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Abstract: In nuclear power systems, centrifugal pumps often need to operate under extreme con-
ditions. However, accurately determining the cavitation status of centrifugal pumps under such
extreme conditions is challenging. To improve the recognition accuracy of the three statuses of non-
cavitation, incipient cavitation, and severe cavitation while improving the anti-interference capability
of the monitoring system, this study extracted cavitation features from centrifugal pumps’ motor
current and vibration signals under three different operational conditions. It fused the features using
feature-level multi-source information fusion (MSIF) based on the backpropagation neural network
(BPNN) or support vector machine (SVM) to construct a cavitation status recognition model and
analyzed the results to compare with those of recognition without information fusion. The results
show that, compared with one signal source, MSIF can significantly improve the recognition accuracy
of cavitation statuses. Combined current and pump casing axial monitoring based on the BPNN
is the optimal scheme, with an overall recognition accuracy of 97.3% for all operational conditions,
compared to 73.9% for the single current signal and 89.3% for the single casing axial vibration signal.
These research results can guide the monitoring of cavitation statuses in practical engineering, as
well as timely intervention at incipient cavitations to reduce structural damage to centrifugal pumps
and prolong service life.

Keywords: centrifugal pump; cavitation; feature-level multi-source information fusion; backpropaga-
tion neural network; support vector machine

1. Introduction

Centrifugal pumps are fluid machines commonly used in nuclear power systems, often
required to operate continuously under extreme conditions, such as high temperatures,
high pressures, high humidity, or the transport of hazardous media. Cavitation is a typical
centrifugal pump failure; it not only affects the velocity and pressure distribution in the
pipe, but also causes vibration and noise due to the shock load generated by the collapse
of the bubbles, which will damage the impeller and other flow components, reducing
the efficiency, stability, safety, and concealment of the centrifugal pump [1,2]. Monitoring
cavitation in centrifugal pumps is vital for ensuring the long-term stable operation of
nuclear power systems. Traditional cavitation monitoring in centrifugal pumps involves
using invasive sensors to measure flow and pressure for calculating the head, with a 3%
decrease in head serving as an indicator of cavitation occurrence [3]. Invasive sensors
destroy the pipe’s structural integrity, leading to a deterioration in the stability of the
centrifugal pump under long-term operational conditions, and the reliability of the data

Processes 2024, 12, 196. https://doi.org/10.3390/pr12010196 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12010196
https://doi.org/10.3390/pr12010196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr12010196
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12010196?type=check_update&version=1


Processes 2024, 12, 196 2 of 21

collected by the sensor is reduced [4]. Especially in extreme conditions, achieving the
accurate monitoring of cavitation statuses is more complicated.

Current research on cavitation fault diagnosis in centrifugal pumps primarily focuses
on employing non-invasive sensors to monitor variations in signals, such as motor cur-
rent, vibrations, and noise, induced during the cavitation process to monitor cavitation
statuses indirectly [5,6]. These methods enable cavitation monitoring and the predictive
maintenance of centrifugal pumps without modifying the pipe structure or operational
conditions. They offer the advantages of improved productivity, ease of operation, and cost-
effectiveness, making them widely applicable in various extreme operational conditions.
However, under extreme operating conditions, the monitoring system’s interference resis-
tance should be prioritized, as noise signals are highly susceptible to interference from other
industrial equipment, which limits this method’s practical use [7]. Vibration signals are the
most commonly applied method. Razieh et al. [8] employed discrete wavelet transform
(DWT) and empirical mode decomposition (EMD) to extract the cavitation features from
vibration signals and constructed a recognition model for three cavitation statuses. Hui
Sun et al. [9] employed a time–frequency signal analysis method based on cyclostationary
theory to extract frequency characteristic components from non-stationary vibration signals
under cavitation and sealing damage conditions. This approach aims to enhance the effi-
ciency and reliability of the pump. While vibration signals are highly sensitive to cavitation,
their accuracy is directly affected by the measurement location [10], and the signal acquisi-
tion process is prone to environmental interference [11]. Methods for monitoring cavitation
statuses using motor current signals have emerged in recent years. Kipervasser et al. [12]
investigated the influence of cavitation and the extent of its development on the mechanical
power consumption of an electric motor. They established a joint mathematical model
for the centrifugal pump and synchronous motor, leading to conclusions regarding the
likelihood of cavitation based on recorded motor currents. Hui Sun et al. [6] demonstrated
that the root mean square (RMS) values of the current signal components are sensitive to
incipient cavitation by using the Hilbert–Huang transform (HHT) method to extract the
cavitation features. This method has the advantages of being simple, feasible, affordable,
and remotely monitored in real time [13]. Compared to vibration signals, current signals
contain less noise [14] and are more resistant to interference, but there are relatively few
studies on cavitation status recognition based on motor current signals.

In fault diagnosis for rotating machinery, the most common approach is to use one
type of sensor for signal acquisition. However, the structure of centrifugal pumps is com-
plex, and the operating environment often has random factors. Relying solely on one type
of signal source can pose challenges in ensuring the accuracy and completeness of the
acquired information and in providing immunity to interference [15]. MSIF is an emerging
interdisciplinary field with significant development in recent years; it combines redundant
or complementary information from one or multiple sensors, achieving cross-validation
and mutual data compensation, which can enhance the performance of information sys-
tems, extract more valuable information, and strengthen system resilience and stability [16].
L. Dong et al. [17] proposed a multi-measurement point cavitation feature signal fusion
model based on vibration signals, and the accuracy of this method for recognizing cavita-
tion status is still over 90%, even when one of the measurement points is highly disturbed.
Huaqing Wang et al. [18] proposed a rotating machinery fault recognition method based
on the fusion of multiple vibration signals and an optimized bottleneck layer convolu-
tional neural network (MB-CNN). This method integrates information to obtain richer
features than a single vibration signal, enhancing recognition accuracy and achieving faster
convergence speeds.

