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Abstract: To obtain the macroscale Young’s modulus of glutenite under gravel inclusions, a numerical
simulation of macroscale Young’s modulus prediction based on the mesoscale characteristics of
glutenite was carried out. Firstly, the micron indentation test was used to obtain the meso-mechanical
parameters of gravel and matrix in glutenite to ensure the reasonableness of the numerical simulation
parameter settings; secondly, a two-dimensional glutenite physical model generation method based
on the secondary development of Python was put forward; and then, the macroscale Young’s modulus
variation rule of glutenite under different gravel sizes, particle size ratios, and content characteristics
were analyzed using the finite element method (FEM). The results show that Young’s modulus of
gravel is larger than Young’s modulus of the matrix, and Young’s modulus of different gravel and
matrix has some differences. The gravel content is the main controlling factor affecting the macroscale
Young’s modulus of glutenite; the gravel content and Young’s modulus of glutenite show a strong
positive correlation, and the gravel size and particle size ratio have less influence on the macroscale
Young’s modulus of glutenite. The difference in Young’s modulus between gravel and matrix causes
the formation of local stress concentrations during loading and compression of glutenite. The smaller
the gravel grain size, the higher the degree of non-uniformity of the grain size, the more likely it
is to form higher local stresses. The results of the study provide a new prediction method for the
prediction of the macroscale Young’s modulus of a glutenite reservoir.

Keywords: glutenite; gravel characteristics; meso-mechanics; numerical simulation

1. Introduction

In recent years, significant deposits of rich, tight glutenite oil reservoirs have been
discovered through domestic exploration [1–3], leading to successful industrial oil produc-
tion using large-scale, horizontal well volume fracturing technology [4–7]. Nevertheless,
accurately predicting the mechanical properties of glutenite reservoirs remains a complex
challenge for effective hydraulic fracturing, primarily due to the intricate distribution
of gravel [8]. Traditional methods for assessing the mechanical parameters of glutenite
typically involve costly downhole core experiments such as three-point bending [9] or
triaxial compression tests [10], flexural excitation testing [11], and resonance testing [12],
as well as numerical simulation methods. Payan et al. [13,14] and Wichtmann et al. [15]
have constructed formulas to describe the relationship between particle size distribution,
particle shape and content, and the Young’s modulus of sandy and gravelly soils through
extensive experimental studies. However, the downhole core experiments encounter diffi-
culties in the core acquisition and are financially burdensome [16]. Consequently, the use of
numerical simulation methods to comprehend the mechanical characteristics of glutenite
presents itself as a cost-effective alternative.
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Scholars from both China [17–22] and abroad [23–27] mainly use finite element and dis-
crete element numerical simulation methods to model the mechanical behavior of glutenite
during force loading. Guo et al. [17] established an evolutionary function between strength
parameters and strain-softening parameters and simulated the dynamic stress–strain be-
havior of samples with different cement strengths. Zhang et al. [18] and Liu et al. [19] used
the finite element method to simulate and analyze the effects of gravel size and strength
characteristics on the mechanical parameters of glutenite. Ma et al. [20] utilized the discrete
element method to analyze the effects of particle size and shape on glutenite mechanical
properties. Lu et al. [21] conducted numerical simulations of a series of biaxial compression
tests on a sandstone model, studying the influence of rock content and morphology on
specimen strength at both macroscopic and microscopic scales. They found that when
the gravel content is less than 60%, the inclusion of gravel may not increase peak stress.
Xu et al. [22] established a random microstructure model of gravel and found a close
correlation between the macroscopic mechanical behavior of specimens and their local-
ized deformation. Akram et al. [23] treated stones as particles with different diameters,
disregarding the geometric characteristics of gravel shapes, and studied the effect of gravel
particle size distribution and scale effects. They found that the particle size distribution
affects the mechanical response and damage mode of the specimens. Furthermore, under
unchanged microstructures, the specimen size has a similar influence on the strength and
elastic deformation of gravel rocks as compared to other natural rocks. Cho et al. [24–26]
respectively established the Clump model and Cluster model to characterize the irregular
shapes of minerals or gravel in rock materials. Jeong [27], based on finite element and
discrete element methods, simulated and analyzed the macroscopic failure patterns of
glutenite under different confinement pressures, weak cement interfaces, and rock sample
sizes. Previous research has conducted extensive numerical simulation studies on the
macroscopic mechanical parameters and mechanical behavior predictions of glutenite
fracture characteristics, enriching the understanding of the mechanical properties of tight
glutenite. However, the characterization of complex gravel features in the research is not
comprehensive enough, and the influence of different gravel matrix support pattern types
on the macroscopic Young’s modulus still requires further study.

