Sigma-Aldrich, St. Louis, MO, USA) is first added
to the aqueous samples generated in the model parameter determination experiments so
that a concentration of 0.05 g/L internal standard is present in the respective sample. Then,
using liquid-liquid extraction with hexane at a ratio of 1:1 v/v, both the irons and the fatty
acids are extracted from the aqueous phase into the organic phase. The organic phase is
then analyzed in a gas chromatograph using a VF-5ms column from Agilent Technologies,
Inc. (Santa Clara, CA, USA) and helium as carrier gas at 300 °C with an FID-Detector,
according to Hoess [29].

Isotherm Determination

The parameters of the adsorption isotherms are determined by pressurized hot water
extraction (PHWE) [56,57]. For this purpose, one PHWE is run on a laboratory scale
(10 x 100 mm column, 1 g plant material) in a circulating mode at 120 °C and 1 mL/min
and five different volumes. The equilibrium concentration is determined after 4 h in each
case. The total content is determined by running an exhaustive laboratory-scale PHWE
(10 x 100 mm, 1 g plant material) at also 120 °C and 1 mL/min for 24 h and sampling after
10, 20, 30, 45, 30, 60, 120, 150, 180, 240, 360, 480, and 1440 min, respectively. The samples are
then analyzed by GC analysis for their irone and fatty acid content.

Liquid-Liquid Equilibrium

The partition coefficient of the oil phase is determined by equilibrating previously
analyzed iris butter samples and a purchased alpha irone standard (Sigma-Aldrich) with
water at 99 °C in a thermal shaker. The concentration of this, and the concentration of fatty
acids in the aqueous phase are determined by GC analysis after equilibration.

Hausbrand Diagrams

Hausbrand Diagrams were calculated according to Baerns et al. [58] using NRTL for
nonpolar components and UNIQUAC for polar components.

3. Results
3.1. Model Precision

To determine the accuracy of the model and the described model parameter deter-
mination concept, a Monte Carlo simulation study was performed. The model parame-
ters were randomly varied by the determined model parameters. The relative limits of
the model parameters are shown in Table 1. For this simulation study, 250 simulations
were conducted.

Table 1. Ranges of the model parameter varied in the Monte Carlo simulation study.

Model Parameter Deviation
Heat Transfer Coefficient +25%
Arrhenius Parameter +5%
Henry Coefficient +15%
Maximum Loading —2.5%; +15%
LLE Distribution Coefficient +10%
Nitsch Coefficient +25%

For the evaluation of this study, the relative deviations of the extraction curves of the
major and minor components in the oil and the hydrolate were investigated. At the end
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of the extraction, a standard deviation of these values was calculated from all simulations.
These were compared with the standard deviations from the experiments at the laboratory
plant, and are listed in Table 2. The relative standard deviations of the investigated process
attributes in the simulation study are comparable to the deviations in the experimental
test series. Thus, the model can represent these as shown in the experiments and can be
considered precise.

Table 2. Results of the Monte Carlo simulation study in comparison with the deviation in the
experimental studies.

Model Result Deviation in Simulation Deviation in Experiments
Concentration of Irones in Hydrolate +11.2% +12%
Concentration of Myristic Acid in Hydrolate +5% +7.5%
Extracted Irones in Oil +17.5% +13%
Extracted Myristic Acid in Oil +15% +18%

3.2. Model Accuracy

Several experiments were performed to determine the accuracy of the model. The
hydrodistillation was performed with different configurations and scales. By this procedure
also a proof of the scale transfer can be shown. In addition, the different configurations can
be used to evaluate individual elements of the model.

The first configuration is open hydrodistillation. In this, the hydrolate from the
separator is not returned to the flask. Instead, the sample is collected and analyzed in a
separate container. After the pre-determined sampling time has been reached, new water is
added to the flask to prevent the plant material from drying out or burning. The process is
interrupted for a short time.

