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Abstract: Sodium sulfate (SS) is a neutral activator. SS-activated alkali-activated slag cement (AASC)
has lower shrinkage. However, it sets slowly, and the mechanical property develops slowly. Slaked
lime (SL) is an alkaline substance widely used in industry that can be used as an activator in AASC. In
this paper, SL was used alone, and SL and SS were mixed together to prepare AASC. The effects of SL
content on the setting time, shrinkage properties and mechanical strength of AASC were investigated.
Furthermore, the mechanism was explored with the analysis of microscopic tests. The results showed
that SS could not be used as an activator alone, while SL could be used as an activator alone, and
SS could be combined with SL to prepare AASC. The setting time of the SL system or the SS-SL mix
system decreased with the increase in SL. The mechanical properties of the SL system were poor.
The SS-SL system showed the highest mechanical properties when SL was 3%. With the increase
in SL, the autogenous and drying shrinkage of the SL system increased, while the former of the
SS-SL system increased and the latter decreased. At the same time, due to the different changes in
pore structure and mesoporous volume in the two systems, the drying shrinkage showed different
changes. Compared with the SL system, ettringite (AFt) with a slight expansion property and more
crystal phases were formed in the SS-SL system, which reduced the drying shrinkage.

Keywords: alkali-activated slag cement; slaked lime; sodium sulfate; mechanical strength; shrinkage
properties

1. Introduction

As a traditional cementing material, Portland cement (PC) is widely used in engineer-
ing. However, its production requires a lot of resources and energy. Moreover, about 5%
of man-made carbon dioxide emissions result from the production of PC [1,2], which is
contrary to the current concept of a green and sustainable society. Alkali-activated slag
cement (AASC) uses the waste slag produced by smelting pig iron as the main binding
material and is activated by an alkali activator. The total CO2 emission of concrete based
on industrial waste as an activator is only 35–60% of that of PC concrete, which is in
compliance with the policy of low carbon [3]. Also, it shows high strength, low hydration
heat, good corrosion resistance, good freezing resistance and other excellent properties.
AASC has attracted wide attention for its potential to significantly reduce greenhouse gas
emissions [3–5].

Studies showed that activator type is the main factor affecting the properties of
AASC [6–8]. As a commonly used alkali component, sodium hydroxide (SH) and wa-
ter glass (WG) are strongly alkaline and generally considered to be the most effective
activators. AASC activated by WG or SH shows rapid hydration, setting and hardening,
rapid strength development and high strength [9,10]. Bakharev prepared AASC with three
activators, and studies showed that liquid WG provided the highest mechanical properties
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compared with SH and NaCO3 (SC) [11]. Fang et al. found that AASC mortar had excellent
mechanical properties when WG was selected as an activator, and its compressive strength
reached 94.5 MPa after 28 days under standard curing conditions [12]. However, its rapid
setting, hardening and fluidity loss were not convenient for the construction of AASC con-
crete. The high alkalinity of SH led to excessive initial hydration, which was unfavorable
to develop late-strength [9,13]. C-A-S-H gel accounted for about 70% of the hydration
products, which easily produced large shrinkage deformation that was not conducive to
the durability of AASC concrete [9,14]. Cengiz et al. found that AASC mortars activated
with WG and SH showed six and three times the shrinkage performance of OPC mortars,
respectively [15,16]. Moreover, the shrinkage of AASC concrete activated with WG was
about 2–3 times that of OPC concrete [17,18].

What is more, both WG and SH are manufactured with energy-intensive manufactur-
ing processes, especially WG [19]. Although AASC can be considered an environmentally
friendly cementitious material, WG and SH are not the best choices for the preparation of
AASC. As emphasized by Habert et al., the purpose of using AASC was to mitigate the
adverse environmental impacts of civil engineering, which was not achievable using WG
and SH as activators at that time [20]. Moreover, the high alkalinity of WG and SH is also
harmful to the body of construction workers.