Although MSIF has been applied to recognize the cavitation status of centrifugal
pumps, most cases rely on a single type of sensor. Joint diagnosis using different sen-
sor types is relatively uncommon. In order to improve the accuracy and interference
resilience of the cavitation monitoring system, this study utilized current and vibration
sensors to collect signals from different cavitation statuses in centrifugal pumps. These
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signals undergo different levels of filtering and decomposition to extract cavitation features,
followed by classification training using a BPNN and SVM to recognize the cavitation
status. Subsequently, a novel cavitation status recognition model was established based
on feature-level MSIF. The optimal joint cavitation diagnosis approach employing current
and vibration sensors is determined by comparing and analyzing the recognition results
with those from a single signal source. The research findings have a certain reference value
for the engineering application of centrifugal pump cavitation diagnosis. Also, it provides
a basis for the joint diagnosis of centrifugal pump cavitation status using multiple types
of sensors.

2. Research Methodology
2.1. Test System of Cavitation in the Centrifugal Pump

For this test, a single-stage, single-suction centrifugal pump was the test pump; its
specific speed was ns = 62, head H = 10 m, rated flow rate Qd = 13 m3/h, and rotational
speed n = 1450 r/min. In order to photograph the bubbles around the impeller conveniently,
the impeller and pump casing used transparent Plexiglas. The test system is shown in
Figure 1. Data acquisition for this test included the flow rate, inlet and outlet pressure,
motor current and voltage, rotational speed, and vibration signals. The data acquisition
system consisted of graphical user interfaces (GUIs) based on MATLAB R2022a and a
National Instruments (NI) capture card based on LabVIEW. The GUI collected the flow rate,
inlet and outlet pressure, motor current, and voltage signals. NI collected the vibration
signals and rotational speed. Figure 2 shows the sensors used in this test. The head (H) was
calculated using pressure and flow sensors. The current signal was acquired using a Hall
sensor for one of the three-phase asynchronous motor phases with a frequency of 1 kHz.
The vibration signals were collected by acceleration sensors at four measurement points,
labelled as A, B, C, and D in Figure 1, with a frequency of 10 kHz.
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ing valve; 5—pressure stabilizing tank (water tank); 6—vacuum pump; 7—test centrifugal pump; 
8—outlet pressure sensor; 9—inlet pressure sensor; 10—inlet valve. Vibration sensor location: A—
inlet; B—outlet; C—pump casing axial; D—pump casing radial. 
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Figure 2. Sensors used in the test: (a) pressure sensor; (b) Hall current sensor; (c) acceleration sensor. 

Figure 1. Schematic diagram of the test system: 1—motor; 2—flow meter; 3—outlet valve; 4—venting
valve; 5—pressure stabilizing tank (water tank); 6—vacuum pump; 7—test centrifugal pump;
8—outlet pressure sensor; 9—inlet pressure sensor; 10—inlet valve. Vibration sensor location:
A—inlet; B—outlet; C—pump casing axial; D—pump casing radial.
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After adjusting the outlet valve, cavitation tests were performed at three flow condi-
tions: 0.75 Qd, 1.0 Qd, and 1.25 Qd. The cavitation performance curves of the test pump were
plotted for three flow rates. The critical cavitation point at each flow rate was determined
based on a 3% head loss criterion [3]. Two important parameters, the cavitation number (σ)
and head coefficient (Ψ), are calculated as follows:

Ψ =
H

u2
0/2g

(1)

σ =
P − Pv

0.5ρu2
0

(2)

where u0 is the flow rate (m3/s); g is gravity acceleration; and P is the inlet static pressure
(Pa). The medium used in the test is water; its density (ρ) is 998 kg/m3, and the saturated
vapor pressure (Pv) of water at ambient temperature (20 ◦C) is 2.34 kPa.

2.2. Uncertainty Analysis

A test uncertainty analysis was employed to validate the accuracy of the test results.
The comprehensive uncertainty of a test comprises two parts: system uncertainty (ES) and
random uncertainty (Er). The test method, equipment design parameters, and accuracy
primarily influence system uncertainty, ES. Random uncertainty (Er) mainly arises from
random errors and external environmental disturbances [19].

ES is given in the following formula:

ES = ±

√
(

fm

k
)

2
+ (

fc

k
)

2
(3)

where fm is the uncertainty of the sensor, fc is the system uncertainty of the acquisition
instrument, and the coverage factor (k) is 1.96 [19]. The system uncertainty for each
measurement parameter is shown in Table 1.

Table 1. The system uncertainty (%) of each measurement parameter.

Head Flow Rate Pressure Rotational Speed Vibration Current

fm ±0.15 ±0.12 ±0.20 ±0.20 ±0.50 ±0.20
fc ±0.10 ±0.10 ±0.15 ±0.15 ±0.10 ±0.10
ES ±0.0920 ±0.0797 ±0.1276 ±0.1276 ±0.2254 ±0.0989

Er is given in the following formula:

Er = ± tn−1Sx

x
√

n
× 100% (4)

Sx =

√
1

n − 1

n

∑
i=1

(xi − x)2 (5)

where Sx is the standard deviation, xi is the measured data, x is the arithmetic mean of the
data, tn−1 is the confidence coefficient, and n is 10; thus, tn−1 = 2.262 (α = 95%). The test
data were collected at different time points under rated operating conditions to calculate
the random uncertainty of the test, as shown in Table 2.
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Table 2. The test data were collected at different time points under rated operating conditions.