As shown in Figure 4, the extraction curves of the main components can be well
represented by the model. The most important curve here is Figure 4a, since the yield
of the main components from the extracted oil is shown here relative to the mass of
the plant material. This is very well matched with the determined model parameters
(R% =0.995). The concentration of the components in the hydrolate shows a high experimen-
tal inaccuracy due to the low concentrations and, therefore, there are high error margins on
the detecting element of the offline analytics. The major and minor components are isolated
from the collected hydrolate by liquid-liquid extraction and quantitatively determined by
gas chromatography. This is shown in Figure 4b. For the myristic acid, the data can be
found in Figure 4c. Here, the cumulative yield from the oil is well matched (R? = 0.986), but
the concentration later in the extraction is underestimated (R? = 0.882). One explanation
for this may be that small parts of the oil were sponged into the sample vessel of the
hydrolate. This may be due to the larger sample volumes towards the end of the extraction
process. The components are extracted with an organic phase from the hydrolate, this can
also dissolve entrained droplets. This may also explain the slight underestimation of the
alpha-irone from the hydrolate. This inaccuracy is smaller than that of the myristic acid,
because the myristic acid is extracted later than the alpha-irone, so in the larger hydrolate
samples the extraction of the irone is almost complete. Figure 4d includes the sample
volume in the experiments and simulation; this information shows accuracy in the heating
and evaporation of the hydrodistillation.
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Figure 4. Time-dependent simulated and experimental results of the extracted irone mass (a), cumulative
irones from hydrolate (b), myristic acid in hydrolate and oil (c) and volume of the sample (d).

The results of the second configuration, the closed process, is shown in Figure 5. Here,
the hydrolate from the separator is returned directly to the flask. Sampling takes place
while the process is briefly interrupted. In this process, the hydrolate and oil are removed
separately from the separator. As a result, the sample volumes of the hydrolate are much
smaller than in the open experiments. Here, as shown in Figure 5b, the experimental values
are better reproduced by the model (R? = 0.964). The extraction process of the myristic acid
shown in Figure 5c is also well matched (R% = 0.969).
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Figure 5. Time-dependent simulated and experimental results with a closed loop configuration on
the small lab scale of the extracted irone mass (a), cumulative irones from hydrolate (b), myristic acid
in hydrolate and oil (c).

In the closed configuration, hydrodistillation was carried out on the next higher scale.
The mass of plant material and the volume of water used were increased tenfold. The
extraction curves are shown in Figure 6. Due to the analytical method used here for the
target component determination, a very large volume of hydrolates was extracted. As in
the open configuration, this resulted in some droplets of oil being entrained in the sample
and this affected the quality of the model. Nevertheless, a coefficient of determination for
the concentration in the hydrolate of the target components of R? = 0.844 was found. The
simulated progression of the components into the oil phase agrees well with that measured
in the experiments. In addition, myristic acid was well represented by the model.
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Figure 6. Time-dependent simulated and experimental results with a closed loop configuration on

the large lab scale of the extracted irone mass (a), cumulative irones from hydrolate (b), butter in

hydrolate and oil (c).

Furthermore, the pilot plant was simulated. This is operated with 5 kg of the plant
material and thus represents a scale extension of 200 x. In this specific plant, incomplete
separation of the organic and aqueous phases occur in the separator during operation.
This leads to losses of the yield. This is readjusted with the efficiency factor ¢. Since the
process flow of this plant was also well simulated by the model, this parameter can also
be determined well and a scale transfer can be ensured. The simulated and experimental

processes are shown in Figure 7.
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Figure 7. Time-dependent simulated and experimental results with a closed loop configuration on
the pilot plant scale of the extracted irone mass (a), cumulative irones from hydrolate (b), butter in
hydrolate and oil (c).

3.3. Risk Assessment and PAT Development
3.3.1. Risk Assessment and Failure Mode and Effect Analysis (FMEA)

For the operator of the process, the most important quality attributes are the yield
of the main component and the purity. For the economic efficiency of the process, the
productivity and the energy consumption are determined as process attributes. In the
context of QbD-based process development, the process and the control of this process
should be designed in a way in which these critical quality and process attributes can
be well controlled. For this purpose, a one-factor-at-a-time (OFAT) simulation study was
first conducted. The operating parameters are varied individually in order to determine
the most sensitive ones. These are ranked according to the strength of the parameter’s
influence on the CQA or PA. This is shown in Figure 8. Furthermore, a multiple-factor-
at-a-time (MFAT) simulation study is performed. Here, the operating parameters are
varied within the same limits according to a static experimental design in order to quantify
the interactions of the operating parameters with each other and their influence on the
CQA and PA.
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Impact PA Highest Interaction ~ Highest
Impact Impact CQA Impact PA (Energy | main effect | Interaction Interaction CQA Interaction PA PA (Energy interaction
CQA (Yield) (Purity) (Productivity) used) score CQA (Yield) (Purity) (Productivity) used) effect score | Severity
Target Component Content 8 8 8 1 4 2 4 1 4
Side Component Content 4 8 1 1 2 1 1 1
Material mass 8 4 8 1 2 2 4 1
Soluent : Plant Ratio 1 1 1 1 1 2 1 1
Settler inefficiancy 8 8 8 1 1 2 4 1
Coolent temperature 4 1 1 4 2 2 1 1
Coolent Flow rate 1 1 1 4 1 1 1 1
Heat transfere area 1 1 1 4 1 1 1 1
Heat transfere efficiency 1 1 1 8 1 1 1 1