Therefore, other activators such as sodium sulfate (SS), SC and slaked lime (SL) are
used to prepare AASC. SS is a neutral salt, and SC is a weakly alkaline salt. The hydration,
setting and hardening of SS- and SC-activated AASC is low, which allows an AASC concrete
mixture to maintain high workability for a long time and facilitate construction. SS- and
SC-activated AASC show relatively small shrinkage. Cengiz et al. found that AASC
prepared with SC as an activator had comparable shrinkage to OPC [15,16]. However, its
early strength develops slowly, and its late strength is also low [21–23]. Tan et al. found
that although GBFS were ground from 18.12 µm to 3.87 µm, AASC mortar prepared with
SS and SC still presented a low early mechanical property [24]. Ma et al. also believed
that the more SS in a compound activator, the lower the mechanical property of mortar,
especially in the early stage [25]. However, when activated with SS and WG, AASC mortar
exhibits excellent mechanical properties while significantly reducing drying shrinkage [25].
Hoang-Anh Nguyen et al. found that SS was more suitable than WG for improving the
performance of AASC mixed with CaSO4·2H2O. For example, the early strength of the
AASC paste with the incorporation of SS was higher than that with the incorporation of
WG [26]. These studies show that if SS is used properly, it has the potential to prepare
AASC with good comprehensive properties. In addition, SS is generally cheaper and less
harmful than other activators [23].

SL is a weakly alkaline substance that, when used as an alkali activator, not only
provides the alkaline environment required for hydration but also increases the calcium
content of the system [8,27,28]. However, the strength of using SL as the only activator
is low. Compared with SL alone as an activator, higher gel diffraction peaks and higher
mortar strengths were observed when the SL content was 7.5% along with 1% SS, 2% SC
or 1% Ba (OH)2, respectively [27,28]. The molar ratio of SiO2 and CaO in the C-S-H gel
increased when mixed with Na2SiO3 or Na2CO3, while it decreased when mixed with Ba
(OH)2 [27,28]. When AASC was activated with SL alone and SL mixed with gypsum, the
results showed that although the latter showed a low autogenous shrinkage and drying
shrinkage, it presented a low mechanical property [8,14]. The authors attributed this
to the finer pore distribution in the SL system [29]. In a preliminary test, the author of
another paper mixed SL into AASC activated with WG [8]. The results indicated that the
early strength development was significantly enhanced when SL was less than 5%. The
introduction of SL increased the autogenous shrinkage of the composite system and at
the same time reduced its drying shrinkage [8]. The former was mainly caused by the
promotion of the early reaction rate with the incorporation of SL, which generated more
gel, and the latter was due to the generation of more crystalline hydration products with a
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lower number of mesopores. Moreover, compared with the gel, the elasticity modulus of
unhydrated SL was larger, which was conducive to inhibiting shrinkage [8].

It can be seen from the above that when SL is combined with other activators, different
activators show different effects. In this paper, AASC was prepared using SL as an activator,
and SL and SS as compound activators, respectively. The effects of SL alone and SL mixed
with SS on the basic performance of AASC were explored. Meanwhile, the microstructure
of AASC was studied to clarify the mechanism of SL’s effect on its properties.

2. Experiments
2.1. Materials

The binder included SL and GBFS with a specific surface area of 432 m2/kg. The main
chemical components of GBFS are presented in Table 1. The activity indices of GBFS at
7 days and 28 days were 88% and 106%, respectively. The basicity coefficient was calculated
with Formula (1), which was 1.09. Figure 1 is the X-ray diffraction (XRD) of GBFS, which
shows that the phase composition of GBFS is dominated by the glass phase. SS and SL used
in the experiment were pure reagents for chemical analysis. AASC mortar was prepared
using river sand with a maximum particle size of 5 mm. The water mixture of AASC paste
and mortar was tapping water. The SL was chemically analyzed with pure reagent; the
content of calcium hydroxide was ≥95%, and the particle size distribution is shown in
Figure 1b.

Kb =
CaO + MgO
SiO2 + Al2O3

=
41.36 + 8.42
31.68 + 13.96

= 1.09 (1)

Table 1. Chemical components of GBFS (%).

SiO2 (%) Al2O3 (%) CaO (%) Fe2O3 (%) MgO (%) SO3(%) K2O (%) Na2O (%) Ignition Loss (%)

31.68 13.96 41.36 0.66 8.42 1.27 0.47 0.50 1.01
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Figure 1. The XRD pattern of GBFS and particle size distribution of SL: (a) XRD pattern of GBFS and 

(b) particle size distribution of SL. 
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Figure 1. The XRD pattern of GBFS and particle size distribution of SL: (a) XRD pattern of GBFS and
(b) particle size distribution of SL.