Head Flow Rate Pressure Rotational Speed Vibration Current

1 8.46 13.01 91.16 1450 0.1142 4.92
2 8.47 13.00 91.14 1450.5 0.1149 4.92
3 8.46 13.07 91.20 1450 0.1134 4.93
4 8.47 12.93 91.07 1451.5 0.1053 4.91
5 8.46 13.03 91.18 1450 0.1095 4.91
6 8.47 13.10 91.29 1451 0.1154 4.92
7 8.45 12.92 91.06 1450 0.1147 4.93
8 8.44 13.05 91.21 1450 0.1292 4.93
9 8.46 13.10 91.28 1451 0.1136 4.93
10 8.42 13.08 91.24 1450 0.1152 4.94
x 8.456 13.029 91.183 1450.4 0.1148 4.924

Sx 0.0158 0.0647 0.0785 0.5676 0.0065 0.0097

The random uncertainty of each measurement parameter in Table 2 was calculated
based on its mean and standard deviation, respectively, and the results are shown in Table 3.

Table 3. Random uncertainty (%) of each measurement parameter.

Head Flow Rate Pressure Rotational Speed Vibration Current

Er ±0.1335 ±0.3553 ±0.0616 ±0.0280 ±3.7777 ±0.1403

The comprehensive uncertainty € was calculated by combining the system uncertainty
(ES) and the random uncertainty (Er) of each measurement parameter using the following
formula:

E = ±
√

E2
r + E2

S (6)

The comprehensive uncertainty of each measurement parameter is shown in Table 4.
The comprehensive uncertainty for signals other than vibration is relatively low, resulting
in high data reliability. Vibration signals exhibit a higher comprehensive uncertainty of
approximately ±3.78%, primarily due to random uncertainty, indicating that the reliability
of vibration signal data is not high. The Table 2 data reveal that, under identical operational
conditions, only the vibration signals displayed significant fluctuations. This phenomenon
may be attributed to external vibrations and noises in the testing environment, adversely
impacting the stable acquisition.

Table 4. Comprehensive uncertainty (%) of each measurement parameter.

Head Flow Rate Pressure Rotational Speed Vibration Current

ES ±0.092 ±0.0797 ±0.1276 ±0.1276 ±0.2254 ±0.0989
Er ±0.1156 ±0.3078 ±0.0533 ±0.0243 ±3.7777 ±0.1216
E ±0.1478 ±0.318 ±0.1383 ±0.1298 ±3.7844 ±0.1717

2.3. Signal Pre-Processing and Feature Extraction
2.3.1. Motor Current Signal Pre-Processing and Feature Extraction

In order to enhance the signal-to-noise ratio of the current signal, it is crucial to filter
out the 50 Hz industrial frequency component. Singular value decomposition (SVD) can
effectively eliminate strong interference signals while preserving weaker ones, making it
an appropriate pre-processing technique for the current signal [20].

Based on the SVD pre-processing, empirical mode decomposition (EMD) and varia-
tional mode decomposition (VMD) were subsequently employed to extract the cavitation
features. EMD decomposes a signal based on its intrinsic time scale characteristics without
any pre-set basis function. EMD decomposed the current signal into seven intrinsic mode
functions (IMFs), each preserving local feature information at different time scales of the
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original signal [21]. VMD is an adaptive and entirely non-recursive signal processing
method. It addresses issues commonly encountered in EMD, such as endpoint effects and
mode component mixing. VMD can decompose signals into multiple relatively stationary
components, each containing different frequency scales, known as bandwidth-limited
intrinsic mode functions (BIMFs). This method is well-suited for analyzing non-stationary
time series [22]. VMD has several essential parameters: the decomposition level (K), the
penalty factor (α), the fidelity coefficient (τ), and the convergence threshold (ε). The value
(over-binning or under-binning) of K directly impacts the filtering effect; it was determined
to be 7 using the central frequency method. As α increases, the decay on both sides of the
central frequency becomes faster, and a well-adapted value of 2000 was chosen. The fidelity
coefficient (τ) was set to 0.3, which can ensure the integrity of the signal after reconstruction.
The convergence threshold (ε) is typically set to 1 × 10−5, but was adjusted to 1 × 10−7 [23].

After selecting the modal decomposition from EMD and VMD that is more suitable
for processing the current signal, the energy proportion (ei), variance (si), kurtosis (ki),
skewness (γi), and RMS value (ηi) of each component were calculated as the eigen-matrix
(T1) of the current cavitation status recognition; see Equation (7). The value of ei represents
signal intensity; si quantifies data dispersion; ki characterizes data distribution properties,
with ki ≈ 3 indicating a close approximation to a normal distribution, while values signifi-
cantly different from 3 indicate higher skewness or dispersion; γi describes the symmetry
of the data value distribution, with larger absolute values of γi indicating a greater degree
of skewness in the distribution; and ηi represents the effective value of energy.

T1 =


e1 e2 e3 · · · ei
s1 s2 s3 · · · si
k1 k2 k3 · · · ki
γ1 γ2 γ3 · · · γi
η1 η2 η3 · · · ηi

 (7)

2.3.2. Vibration Signal Pre-Processing and Feature Extraction

Vibration signal acquisition is often accompanied by noise from the external environ-
ment and the test instrument itself. Consequently, signal pre-processing for noise reduction
becomes essential. Wavelet domain denoising has proven effective in preserving signal
spikes and local highlights [24]. Therefore, the db4 wavelet was employed to decompose
the vibration signal with a decomposition level of 3, and the thresholding process utilized
soft threshold shrinkage.