Figure 8. Results of the risk assessment study and identification of the sensitive process parameters

(from most sensitive in red to least sensitive in green).

A total score is calculated from the combination of the sensitivities from OFAT and
MEFAT. For the hydrodistillation result, the most sensitive parameters are the content of
the target components in the plant material, the mass of plant material used and the
efficiency in the separator. This result is in good agreement with results obtained from the
experimental studies. When the content of target components in plant material is high,
high yield and productivity can be achieved and when more plant material is used, the
productivity of the process can increase. In addition, the efficiency of the separator can
strongly affect the yield of the process if parts of the product flow back into the flask. The
sensitive process parameters determined here must be made detectable in the next step
of the PAT strategy and regulated with a control strategy so that the CQA and PA remain
within the specified limits.

3.3.2. PAT Strategy Development

The quantitative determination of the target components and the minor components
of the samples is carried out by means of an established gas chromatography method.
Different chromatograms of the samples of the oil phase during extraction are shown in
Figure 9. The goal of establishing the PAT measurement technique in the course of Quality
by Design-based process development is the online monitoring of the concentration of the
components. Spectroscopic measurement methods such as FTIR (Mettler Toledo, ReactIR
702 L, Micro Flow Cell, Columbus, OH, USA) and DAD (Knauer, Smartline UV Detector
2600, Berlin, Germany) are suitable for this purpose.

1,000,000 =—
Qil Pilot Plant 1 h
900,000 Qil Pilot Plant 2 h
Qil Pilot Plant 3 h
800,000 Oil Pilot Plant 4 h
700,000 | Qil Pilot Plant 5 h
— —— Qil Pilot Plant 6 h
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 =0d
(o))
&% 400,000 ‘
300,000 - f
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100,000 - ‘ |
| l A
0 — ! T T T T T /'/ T T T
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Time [min]
Figure 9. GC-Chromatograms of oil samples during extraction in pilot plant.

In the context of this work, DAD is used to monitor the concentration of the irons
in the hydrolate, since these are only present in very low concentrations in the hydrolate.
Here, the progress of the extraction can be observed, but the purity of the product cannot
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be determined by the concentration of the fatty acids. Accuracies of R? = 0.922 for alpha
irones and R? = 0.976 for gamma irons in hydrolate can be achieved via PLS-Regression
(Figure 10). For online monitoring of the irons in hydrolate, a multiple scatter correction of

the DAD spectrum from 190-330 nm was used.
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Figure 10. Predicted vs. reference plot of alpha (a) and gamma (b) irons in hydrolate calculated via

PLS-regression using DAD spectra.

FTIR is used to monitor the composition of the essential oil. Here, a high concentration
of irons is desired, whereas the concentration of fatty acids should be kept low. As the ex-
traction proceeds, the concentration of irones decreases. The dominant fatty acid, myristic
acid, on the other hand, increases as the extraction progresses, resulting in a deterioration of
the purity of the target product (Figure 11). Here, the target components can be determined
online with an accuracy of R? = 0.988 for alpha irons and R? = 0.996 for gamma irons and
the minor component myristic acid with an accuracy of R? = 0.972 of the PLS-Regressions
(Figure 12). To determine the concentration of irons in oil the FTIR spectrum from
1750-1580 cm~! was used. For the determination of myristic acid in oil the oil phase
the part from 3000-2800 cm ™! was used after first order derivation.
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Figure 11. Time course of oil composition during extraction in pilot plant.
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Figure 12. Predicted vs. reference plot of alpha irons (a), gamma (b) irons and myristic acid (c) in oil
phase calculated via PLS-regression using FTIR spectra.