2.2. Experimental Works
2.2.1. Mix Proportions

The detailed mix formulations of the AASC paste and mortar are given in Tables 2 and 3.
The SL content was 0, 3%, 5%, 8%, 10% and 12%, which was the mass percentage of SL and
GBFS. The content of SS was fixed at 9.16% of SL and GBFS.
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Table 2. Mix proportion designs of the AASC pastes.

Number GBFS SL SS Water

SL3 97 3 -- 35
SL5 95 5 -- 35
SL8 92 8 -- 35
SL10 90 10 -- 35
SL12 88 12 -- 35

SS-SL0 100 0 9.16 35
SS-SL3 97 3 9.16 35
SS-SL5 95 5 9.16 35
SS-SL8 92 8 9.16 35

SS-SL10 90 10 9.16 35
SS-SL12 88 12 9.16 35

Note: Mass ratios are relative to 100 g binder.

Table 3. Mix proportions of the AASC mortars.

Number GBFS SL SS Water Sand

MSL3 97 3 -- 40 200
MSL5 95 5 -- 40 200
MSL8 92 8 -- 40 200
MSL10 90 10 -- 40 200
MSL12 88 12 -- 40 200

MSS-SL0 100 0 9.16 40 200
MSS-SL3 97 3 9.16 40 200
MSS-SL5 95 5 9.16 40 200
MSS-SL8 92 8 9.16 40 200

MSS-SL10 90 10 9.16 40 200
MSS-SL12 88 12 9.16 40 200

Note: Mass ratios are relative to 100 g binder.

2.2.2. Experimental Methods

According to GB/T 1346-2011, the AASC paste was prepared [30]. SL or SL and SS
were evenly mixed with GBFS in advance. Then, the mixing water was added and then
stirred to obtain a uniform paste. According to GB/T 17671-2021, the AASC mortar was
prepared [31]. Similarly, SL or SL and SS were mixed well with GBFS in advance, and then,
mixing water and sand were added and stirred to obtain uniform mortar.

The setting time was tested using the mix proportions of the paste. The results were
determined in compliance with GB/T 1346-2011 [30]. The final result was judged by the
average of the 3 specimens.

According to the Chinese national standard GB/T 17671-2021 “Test method of cement
mortar strength”, specimens of 40 mm × 40 mm × 160 mm were prepared [31]. After
1 day of curing at room temperature, the specimens were demolded and then cured in a
standard curing room at 20 ± 1 ◦C and RH ≥ 90% until the test age, at which time the
flexural strength and compressive strength were tested. The final results were evaluated
with three specimens.

The drying shrinkage of the AASC mortar was determined in compliance with JGJ/T
70-2009 [32]. The demolded specimen with both ends embedded in the copper nail head
was immediately moved to a dry environment at 20 ± 2 ◦C and (60 ± 5) % RH. After 4 h, the
initial length difference between the standard part and the mortar specimen was measured
and calculated. The change in length difference was the change in drying shrinkage over
the ages. During the experiment, specimen lengths were measured daily until 14 days, and
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then at 28, 56, 90, 120, 150 and 180 days. The drying shrinkage percentage was calculated
according to Formula (2), and the final result was evaluated with 3 specimens.

ε =
∆L − ∆Lt

L0
× 100 (2)

where ε (%) is the shrinkage at t age; ∆L (mm) is the initial length difference between the
specimen and standard part; ∆Lt (mm) is the length difference between the age t and the
standard part; and L0 is the initial length: 160 mm.

Figure 2 shows the autogenous shrinkage testing device, which was similar to that
in the other two papers by the author [8,10]. It is mainly composed of a 250 mL specimen
bottle, a 10 mL scale tube and a rubber plug. AASC paste was prepared, and 100 g was
placed in the bag, vacuum-treated and sealed. Then, it was placed into a specimen bottle
containing water. The bottle mouth was tightened with the rubber stopper containing the
scale tube. The joints needed to be sealed with Vaseline. To ensure that the device did not
leak, the connection needed to be sealed with Teflon tape and petroleum jelly [8,10]. A drop
of water was added to the scale tube until the liquid level was stable at a certain scale. In
order to prevent the water from evaporating, a drop of oil was added to the pipette. The
change in the height of the liquid in the scale tube reflected its law of autogenous shrinkage
(mL/100 g). The test should be performed in an environment at 20 ± 2 ◦C and RH ≥ 95%.
The data were recorded every 3 h for the first 3 days, and every 6 h for the next 4 days.
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paste Figure 2. Apparatus for measuring autogenous shrinkage.