After the noise reduction of the vibration signals, five time-domain dimensionless
characterization quantities (Qt), including the mean, variance, crag, skewness, and RMS,
were calculated for the vibration data under each operational condition, constituted the
eigen-matrix (T2) for vibration cavitation status recognition, which is similar to Equation (7).

2.4. Cavitation Status Recognition
2.4.1. Cavitation Status Recognition Model Based on BPNN

The BPNN, a multi-layer feed-forward neural network, is trained using the error
backpropagation algorithm. The fundamental concept involves inputting training samples
and iteratively adjusting the network’s weights and thresholds through backpropagation
to minimize the sum of squared errors in the output layer, thereby aligning the network’s
output with the target [25].

In practical engineering applications, the accurate monitoring of incipient cavitation
is crucial. It allows for timely intervention and maintenance when cavitation initiates,
reducing structural damage to centrifugal pumps and extending their operational lifespan.
Therefore, all recognition models in this study categorized cavitation statuses into three
classifications: non-cavitation, incipient cavitation, and severe cavitation, denoted as Y1, Y2,
and Y3, respectively. From the previous section, the current signal was modally decomposed
into seven components, and each component has five eigenvectors, so the number of sample
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features is 5 × 7. The BPNN hidden layer contained 40 nodes, and training was conducted
over 1000 iterations with a learning rate of 0.02. The vibration signal features comprised
five eigenvectors. The neural network employed 14 hidden-layer nodes, and training
consisted of 800 iterations with a learning rate of 0.03. Each training model utilized 75%
of the samples as the training set and 25% as the test set. The model’s training was based
on MATLAB R2022a pattern recognition, and the confusion matrixes and ROC curves
evaluated the training results.

2.4.2. Cavitation Status Recognition Model Based on SVM

In order to analyze the classification performance of different cavitation identification
models comparatively, the support vector machine (SVM) was concurrently utilized to
conduct classification training on cavitation features. The standard SVM is designed for
binary classification problems and cannot directly handle multi-classification problems. A
one-against-all SVM was employed [26]; by modifying the optimization problem of the
standard SVM, it is possible to achieve a single iteration for computing three decision
boundaries in cavitation identification. The classification criteria for cavitation states follow
the three classifications mentioned earlier.

The penalty parameter (C), the kernel function, and the selection of related parameters
significantly impact the SVM effect [27]. The Gaussian radial basis function (RBF) was
chosen as the kernel function for the SVM and employed particle swarm optimization
(PSO) to optimize the penalty factor (C) and the RBF self-contained function (g), resulting
in the optimal combination of (C, g) [28]. Again, 75% of the samples were taken as training
and 25% as test sets. For current signals, the model achieved a fitness of 93.7% after
sample training, with the optimal (C, g) combination being (10.0929, 6.3211). The model
converged in approximately ten iterations, demonstrating a relatively rapid convergence
rate. Similarly, for vibration signals, utilizing the same SVM model resulted in a fitness of
97.7% after training, with the optimal (C, g) combination being (12.0929, 5.3211). The model
converged in approximately eight iterations, indicating a relatively fast convergence rate.

2.5. Multi-Source Information Fusion

The system structure of feature-level MSIF based on a BPNN or SVM is shown in
Figure 3. After extracting features from the original data, the feature data are standardized
according to specific rules to obtain consistent types of feature vectors. These vectors are
then input into the BPNN or SVM to obtain classification decisions [29–31].
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Before performing information fusion, it was necessary to standardize T1 and T2. The
method chosen was linear function normalization (min–max scaling), which was applied to
normalize all row vectors of T1 and T2, except for kurtosis, ki. This study performed feature-
level fusion on all vibration measurement point signals, current-inlet vibration signals,
current-outlet vibration signals, current-casing axial vibration signals, and current-casing
radial vibration signals for cavitation status recognition. Cavitation recognition employed
the same BPNN and SVM three-classification models, utilizing 75% of the samples as a
training set and 25% as a testing set. For the BPNN model, 50 hidden layers were used,
with training conducted for 1200 iterations and the learning rate set to 0.02.
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3. Results and Analysis
3.1. Cavitation Performance Test Results and Analysis

The cavitation performance curves of the centrifugal pump are shown in Figure 4,
which reveals that the head coefficient (Ψ) initially remains relatively constant, then it starts
to decrease with the decrease in the cavitation number (σ), and the cavitation occurs earlier
under the large flow rate. Based on the 3% reduction in the head criterion [3], the cavitation
inception numbers (σH) under various conditions were determined as follows: σH = 0.308
at 0.75 Qd, σH = 0.359 at 1.0 Qd, and σH = 0.386 at 1.25 Qd. The black dashed line in the
figure indicates the σH for each condition.
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The inception cavitation status of the test pump under different operational condi-
tions is depicted in Figure 5; it is evident that, during inception cavitation, there are rela-
tively few bubbles within the impeller. These bubbles are primarily concentrated near the 
suction side of the impeller’s leading edge. As the fluid continues to flow, the bubbles 
gradually collapse and disappear near the middle of the impeller. 

Figure 4. Cavitation performance curves.

The inception cavitation status of the test pump under different operational conditions
is depicted in Figure 5; it is evident that, during inception cavitation, there are relatively
few bubbles within the impeller. These bubbles are primarily concentrated near the suction
side of the impeller’s leading edge. As the fluid continues to flow, the bubbles gradually
collapse and disappear near the middle of the impeller.
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Figure 5. Images of incipient cavitation under different operational conditions: (a) 0.75 Qd, σ = 0.308;
(b) 1.0 Qd, σ = 0.359; (c) 1.25 Qd, σ = 0.386. (Red dotted line marks the location of the obvious
aggregation of bubbles).