In this work, the authors established a series of different glutenite physical models
based on a stochastic algorithm and conducted triaxial compression finite element simu-
lation experiments to study the variation patterns of Young’s modulus in glutenites with
different gravel inclusions. Using micron indentation testing techniques [28–30] to obtain
the microscale indentation Young’s modulus of gravel and matrix, different physical mod-
els of glutenite with varying gravel particle sizes, size distributions, and contents were
constructed. Through finite element numerical simulation of compressed glutenite, the
study analyzed the influence of different gravel intermixing characteristics on the macro-
scopic Young’s modulus of glutenite. The research findings are expected to supplement and
improve the understanding of the mechanical properties of gravel-intermixed glutenite,
providing a fundamental theoretical basis for predicting the macroscopic Young’s modulus
of tight glutenite reservoirs.

2. Obtaining Microscale Mechanical Parameters of Glutenite

Using the MFT-4000 multifunctional material surface performance tester (as shown
in Figure 1) to conduct microscale mechanical parameter tests on the gravel and matrix of
glutenite, the experimental loading/unloading rate referenced in [29] is set at 10 N/min.
The maximum loading force in the experiment is 15 N, and the peak holding time at
maximum load is 5 s. The small cylindrical sample with a diameter of ϕ25 mm and a height
of 10 mm was used for the experiment, and the core was taken from the tight glutenite of
the Junggar basin, NW China. Core samples obtained from underground were subjected
to triaxial compression tests, determining that Young’s modulus of the entire core section
ranges from 26.18 to 44.08 GPa, compressive strength from 176.27 to 274.90 MPa, and
Poisson’s ratio from 0.18 to 0.39. Samples with different Young’s moduli were prepared at
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intervals of 5 GPa for micro-indentation experiments. The load–displacement relationship
(as shown in Figure 2) of gravel and matrix was obtained by using the grid point array
method (as shown in Figure 1) for indentation.

Processes 2024, 12, x FOR PEER REVIEW 3 of 18 
 

 

triaxial compression tests, determining that Young’s modulus of the entire core section 
ranges from 26.18 to 44.08 GPa, compressive strength from 176.27 to 274.90 MPa, and Pois-
son’s ratio from 0.18 to 0.39. Samples with different Young’s moduli were prepared at 
intervals of 5 GPa for micro-indentation experiments. The load–displacement relationship 
(as shown in Figure 2) of gravel and matrix was obtained by using the grid point array 
method (as shown in Figure 1) for indentation. 

 
Figure 1. The MFT-4000 testing device and test specimen diagram. 

 
Figure 2. Typical micron indentation experimental load–displacement relationship curve for glu-
tenite. 

This study focuses on the linear elastic characteristics of glutenite. Therefore, the ex-
periment used the Oliver–Pharr (O-P) method [31] to calculate the Young’s modulus of 
gravel and matrix. The specific calculation method is shown in Equations (1) and (2). 

2
r

dP
S E A

dh

β

π
= =  (1)

2

2

1

1 1rock

i

r i

E

E E

ν

ν

−
=

−
−

 
(2)

Figure 1. The MFT-4000 testing device and test specimen diagram.
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Figure 2. Typical micron indentation experimental load–displacement relationship curve for glutenite.

This study focuses on the linear elastic characteristics of glutenite. Therefore, the
experiment used the Oliver–Pharr (O-P) method [31] to calculate the Young’s modulus of
gravel and matrix. The specific calculation method is shown in Equations (1) and (2).
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where S is the contact stiffness (N/m); β is a constant related to the shape of the indenter,
with a value of 1.034; A is the contact area (m²); Er is the indentation modulus at the test
point (Pa); Ei is the indentation modulus of the indenter (Pa), with a value of 1140 GPa; ν is
the Poisson’s ratio of the indenter; νi is the Poisson’s ratio of the indenter, with a value of 0.25.