The challenge of implementing the FTIR measurement technique, which is operated
in bypass, is that the oil phase must remain in the liquid state. This is possible because
the flow cell used here can be tempered to 50 °C. In this case, detection of the interface of
the oil phase is also necessary to avoid contamination of the bypass with hydrolate. The
position of the oil interface is measured via high-frequency pulse reflection, depending
on the dielectric, using a Levelflex FMP55 from Endress + Hauser [59]. The integrated
PAT-System is shown in Figure 13.

18°C
Exchange surface: 0.28 m’
»
>
1bar 100°C
N (N
NG
5 kg Plant Material \‘ /\
55 L Wat il
o ‘ Exchange \J 0.5 mL/min APC
Heater surface: 0.8 m’ N
_________ T ey
| 250 - 300
ml/min

Stea

m Generator

Setpoint: 18 kW |
Nominal value: 13.6 kW |
|

Figure 13. Proposed and simulated process flow chart with integrated PAT-System.

3.4. Digital Twin Development

The most important factors for the performance of the extraction process are the
proportions of the main and side components of the plant material, as described in Figure 8.
These material parameters cannot be controlled in the running process. However, the
performance indicators of the process (purity, productivity, yield) are dependent on the
process runtime and the proportion of ingredients. Since, traditionally, the composition
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of the ingredients is not known, the extraction time is fixed when the process is designed
and is no longer adjusted. Thus, any irregularities in the plant material directly affect the
performance of the process.

The goal of the digital twin is to compensate for these fluctuations. For this purpose,
the digital twin must have the information of the content. This is determined by estimation
from the PAT signals using a proprietary algorithm, which is based on the model from
Section 2.1. To determine the accuracy of this estimation routine, it is tested with a simula-
tion study. For this purpose, the extraction courses and their PAT signals were simulated
with the inaccuracies from the PAT development. From the simulated PAT signals, the
digital twin is now to estimate the initial loading of the plant material. Here, the PAT
signals of the 10%, 25%, 50% 75%, and 100% of the extraction time were provided to the
digital twin.

Figure 14 shows the coefficient of determination and the mean deviation from the true
content of the target and minor components. As expected, the regression quality increases
with the time course, since more relevant information of the extraction course is available to
the digital twin. For both, the concentration course from the DAD signal and the extraction
course from the FTIR signal, a low deviation to the true value can be achieved after 25% of
the extraction time from all simulations. For the system of FTIR and level measurement
a deviation of 7.2% can be calculated. Since this is the more comprehensive system with
which the purity of the product can also be determined online, it is used for the control
studies. If the digital twin is only to be used for the determination of the irone extraction,
the FTIR can be dispensed with and a similar accuracy can only be achieved with the DAD.
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Figure 14. Coefficient of determination (in black) and mean deviation (in red) of estimation of plant
material content by the digital twin for the PAT-System of DAD and FTIR (a) and FTIR alone (b).

3.5. Control Strategqy Assessment

For the control study and the comparison of the control systems and driving modes,
a traditional driving mode is first used as a reference. The purity and productivity is
shown in Figure 15 depending on the extraction yield. This is a simulated run, where
the plant material has three times the minimum irone content. This is the case where the
longest extraction time is required. Hereby, an operating point is selected, at which the
highest possible purity and productivity is achieved at a high yield. If the extraction is run
longer, the purity and productivity will decrease non-linearly. The operating point for this
extraction is an extraction time of 290 min.
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Figure 15. Dependence of the product purity (in black) and the process productivity (in purple) on
the yield of the target components.

For the control studies, different disturbances of the process were simulated. The
amount of plant used, the content of the plant material, the efficiency of heat transfer at the
flask and condenser, the efficiency of the separator, and the volume of water in the FMEA
interfaces were varied. These components were simulated using the traditional operating
mode and the digital twin. For the digital twin, three different settings were tested, one
was set to not go below a purity of 0.37 mg/mg and the other was set to high productivity.
The last variant was chosen to maximize the yield. The results of this simulation study are
shown in Figure 16.
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Figure 16. Comparison of the process control systems and their influence on the key process figures.

For a given purity of the product, the DT specification can be met very well. It is also
noticeable that the variance of the purity values is much lower than in the traditional mode.
This reduction by a factor of eight can be attributed to the presence of process information,
which is also the objective of the mode of operation according to the specified purity. In the
high-productivity mode, a 40% increase in hydrodistillation productivity was simulated.
This could also be achieved with the variant for which a high yield was assumed, and yet
a process productivity increase of 9.4% was achieved without a significant loss in yield.
Since current process information is used, the digital twin can terminate the process when
extraction is complete.
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4. Discussion

It could be shown that, with the digital twin, higher productivity can be achieved
while maintaining the same yield. The same system can also be used to specify purity
requirements for the product. Online monitoring with the PAT system and the model-based
prediction mean that these requirements can be met very precisely. Thus, an upgrading of
the product already takes place during the extraction and production costs can be saved in
the downstream processing.