Combining the cavitation performance curves and high-speed photography results,
the cavitation statuses under each operational condition were triple classified using the
cavitation number (σ). The classification results are shown in Table 5.
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Table 5. The cavitation number threshold of each cavitation status under different operational
conditions.

0.75 Qd 1.0 Qd 1.25 Qd

Y1 σ > 0.308 σ > 0.359 σ > 0.386
Y2 0.308 > σ > 0.288 0.358 > σ > 0.304 0.386 > σ > 0.336
Y3 σ < 0.259 σ < 0.279 σ < 0.298

3.2. Motor Current Signal Pre-Processing and Feature Extraction Results and Analysis

The raw current signal within 0.4 s at 1.0 Qd was analyzed. Its power spectral density
(PSD) is shown in Figure 6. The 50 Hz industrial frequency and its significant harmonics
primarily dominate the current signal. These harmonics include the 250 Hz and 350 Hz
modulation signals derived from the 300 Hz blade and the 50 Hz industrial frequencies.
Moreover, the 50 Hz industrial frequency signal constitutes a substantial portion of the
current signal, making it prone to submerge small signals containing cavitation features.
Figure 7 shows the SVD filtered results of the current signal at 1.0 Qd for various cavitation
numbers. It is observed that the mains frequency signal is effectively removed. As the
cavitation number decreases, there is a slight increase in the bandwidth and amplitude of
the frequency bands on both sides of 50 Hz in the frequency domain, as shown in Figure 8.
This is primarily due to the increasing irregular motion of the fluid on the impeller caused
by intensified cavitation, resulting in a greater torque exerted directly on the impeller,
which is reflected in the current signal; it indicates that the pre-processing of removing the
mains frequency signal with SVD is effective, but SVD cannot effectively extract the small
signals that characterize cavitation features. Therefore, additional signal analysis methods
are needed for further processing.
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Figure 6. The PSD diagram of the raw current signal.

After further processing with EMD and VMD following SVD, Figure 9 displays the
time-domain and frequency-domain plots of the first five current signal components at
1.0 Qd. From Figure 9a, it can be observed that IMF1 primarily contains high-frequency
signals, IMF2 mainly contains signals ranging from 500 Hz to 2000 Hz, and IMF3 pre-
dominantly contains signals below 1000 Hz. However, each component exhibits modal
mixing. In contrast, the five BIMF components obtained from VMD exhibit distinct central
frequencies that increase sequentially, showing no modal mixing and a higher degree of
modal separation.
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In order to distinguish the cavitation status under different operational conditions,
the RMS values of the components obtained from VMD were calculated for analysis.
Taking the RMS values of BIMF1 as an example, as shown in Figure 10, BIMF1-RMS
exhibits significant variation, as the cavitation number decreases at 1.25 Qd, with a reference
RMS value of 0.0955 for non-cavitation. At 1.0 Qd and 0.75 Qd, the variation in BIMF1-
RMS during the cavitation stage is less pronounced than that at 1.25 Qd, which also
shows an increase. The reference RMS values for non-cavitation are 0.0933 and 0.0912,
respectively. This phenomenon arises because BIMF1’s central frequency is in the vicinity
of the rotational frequency’s sideband spectrum. During cavitation in the centrifugal pump,
the impact of the fluid on the impeller increases, affecting the rotational frequency, which
leads to a reduction in the energy of the rotational frequency in the current signal and an
enhancement in the sideband frequency spectrum near the rotational frequency. Under
high-flow conditions, cavitation is more likely to occur, and severe cavitation leads to
turbulence. At this point, the impact of the fluid on the impeller is most significant, and a
higher level of harmonic energy is injected. Therefore, BIMF1-RMS, obtained through the
SVD-VMD decomposition of the current signal, can partially characterize the cavitation
status. Furthermore, as the flow rate increases, this cavitation characteristic becomes clearer.
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Taking BIMF1-RMS at 1.0 Qd as an example, according to the cavitation number
thresholds in Table 5, the characteristic values for BIMF1-RMS in non-cavitation, incip-
ient cavitation, and severe cavitation were determined to be 0.0933, 0.0934, and 0.0932,
respectively. Similar processing was applied to the energy percentage, variance, kurtosis,
and skewness of BIMF1, yielding various feature data for this component, as shown in
Table 6. The same method was employed to process the respective VMD components for
the other two operational conditions and completed the cavitation feature extraction from
the current signal.
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Figure 10. Plot of BIMF1 component RMS values at each cavitation stage.

Table 6. The cavitation features of BIMF1.

Cavitation
Status

Energy
Percentage Variance Kurtosis Skewness RMS Sample

Size

Y1 0.8946 0.0094 2.9392 −0.1274 0.0933 130
Y2 0.8925 0.0101 2.7794 −0.1198 0.0934 175
Y3 0.8916 0.0091 2.8061 −0.1923 0.0932 195

3.3. Vibration Signal Pre-Processing and Feature Extraction Results and Analysis

Taking the axial casing vibration signal collected within 0.1 s at 1.0 Qd as an example, a
comparative analysis before and after filtering was conducted, and the results are depicted
in Figure 11. After wavelet domain denoising, most tiny components in the original vibra-
tion signal were successfully eliminated. The filtered signal preserves the effective values
from the raw data and exhibits a smoother profile, with the retained energy components
accounting for 74.98%.
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Figure 11. Comparison of vibration signal before and after wavelet domain denoising: (a) original
vibration signal; (b) filtered vibration signal.