Figure 3 shows the load–displacement curves for the indentation experiments of gravel
and matrix, and Figure 4 displays the distribution of Young’s modulus at the indentation
points. The load–displacement curves for gravel and matrix exhibit distinct differentiation,
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with the overall Young’s modulus of gravel being higher than that of the matrix. The
Young’s modulus distribution range of gravel is relatively large, ranging from 24.95 to
82.68 GPa, with an average of 47.42 GPa. Meanwhile, the Young’s modulus distribution
range of the matrix is relatively smaller, ranging from 10.24 to 33.73 GPa, with an average
of 20.61 GPa.
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3. Finite Element Numerical Simulation
3.1. Glutenite Modeling

The sorting of gravels in glutenite is poor, and there is a large difference in particle
size and geometric shape distribution. The arrangement of gravels is complex, making it
difficult to describe them effectively. This study constructs a two-dimensional physical
model of the glutenite based on Python secondary development. The specific modeling
process is shown in Figure 5, and the generated two-dimensional physical model of the
glutenite is shown in Figure 6c. The construction of the two-dimensional model includes
two core steps: (1) determining whether gravels intersect based on the relationship between
the centroid distance (d) and the sum of two circle radii (c1 + c2), with a certain tolerance
(Tol.), as shown in Figure 6a; (2) based on the generated circular gravels, randomly selecting
a certain number of points on the circle to construct a closed curve, forming irregular
gravel particle shapes, as shown in Figure 6b. In addition, the gravel content in the
two-dimensional glutenite physical model can be obtained by image processing technology
(pixel statistics).



Processes 2024, 12, 185 5 of 17

Processes 2024, 12, x FOR PEER REVIEW 5 of 18 
 

 

model of the glutenite based on Python secondary development. The specific modeling 
process is shown in Figure 5, and the generated two-dimensional physical model of the 
glutenite is shown in Figure 6c. The construction of the two-dimensional model includes 
two core steps: (1) determining whether gravels intersect based on the relationship be-
tween the centroid distance (d) and the sum of two circle radii (c1 + c2), with a certain tol-
erance (Tol.), as shown in Figure 6a; (2) based on the generated circular gravels, randomly 
selecting a certain number of points on the circle to construct a closed curve, forming ir-
regular gravel particle shapes, as shown in Figure 6b. In addition, the gravel content in 
the two-dimensional glutenite physical model can be obtained by image processing tech-
nology (pixel statistics). 

 
Figure 5. Workflow of modeling 2D physical models of glutenite. 

 
(a) gravel intersection determination (b) gravel shape (c) physical model 

Figure 6. Schematic of physical modeling for gravel intersection determination, irregular gravel gen-
eration, and a physical model of glutenite. 

  

Figure 5. Workflow of modeling 2D physical models of glutenite.

Processes 2024, 12, x FOR PEER REVIEW 5 of 18 
 

 

model of the glutenite based on Python secondary development. The specific modeling 
process is shown in Figure 5, and the generated two-dimensional physical model of the 
glutenite is shown in Figure 6c. The construction of the two-dimensional model includes 
two core steps: (1) determining whether gravels intersect based on the relationship be-
tween the centroid distance (d) and the sum of two circle radii (c1 + c2), with a certain tol-
erance (Tol.), as shown in Figure 6a; (2) based on the generated circular gravels, randomly 
selecting a certain number of points on the circle to construct a closed curve, forming ir-
regular gravel particle shapes, as shown in Figure 6b. In addition, the gravel content in 
the two-dimensional glutenite physical model can be obtained by image processing tech-
nology (pixel statistics). 

 
Figure 5. Workflow of modeling 2D physical models of glutenite. 

 
(a) gravel intersection determination (b) gravel shape (c) physical model 

Figure 6. Schematic of physical modeling for gravel intersection determination, irregular gravel gen-
eration, and a physical model of glutenite. 

  

Figure 6. Schematic of physical modeling for gravel intersection determination, irregular gravel
generation, and a physical model of glutenite.