Hydrodistillation is a very energy-intensive extraction process, since a large volume
of water must be continuously evaporated and condensed. Therefore, the maxim is true:
unnecessary process time must be avoided. The process time is directly reflected in the GWP
emitted in the process. Furthermore, an increase in extraction productivity can directly lead
to a reduction in CoGs. In the comparison of the control strategies and operation modes,
these values are shown relative to those of the traditional operation mode in Figure 17.
With the digital twin, a reduction in GWP of up to 46.5% and a reduction in CoGs of up
to 22.4% could be achieved. Even with a similarly good yield to the traditional driving
method, a reduction of GWP by 9.4% and CoGs by 19.7% can be expected.

Traditional (fixed time) ()

Digital Twin (High
Yield)

—-19.7 % CoGs
-9.4% GWP

Digital Twin (Purity
Requirement)
—20.0% CoGs
—40.4% GWP

GWP relative to traditional

Digital Twin (High
Productivity)
—22.4% CoGs
—46.5 % GWP

CoGs relative to traditional
Figure 17. Comparison of the process control strategies based on GWP and CoGs.

Through the study, the process could be better understood, thus a step towards higher
efficiency and energy savings has already been taken. Another step is the implementation
of PAT for monitoring and decision making during the process. This can already bring a
significant advantage in the extraction process. To enable the autonomous operation of
the process, the digital twin is implemented, so that the process can reliably achieve very
good results.

5. Conclusions

This work has shown that the potential of model predictive control via digital twin
for hydrodistillation can achieve a reduction in ecological footprint by up to 46.5%, while
also reducing the cost of production by 22.4%. As shown in Section 1.3, model predictive
control has been developed and implemented in an industrial environment. These findings
are in line with previous studies [12,50].

Digital twin technology can reduce operator workload, due to its ability to monitor and
control the hydrodistillation process in real time. This can further increase the economic
viability of this green extraction process. Automation in chemical and pharmaceutical
processes is strived for because of its economic advantages [60-62].
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The approach shown is ready for industrialization and reduces the cost of goods and
global warming potential equivalent towards worldwide competitiveness and political
demand for climate neutrality significantly as no other technology exists. Nevertheless,
decision makers seem to see drawbacks in unclear business cases and lack comprehension.
Both obstacles could be overcome by:

e A business case for additional investments of about €100,000 to less than 1 mio. € with
annual additional maintenance cost of less than €100,000 are easily financed by factor
2-5 CoGs reduction with payout time of about 1 year.

e Increasing the number of available skilled employees or training courses available to
overcome the potential lack of comprehension.
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Abbreviations

AD Anno domini

APC Advanced process control

API Active pharmaceutical ingredient
CoGs Cost of goods

CPP Critical process parameter

CQA Critical quality attribute

DAD Diode array detector

DT Digital twin

FID Flame ionization detector

FMEA Failure mode and effect analysis
FTIR Fourier-transformed infrared spectroscopy
GC Gas chromatography

GWP Global warming potential

1/1 Liquid to liquid ratio

LLE Liquid-Liquid-extraction

MFAT Multiple-factor-at-a-time

NRTL Non-Random-Two-Liquid-Model

OFAT One-factor-at-a-time
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PAT Process analytical technology
Ph. Eur. European Pharmacopoeia
PHWE Pressurized hot water extraction
PLS Partial least squares regression
QbD Quality by Design

s/1 Solid to liquid ratio

SLE Solid-Liquid-Extraction
UNIQUAC Universal Quasichemical
Symbols

A Heat transfer area

Aj Arrhenius parameter

Ap Area of particle

a Capacity factor

B Concentration in bulk phase
Cu,i Concentration in boundary layer
D Arrhenius exponent

H Enthalpy flux

kg, Mass transfer coefficient

Ky Langmuir coefficient

KirEi partition coefficient

m Mass flux

M Molar mass

Po,i Saturation vapor pressure

Q Heat

qi Loading

Gmax,i Maximum loading

T Temperature

€ settling efficiency

n evaporation efficiency
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