The time-domain plots of vibration signals from the same measurement point under
different cavitation statuses exhibit clear distinctions. Taking the example of the casing
axial measurement point at 1.0 Qd within 1.0 s, the time-domain plot after pre-processing
with wavelet denoising is shown in Figure 12. The figure shows that the amplitude range
of vibration acceleration gradually increases as the cavitation number decreases. This
observation indicates that with the intensification of cavitation, the collapse of bubbles
leads to increased casing vibration.
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Figure 12. The casing axial vibration signals in different cavitation statuses at 1.0 Qd: (a) σ = 0.359;
(b) σ = 0.304; (c) σ = 0.279.

Taking the five time-domain dimensionless characterization quantities of casing axial
vibration signals at 1.0 Qd as an example, as shown in Figure 13, it is evident that various
characteristics of the casing axial under different cavitation statuses, except for the average,
exhibit significant differences. Among these characteristics, the kurtosis, RMS, and variance
show a clear increasing trend with intensified cavitation, with kurtosis exhibiting the
most significant increase and consistently exceeding three. Skewness displays a noticeable
decreasing trend and remains below 0, indicating a distinct left (negative) skewness trend
in the vibration signal with increased cavitation. It can be concluded that the vibration
signal at the casing axial measurement point provides significant discrimination among
different cavitation statuses.
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Based on the cavitation number thresholds provided in Table 5, the cavitation features
of each vibration measurement point under 1.0 Qd were extracted, as shown in Table 7. The
same method was applied to process the data from the other two operational conditions to
complete the extraction of cavitation features from the vibration signals.

Table 7. The cavitation features of each vibration measuring point under 1.0 Qd.

Measurement Point Average Variance Kurtosis Skewness RMS Sample Size Cavitation Status

Inlet
0.1512 0.0123 3.2297 −0.0118 0.1876 140 Y1
0.1513 0.0141 3.1506 0.0183 0.1926 229 Y2
0.1522 0.0151 3.1709 −0.0478 0.1957 131 Y3

Outlet
0.1494 0.0138 3.8484 −0.0182 0.1903 163 Y1
0.1481 0.0156 4.6665 0.0289 0.1942 133 Y2
0.1474 0.0251 6.3616 0.0311 0.2164 204 Y3

Casing axial
0.1611 0.1789 3.9954 −0.0008 0.4527 136 Y1
0.1618 0.2286 4.3712 −0.0331 0.5047 178 Y1
0.1603 0.4155 6.6553 −0.2794 0.6642 186 Y3

Casing radial
0.1188 0.0273 3.3556 −0.0429 0.2035 161 Y1
0.1191 0.0424 3.3162 −0.0449 0.2383 162 Y2
0.1178 0.0777 3.4881 −0.0098 0.3027 177 Y3

3.4. Cavitation Status Recognition
3.4.1. Motor Current Signal Recognition Results and Analysis

Figure 14 shows the results of the cavitation status recognition for the current signal
under 1.0 Qd by the BPNN. The overall accuracy of this recognition model is 76.8%. From
the confusion matrices and ROC curves, it is evident that the classification performance
for Y3 is the best, while Y1 and Y2 exhibit some confusion, indicating that the model
excels in recognizing severe cavitation but may make errors in distinguishing between
non-cavitation and incipient cavitation. This is primarily attributed to the fact that, during
incipient cavitation, the impact on the impeller is relatively weak, and cavitation features
can be easily overshadowed by the power frequency signal, making it challenging to
differentiate between non-cavitation and incipient cavitation. In contrast, severe cavitation
in the current signal contains richer cavitation features, making them easier to extract
and recognize.

Table 8 presents the results of the two recognition models of the BPNN and SVM.
The BPNN outperforms the SVM in overall accuracy for all three operational conditions,
exhibiting better recognition performance. However, both models have relatively lower
recognition accuracy for Y1 and Y2. Additionally, the recognition accuracy of both models
increases with higher flow rates, especially for Y3, where the recognition accuracy is the
highest at high flow rates; this is attributed to the fact that cavitation is more likely to
occur at higher flow rates, resulting in a more significant number of bubbles and more
intense cavitation collapse, which exerts a more substantial impact on the impeller. It aligns
with the earlier observation that the variation in BIMF1-RMS is more pronounced under
1.25 Qd conditions than other conditions. However, it also indicates that cavitation status
recognition models based on current signals have lower sensitivity to cavitation under
low-flow-rate conditions.

Table 8. Cavitation status recognition results of current signals.

Model Flow Rate Y1 Y2 Y3 Accuracy Overall Accuracy

BPNN
0.75 Qd 50.3% 56.5% 92.6% 67.6%

73.9%1.0 Qd 58.8% 64.3% 99.0% 76.8%
1.25 Qd 63.1% 70.2% 99.4% 77.4%

SVM
0.75 Qd 47.1% 54.6% 91.4% 65.4%

71.0%1.0 Qd 55.0% 65.9% 93.1% 72.4%
1.25 Qd 60.0% 68.6% 94.3% 75.2%
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3.4.2. Vibration Signal Recognition Results and Analysis

The BPNN recognition results for different vibration measurement points at three
operational conditions are presented in Table 9. The overall accuracy indicates that, except
for the inlet, various vibration measurement points exhibit excellent recognition perfor-
mance. Notably, compared to the current signal and other vibration measurement points,
the casing axial measurement point exhibits higher BPNN recognition accuracy under all
three operating conditions, effectively reflecting the impact of cavitation collapse on the
axial direction of the impeller. Figure 15 illustrates the BPNN recognition results for the
inlet measurement point under 1.0 Qd conditions. The confusion matrices and ROC curves
reveal that the recognition performance for the inlet measurement point is suboptimal, with
errors in distinguishing between different cavitation statuses; this suggests that extracting
meaningful cavitation features from the vibration signals at the inlet measurement point is
challenging.