3.2. Numerical Implementation and Scheme

To predict the macroscopic Young’s modulus of glutenite, it is only necessary to
study the linear elastic stage of the compression loading process of glutenite. Therefore,
with the assistance of the ABAQUS platform, a 2D static linear elastic quasi-three-axis
compression numerical model was established. As indicated in [32], the size effect affects
the mechanical properties of the glutenite, suggesting that the sample size should not be
less than 10 cm. Therefore, the model size in this study was set to 10 cm × 20 cm, and
triangular solid elements (CPS3) were used for mesh division. To ensure mesh quality,
the spacing between mesh nodes was set at 0.1 to 0.5 mm. Following the quasi-three-
axis compression experimental loading process, the top of the specimen was subjected to
loading displacement while the bottom was fixed. The model loading simulation used
an implicit solution algorithm to handle the displacement and load relationship. In the
simulation, the loading displacement was set to 0.2 mm, and the confining pressure was
set at 30 MPa. The Young’s modulus of the gravel and matrix in the glutenite was taken
as the mean value, obtained from micrometer indentation tests. The Young’s modulus
of the gravel was taken as 47.72 GPa, with a Poisson’s ratio of 0.25, while the Young’s
modulus of the matrix was taken as 20.61 GPa, with a Poisson’s ratio of 0.3. To explore the
macroscopic Young’s modulus characteristics of glutenite with different gravel inclusion
features, the focus was primarily on the gravel size, size distribution, and gravel content.
Five gravel sizes were set (as shown in Figure 7), namely, 1 cm, 2 cm, 3 cm, 4 cm, and
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5 cm, and different gravel contents were also set. A total of 205 gravel size distribution
ratios were established, as shown in Figure 8, and the number of samples with different
gravel contents conformed to a normal distribution, as shown in Figure 9. The coefficient of
uniformity of the particle size distribution (C) (Equation (3)) was introduced to characterize
the particle size distribution characteristics. A C of 0.1 to 0.3 is considered ideal, and when
it exceeds 0.3, the uniformity of particle distribution is considered poor. The calculation for
C is

C = ∑ (Pi)
2 (3)

where C represents the coefficient of uniformity of the particle size distribution, and Pi
represents the quantity proportion of various particle sizes, which is dimensionless.
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3.3. Numerical Verification

To validate the numerical simulation method for predicting the macroscopic Young’s
modulus of glutenite, a compression experiment was conducted, and a stress–strain curve-
fitting analysis was performed during the linear elastic phase of the rock compression
experiment. Combining compression acoustic emission monitoring and stress–strain curves,
it was found that the rock sample was in the stage of crack closure compaction and linear
elasticity during the first 400 s of the loading process [33,34], as shown in Figure 10. With
the aid of image processing technology to identify the gravel and matrix in the rock core
and construct an equivalent physical model, compression experiments were conducted,
as depicted in Figure 11. The equivalent model used CPS3 triangular solid elements for
mesh division, with a mesh node spacing of 0.2 mm, a loading displacement of 0.15 mm,
and a confining pressure set to 30 MPa, according to the experimental conditions. As
shown in Figure 11c, the stress distribution of gravel and matrix exhibits a significant
difference in magnitude with localized stress concentration. Through parameter sensitivity
analysis, when the matrix Young’s modulus was 15 GPa and the gravel Young’s modulus
was 70 GPa, the numerical simulation results could fit well with the linear elastic phase
of the uniaxial compression experiment, as shown in Figure 12. The fitted parameters
fell within the range of micron indentation test values, and the fitting results matched the
values of gravel and matrix Young’s modulus based on the upscaling method predicted in
the literature [32].
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4. Results
4.1. The Impact of Gravel Size and Content

Figure 13 shows the predicted Young’s modulus of glutenite under different gravel
sizes and contents. Overall, there is no clear correlation between the size of gravel and the
Young’s modulus of glutenite under the same content conditions, and the change in size has
a relatively small impact on the modulus, resulting in fluctuations of the Young’s modulus
within 1 GPa. Figure 14 illustrates the stress field distribution during the compression of
glutenite. The inclusion of high Young’s modulus gravel leads to local high stress and
localized stress in the area where the high modulus gravel intersects with the low modulus
matrix. Further statistical analysis of the local maximum stress conditions under different
gravel sizes and contents during the compression of glutenite is presented in Figure 15.
The statistical results show that under the same particle size conditions, the local maximum
stress exponentially increases with an increase in gravel content. Under low gravel content
(less than 35%), the particle size has a relatively small impact on the local maximum stress.
However, under high gravel content, the particle size has a greater impact on the local
maximum stress, with a maximum difference of up to 28.9 MPa. Taking the predicted
results for 1 cm and 5 cm gravel sizes as an example, at a gravel content of 10%, the local
maximum stress for the smaller size increases by 4.88% compared to the larger size; at a
gravel content of 50%, the local maximum stress for the smaller size increases by 50.34%
compared to the larger size.
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4.2. The impact of Gravel Particle Size Distribution Ratio

To investigate the impact of the gravel particle size distribution ratio on Young’s
modulus of glutenite, 205 different particle size distribution ratio glutenite samples were
set, with gravel content ranging from 20% to 70%, representing different types of glutenite
with varying gravel content and gravel–matrix support patterns. When the gravel content
in the glutenite is less than 40%, it represents a matrix-supported pattern; between 40%
and 60%, it represents a matrix–gravel-supported pattern, and when the gravel content
exceeds 60%, it represents a gravel-supported pattern, as shown in Figure 16. Figure 17
illustrates the relationship between gravel content and Young’s modulus under different
particle size distribution ratios, demonstrating a strong exponential relationship between
gravel content and Young’s modulus. When the gravel content exceeds approximately
45%, the exponential relationship between gravel content and Young’s modulus becomes
more varied. Figure 18 shows the coefficient of uniformity of particle size distribution
under different gravel contents in the glutenite. It can be observed that under low gravel
content conditions in the simulation cases, the particle size distribution is relatively uniform,
and as the content increases, the non-uniformity of particle size distribution in the gravel
increases. Figure 19 presents a scatterplot of the correlation between gravel Young’s
modulus and particle size uniformity. Overall, the magnitude of Young’s modulus is
positively correlated with the non-uniform distribution of gravel, which also explains the
increased variability in the exponential relationship between gravel content and Young’s
modulus when the gravel content exceeds 45%. This variability arises from different forms
of gravel distribution at the same gravel content, leading to variations in the uniformity of
gravel particle size distribution.
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From Figure 15; Figure 20, it can be observed that overall, as the gravel content
increases, the local stress in the glutenite gradually increases. The distribution of particle
sizes has a significant impact on the local stress in the glutenite during the loading process.
Under the same gravel content conditions, the stress difference caused by differences in
particle size distribution can reach up to 38 MPa.
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5. Discussions
5.1. Comparison with the Homogenization Methods

Research on Young’s modulus of glutenite is similar to the study of the equivalent
modulus of composite materials. A series of representative theoretical works are the upper
and lower bound estimations of Hashin-Shtrikman [35,36]. In 1962, Hashin and Shtrikman
analyzed the upper and lower bounds of the elastic modulus of two-phase and multi-phase
heterogeneous materials and obtained the classical results of the equivalent modulus theory
of composite materials. The theoretical results for two-phase alloys corresponded well with
experimental results. In 1965, Hill proposed a self-consistent method, embedding particles
into a material body with uniform properties, and derived similar theoretical results [37]. In
1973, based on the analysis of the intrinsic strains in Eshelby’s inclusion theory [38,39], Mori
and Tanaka proposed the famous M-T formula by analyzing the influence of inclusions
on the surrounding matrix under local strains [40]. Additionally, in 1992, Sheng [41]
put forward the differential effective medium (DEM) theory. To verify the accuracy of
Yang’s modulus prediction in this study, the predicted results will be compared with the
homogenization methods (Eshelby’s model, M-T model, and DEM). The homogenization
models can be expressed as follows:

(1) Eshelby’s model [38,39]:

Khom
dil = k0 +

2

∑
r=1

fr
(kr − k0)(3k0 + 4µ0)

3kr + 4µ0
(4)
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Ghom
dil = µ0 +

2

∑
r=1

fr
5µ0(µr − µ0)(3k0 + 4µ0)

µ0(9kr + 8µ0) + 6µr(kr + 2µ0)
(5)

(2) M-T model [40]:

Khom
MT = (

2

∑
r=1

fr
kr

3kr + 4µ0
)(

2

∑
r=1

fr

3kr + 4µ0
)

−1

(6)

Ghom
MT =

2
∑

r=1

frkr
µ0(9k0+8µ0)+6µr(k0+2µ0)

2
∑

r=1

fr
µ0(9k0+8µ0)+6µr(k0+2µ0)

(7)

(3) DEM theory [42]:

dkhom
DEM
dcr

+
2
∑

r=1

(khom
DEM−kr)(3khom

DEM+4Ghom
DEM)