Table 9. BPNN cavitation status recognition results of different vibration measurement points.

Measurement Location Flow Rate Y1 Y2 Y3 Accuracy Overall Accuracy

Inlet
0.75 Qd 63.5% 76.3% 49.7% 65.2%

67.4%1.0 Qd 71.8% 80.2% 53.4% 70.4%
1.25 Qd 65.1% 79.3% 49.3% 66.6%

Outlet
0.75 Qd 67.7% 64.5% 85.0% 78.0%

81.7%1.0 Qd 76.3% 67.5% 89.3% 85.2%
1.25 Qd 72.8% 66.7% 84.5% 81.8%

Casing axial
0.75 Qd 88.7% 85.7% 90.3% 88.6%

89.3%1.0 Qd 89.9% 87.5% 91.4% 90.2%
1.25 Qd 87.8% 86.9% 89.7% 89.2%

Casing radial
0.75 Qd 83.1% 89.3% 88.1% 83.6%

85.4%1.0 Qd 84.8% 84.3% 88.9% 87.4%
1.25 Qd 83.7% 86.7% 88.5% 85.2%
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The SVM recognition results for different vibration signals at three operational con-
ditions are presented in Table 10. The casing axial and casing radial measurement points
exhibit relatively high overall recognition accuracy, although the accuracy for the radial
casing point decreases significantly under low-flow-rate conditions. In summary, the casing
axial measurement point achieves consistently high cavitation state recognition accuracy
across all operational conditions, similar to the results obtained with the BPNN; this un-
derscores that the axial casing measurement point is the optimal vibration measurement
location for cavitation monitoring in centrifugal pumps. Overall, the SVM cavitation
recognition model based on vibration signals demonstrates slightly lower accuracy than
the BPNN.

Table 10. SVM cavitation status recognition results of different vibration measurement points.

Measurement Location Flow Rate Y1 Y2 Y3 Accuracy Overall Accuracy

Inlet
0.75 Qd 49.7% 48.4% 53.2% 63.0%

64.7%1.0 Qd 51.9% 55.1% 65.3% 67.4%
1.25 Qd 50.5% 57.2% 64.2% 63.6%

Outlet
0.75 Qd 78.9% 90.4% 83.3% 78.2%

78.1%1.0 Qd 75.0% 79.5% 79.1% 79.2%
1.25 Qd 79.6% 81.9% 82.4% 76.8%

Casing axial
0.75 Qd 86.7% 84.7% 88.3% 86.6%

87.0%1.0 Qd 85.9% 83.5% 87.4% 88.2%
1.25 Qd 83.8% 82.9% 89.7% 86.2%

Casing radial
0.75 Qd 75.1% 74.4% 76.0% 77.4%

82.6%1.0 Qd 87.8% 85.3% 84.9% 86.4%
1.25 Qd 82.7% 82.7% 85.5% 84.0%
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3.5. Feature-Level MSIF Recognition Results and Analysis

After standardizing the feature vectors of the current and vibration signals, a scatter
plot is constructed with the RMS of the casing axial vibration signal as the X-axis and the
BIMF1-RMS of the current signal as the Y-axis at 1.0 Qd, as shown in Figure 16. It is evident
that the non-cavitation status (Y1) and the cavitation statuses (Y2 and Y3) can be distinctly
separated, while there is some overlap between Y2 and Y3; this demonstrates the feasibility
of feature-level information fusion between the current and vibration signals.
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The recognition results of five types of feature-level information fusion based on the
BPNN are shown in Table 11.

Table 11. Cavitation status recognition results based on feature-level information fusion with BPNN.

Flow Rate Y1 Y2 Y3 Accuracy Overall Accuracy

All vibration
measurement points

0.75 Qd 88.5% 87.6% 89.6% 96.4%
96.3%1.0 Qd 94.6% 92.0% 91.5% 97.6%

1.25 Qd 89.2% 89.2% 92.2% 95.0%

Current Inlet
0.75 Qd 53.6% 52.2% 57.3% 75.0%

71.5%1.0 Qd 55.9% 59.4% 70.4% 76.8%
1.25 Qd 54.4% 61.6% 69.2% 62.6%

Current Outlet
0.75 Qd 85.0% 97.4% 89.8% 86.4%

86.9%1.0 Qd 80.8% 85.7% 85.2% 88.4%
1.25 Qd 85.8% 88.3% 88.8% 85.8%

Current Casing axial
0.75 Qd 93.4% 91.3% 95.2% 96.4%

97.3%1.0 Qd 92.6% 90.0% 94.2% 98.2%
1.25 Qd 90.3% 89.3% 96.7% 97.2%

Current Casing radial
0.75 Qd 88.5% 87.6% 89.5% 91.0%

92.9%1.0 Qd 94.6% 91.9% 91.5% 95.2%
1.25 Qd 89.1% 89.1% 92.1% 92.6%

The recognition results of five types of feature-level information fusion based on SVM
are shown in Table 12.
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Table 12. Cavitation status recognition results based on feature-level information fusion with SVM.