(1− fr)(3kr+4Ghom
DEM)

= 0

dGhom
DEM

dcr
+

2
∑

r=1

5Ghom
DEM(Ghom

DEM−µr)(3khom
DEM+4Ghom

DEM)

(1− fr)[3khom
DEM(3Ghom

DEM+2µr)+4Ghom
DEM(2Ghom

DEM+3µr)]
= 0

khom
DEM

∣∣∣ fr=0 = kr, Ghom
DEM

∣∣∣ fr=0 = µr

(8)

where Khom and Ghom are the bulk and shear moduli of the homogenized bulk material,
respectively, kr and µr the bulk and shear moduli of individual inclusion phases, and fr
the volume fraction of the r-th phase; cr is the pore volume ratio. A constant Poisson’s
ratio of 0.18 was assumed for all individual phases to determine the kr and µr. Then the
Young’s modulus of the bulk rock was determined based on the estimated homogenized
Khom and Ghom.

Figure 21 contrasts the results of numerical simulation predictions for Young’s modu-
lus and the results of homogenization method calculations. The analysis shows a strong
linear correlation between the numerical simulation predictions and the homogenization
method calculations, especially with Eshelby’s model, which indirectly validates the ac-
curacy of the numerical simulation predictions. When the numerical simulation predicts
Young’s modulus greater than 30 GPa, the dispersion of the homogenization method calcu-
lations increases. From the perspective of the theoretical formula of the homogenization
method, the key parameters determining the equivalent Young’s modulus of composite
materials are the Young’s modulus of the inclusions and the volume fraction. Therefore, a
high Young’s modulus reflects a higher content of inclusions. Under conditions of high
gravel content, the M-T model, DEM method, and numerical simulation predictions deviate
significantly. This is because the support pattern of the glutenite undergoes a transfor-
mation, and the homogenization method finds it difficult to consider the influence of the
support pattern on the Young’s modulus of the glutenite.
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5.2. Parameter Sensitivity and Correlation Analysis

To quantitatively study the influence of various parameters on Young’s modulus
of glutenites, this study adopted the Sobol index method [43], which is more suitable
for conducting detailed global sensitivity analysis in low-dimensional parameter spaces
compared to OAT [44] and the Morris method [45]. And multiple linear regression [46],
gray correlation analysis [47], Pearson correlation analysis [48], and random forest [49]
were used to investigate the effects of various parameters on Young’s modulus. Specific
impact results are shown in Table 1 and Figures 22–25. The results of the multiple linear
regression study indicate a positive correlation between the quantity and content of gravel
and Young’s modulus of sandstone, while the coefficient of uniformity exhibits a negative
correlation. The results of the gray correlation, Pearson correlation, and random forest
studies indicate that the gravel content is the main controlling factor affecting Young’s
modulus of the glutenite. Pearson correlation analysis found a strong correlation between
the quantity of gravel and the coefficient of uniformity, as shown in Figure 24. Additionally,
due to the early stage of the research, as subsequent experimental samples become more
abundant, the uncertainty of the data sample characteristic parameters should also be
considered [50,51].

Table 1. The results of parameter sensitivity and correlation analysis.

Methods Gravel Number Gravel Content Coefficient of Uniformity

Sobol index method 0.053 0.942 0.004
Multivariate Regression Coefficients 0.041 20.622 −2.743

Gray Relational Coefficient 0.670 0.900 0.650
Pearson Correlation Coefficient 0.830 0.980 0.730

The score of Random Forest 0.010 0.984 0.006

Processes 2024, 12, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 22. Bar diagram of S1 sensitivity index of Sobol index method. 

 
Figure 23. Heatmap of gray correlation analysis. 

Figure 22. Bar diagram of S1 sensitivity index of Sobol index method.



Processes 2024, 12, 185 14 of 17

Processes 2024, 12, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 22. Bar diagram of S1 sensitivity index of Sobol index method. 

 
Figure 23. Heatmap of gray correlation analysis. Figure 23. Heatmap of gray correlation analysis.

Processes 2024, 12, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 24. Heatmap of Pearson correlation analysis. 

 
Figure 25. The score of Random Forest distribution histogram. 

6. Conclusions 
This study utilized micron indentation techniques to determine the microscopic me-

chanical parameters of gravel and matrix in glutenite. By employing the finite element 
method, an analysis was conducted to investigate the variations in Young’s modulus of 
glutenite with different gravel inclusions. The specific conclusions are as follows: 

(1) Glutenite exhibits strong heterogeneity, with gravel having a higher Young’s 
modulus on average compared to that of the matrix. The range of Young’s modulus for 
gravel spans from 24.95 to 82.68 GPa, with an average of 47.42 GPa, while the range for 
the matrix Young’s modulus is relatively smaller, ranging from 10.24 to 33.73 GPa, with 
an average of 20.61 GPa. 

(2) Gravel content is the primary controlling factor affecting the macroscopic Young’s 
modulus of glutenite, showing a strong positive linear relationship with Young’s modu-
lus. Gravel particle size and distribution ratio have a relatively minor impact on the mac-
roscopic Young’s modulus of glutenite. 

(3) The inclusion of high Young’s modulus gravel results in stress concentration at 
the interface between the gravel and the matrix during the compression loading process 
of glutenite, leading to an unbalanced distribution of the entire stress field. Under a single 
particle size condition, larger particle sizes result in smaller local maximum stress, while 
higher gravel content leads to larger local maximum stress. Under different gravel particle 
size distribution ratios, higher non-uniformity in particle size distribution is correlated 

Figure 24. Heatmap of Pearson correlation analysis.

Processes 2024, 12, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 24. Heatmap of Pearson correlation analysis. 

 
Figure 25. The score of Random Forest distribution histogram. 

6. Conclusions 
This study utilized micron indentation techniques to determine the microscopic me-

chanical parameters of gravel and matrix in glutenite. By employing the finite element 
method, an analysis was conducted to investigate the variations in Young’s modulus of 
glutenite with different gravel inclusions. The specific conclusions are as follows: 

(1) Glutenite exhibits strong heterogeneity, with gravel having a higher Young’s 
modulus on average compared to that of the matrix. The range of Young’s modulus for 
gravel spans from 24.95 to 82.68 GPa, with an average of 47.42 GPa, while the range for 
the matrix Young’s modulus is relatively smaller, ranging from 10.24 to 33.73 GPa, with 
an average of 20.61 GPa. 

(2) Gravel content is the primary controlling factor affecting the macroscopic Young’s 
modulus of glutenite, showing a strong positive linear relationship with Young’s modu-
lus. Gravel particle size and distribution ratio have a relatively minor impact on the mac-
roscopic Young’s modulus of glutenite. 

(3) The inclusion of high Young’s modulus gravel results in stress concentration at 
the interface between the gravel and the matrix during the compression loading process 
of glutenite, leading to an unbalanced distribution of the entire stress field. Under a single 
particle size condition, larger particle sizes result in smaller local maximum stress, while 
higher gravel content leads to larger local maximum stress. Under different gravel particle 
size distribution ratios, higher non-uniformity in particle size distribution is correlated 

Figure 25. The score of Random Forest distribution histogram.

6. Conclusions

This study utilized micron indentation techniques to determine the microscopic me-
chanical parameters of gravel and matrix in glutenite. By employing the finite element
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method, an analysis was conducted to investigate the variations in Young’s modulus of
glutenite with different gravel inclusions. The specific conclusions are as follows:

(1) Glutenite exhibits strong heterogeneity, with gravel having a higher Young’s
modulus on average compared to that of the matrix. The range of Young’s modulus for
gravel spans from 24.95 to 82.68 GPa, with an average of 47.42 GPa, while the range for
the matrix Young’s modulus is relatively smaller, ranging from 10.24 to 33.73 GPa, with an
average of 20.61 GPa.

(2) Gravel content is the primary controlling factor affecting the macroscopic Young’s
modulus of glutenite, showing a strong positive linear relationship with Young’s modulus.
Gravel particle size and distribution ratio have a relatively minor impact on the macroscopic
Young’s modulus of glutenite.

(3) The inclusion of high Young’s modulus gravel results in stress concentration at the
interface between the gravel and the matrix during the compression loading process of
glutenite, leading to an unbalanced distribution of the entire stress field. Under a single
particle size condition, larger particle sizes result in smaller local maximum stress, while
higher gravel content leads to larger local maximum stress. Under different gravel particle
size distribution ratios, higher non-uniformity in particle size distribution is correlated
with larger local maximum stress, and there is no clear correlation between gravel content
and local maximum stress.
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