Flow Rate Y1 Y2 Y3 Accuracy Overall Accuracy

All vibration
measurement points

0.75 Qd 86.9% 86.0% 87.9% 95.2%
95.2%1.0 Qd 92.9% 90.2% 89.8% 96.4%

1.25 Qd 87.5% 87.5% 90.5% 94.0%

Current Inlet
0.75 Qd 52.1% 50.7% 55.7% 74.2%

70.7%1.0 Qd 54.4% 57.7% 68.4% 75.8%
1.25 Qd 52.9% 59.9% 67.3% 62.0%

Current Outlet
0.75 Qd 82.7% 94.7% 87.3% 85.4%

85.9%1.0 Qd 78.6% 83.3% 82.9% 87.4%
1.25 Qd 83.4% 85.8% 86.3% 84.8%

Current Casing axial
0.75 Qd 90.8% 88.7% 92.5% 95.4%

96.2%1.0 Qd 90.0% 87.5% 91.6% 97.2%
1.25 Qd 87.8% 86.8% 94.0% 96.0%

Current Casing radial
0.75 Qd 86.0% 85.2% 87.1% 90.0%

91.9%1.0 Qd 92.0% 89.4% 88.9% 94.2%
1.25 Qd 86.6% 86.6% 89.6% 91.6%

Compared to the cavitation status recognition models based on a single sensor, as
discussed earlier, whether using the BPNN or SVM, the recognition accuracy is significantly
improved after information fusion. It indicates the feasibility of feature-level MSIF in
centrifugal pump cavitation fault diagnosis, and it shows excellent applicability across
different classification models. Tables 11 and 12 show that the information fusion of current
and vibration signals effectively enhances cavitation recognition accuracy, particularly at
low flow rates, overcoming the drawback of low cavitation sensitivity in current signals
at low flow conditions. Moreover, it significantly improves the recognition accuracy of
incipient cavitation. The vibration signals collected in this experiment have relatively
high uncertainty and are susceptible to external environmental noise. In contrast, current
signals are minimally affected by external factors. Therefore, the fusion of current and
vibration signals enhances the model’s resistance to interference and provides more reliable
recognition results than vibration signals alone. While the fusion of multiple vibration
measurement points also achieves similar effects, the fusion of current and a single vibration
signal reduces the number of sensors required, making it more suitable for monitoring
cavitation statuses in extreme conditions. Additionally, it reduces data acquisition costs,
especially the fusion of current and the casing axial vibration measurement point, which
yields the best recognition results.

4. Conclusions

This study employed non-intrusive sensors to collect motor current and vibration
signals during cavitation in a centrifugal pump. Subsequently, it extracted and analyzed
cavitation features from the signals and utilized a BPNN and SVM for cavitation status
recognition. Furthermore, it employed feature-level MSIF to enhance the cavitation status
recognition model’s recognition accuracy and noise resistance. The main conclusions are as
follows:

1. The flow rate significantly influences recognition accuracy, with lower flow rates
resulting in lower recognition accuracy. It indicates the low sensitivity of the current
signal to cavitation at low flow rates. Furthermore, it exhibits a weak discriminatory
ability between non-cavitation and incipient cavitation, making it inadequate for
practical engineering requirements.

2. The cavitation status recognition model based on vibration signals performs relatively
well, especially with the highest recognition accuracy at the casing axial measurement
point. However, the random uncertainty of the vibration signals obtained in this
test was relatively high, indicating their limited reliability. Vibration signals may
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not be suitable for engineering applications in extreme conditions with significant
external noise. While combining multiple vibration measurement points can enhance
recognition accuracy and resilience to interference, it also increases the cost associated
with signal acquisition and computation.

3. The joint diagnosis of cavitation state based on the feature-level MSIF of current and
vibration signals shows a significant improvement in recognition accuracy compared
to a single sensor. Moreover, the accuracy distribution remains relatively stable and
is less influenced by flow rates. Additionally, considering that current signals are
less affected by external environmental noise, this approach enhances the system’s
resistance to interference. The coupling current and casing axial vibration monitoring
scheme, using only two sensors, demonstrates the most noticeable improvement in
cavitation status recognition accuracy, saving on signal acquisition and computation
costs; it has great reference value for practical engineering applications.

4. The joint diagnosis of cavitation status using feature-level MSIF from current and
vibration sensors under both the BPNN and SVM classification models significantly
improves cavitation status recognition accuracy. It suggests that this method applies
to different classification models.

This study utilized VMD to process the current signal, which effectively analyses and
characterizes cavitation statuses in centrifugal pumps but lacks theoretical underpinnings.
Future research could establish a detailed dynamic model of the impact of fluid on torque
and current during cavitation in centrifugal pumps based on fluid dynamics, rotor dynam-
ics, and electromagnetic coupling theories to better understand the dynamic relationship
between centrifugal pump cavitation and current. The analysis of the reasons for the high
random uncertainty in vibration signals lacked experimental confirmation. Furthermore,
after filtering the vibration signals, only cavitation features in the time domain were ex-
tracted, which is relatively simple and provides limited cavitation information, restricting
the accuracy of subsequent recognitions to some extent.
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Nomenclature
ns Specific speed
Qd Rated flow rate (m3/h)
Ψ Cavitation number
P Inlet static pressure (Pa)
ES Systematic uncertainty



Processes 2024, 12, 196 20 of 21

fm Sensor uncertainty
k Coverage factor
tn−1 Confidence coefficient
K Decomposition level
τ Fidelity coefficient
ei Energy share
ki Kurtosis
ηi RMS
T1 Eigen-matrix of current signal
Y1 Non-cavitation
Y3 Severe cavitation
g RBF self-contained function
H Head (m)
n Rotational speed (r/min)
σ Head coefficient
Pv Saturation vapor pressure (Pa)
Er Random uncertainty
fc System uncertainty of the acquisition instrument
Sx Standard deviation
E Comprehensive uncertainty
α Penalty factor of VMD
ε Convergence threshold
si Variance
γi Skewness
Qt Time-domain dimensionless characterization quantities
T2 Eigen-matrix of vibration signal
Y2 Incipient cavitation
C Penalty factor of SVM
σH Incipient cavitation number
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