All the microscopic tests in this experiment were carried out using AASC paste. When
the AASC paste was prepared, a specimen of size 20 mm × 20 mm × 20 mm was cast
and cured in a standard environment until the test age for microstructure tests. After
curing to the specified age, the specimen was crushed, selected and immediately immersed
in absolute ethanol for the purpose of terminating hydration. Then, it was dried under
vacuum at 40 ◦C for 24 h. The pore size distribution was studied using nitrogen adsorption,
which was carried out with an automatic surface area and porosity analyzer of ASAP 2460.
The phase composition analysis of the AASC reaction products with XRD necessitates
pulverizing the sample into a fine powder. The XRD characterization was tested with a
Rigaku D instrument with a scanning range of 5–70◦ and a scanning rate of 0.02◦/step.
An SEM (scanning electron microscope, model: Zeiss Gemini 300) was used to test and
analyze the micromorphology of the hydrated products. The specimens were required
to be sprayed with gold to improve their conductivity. The product formed with AASC
hydration was analyzed using TG-DTG. The analysis was conducted under N2 protection,
heating to 900 ◦C, and a heating rate of 10 ◦C/min.

3. Results and Analysis
3.1. Setting Time

Table 4 depicts the setting time of AASC. As illustrated, the AASC paste did not set
and harden when SS was used alone. That is, SS could not be used as an activator alone,
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while SL could be used as an activator alone. SS must be combined with SL to prepare
AASC. When SL was mixed alone, or SL was combined with SS, the increased SL shortened
the setting time of the two systems, although the reduction was small. When SL increased
from 3% to 12%, the initial and final setting times of the AASC in the SL system reduced by
10.7% and 13.9%, and that of the SS-SL system reduced by 23.4% and 10.9%.

Table 4. Setting time of the AASC pastes.

Number Initial Setting Time (h:min) Final Setting Time (h:min)

SL3 4:49 6:08
SL5 4:42 5:53
SL8 4:38 5:41
SL10 4:28 5:27
SL12 4:18 5:17

SS-SL0 -- --
SS-SL3 4:42 5:12
SS-SL5 4:23 5:02
SS-SL8 4:12 4:57
SS-SL10 4:03 4:43
SS-SL12 3:48 4:38

When the amount of SL was the same, the setting time of the SS-SL system was shorter
compared with the SL system. This showed that SS and SL present a coupling activation
effect. SS is a neutral salt, so its activation effect was weak. SL is an alkaline substance
containing calcium, so its activation effect was better than SS. The small solubility of SL
would increase the initial Ca2+ content and alkalinity in the AASC. A higher SL content
may lead to more gel formation [33,34]. However, due to the low solubility of SL, increasing
its content has no significant effect on the setting time of AASC.

3.2. Mechanical Strength

Figures 3 and 4 show the mechanical properties of the AASC mortar. It can be
seen that when SL alone was used as an activator, the mechanical strength of the AASC
mortar continued to increase with SL increasing. When SL increased from 3% to 12%,
the compressive and flexural strengths at 3 days increased by 6.5 MPa and 3.6 MPa,
increasing by 110.2% and 156.5%, respectively. The compressive and flexural strength at
28 days increased by 4.6 MPa and 2.3 MPa, increasing by 35.7% and 30.7%, respectively.
The enhancement effect of increasing SL on the early mechanical properties was more
significant, but overall, the mechanical strength was poor.
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Figure 5. Autogenous shrinkage of AASC (a) SL system (b) SS-SL system. 

Figure 4. Mechanical properties of the SS-SL system: (a) flexural strength (b) compressive strength.

When SL and SS were used as a compound activator, the mechanical properties of the
AASC mortar were obviously different from those with SL alone. According to Section 3.1,
when SL was not added, the AASC paste with SS alone could not set and harden normally,
and the setting time could not be measured. In addition, the mortar with SS alone could not
be molded properly. As illustrated in Figure 4, the mechanical strength of the AASC mixed
with SS-SL developed well and was superior to that of the mortar mixed with SL alone.
Moreover, it could be seen that the low content of SL was beneficial to high mechanical
strength. The increase in SL content resulted in a shorter setting time but no increase
in mechanical strength. When the content of SL was 3%, its mechanical properties were
the highest.

SL had a certain solubility in water, so its alkalinity was conducive to hydration and
an improvement in mechanical strength. However, due to its low solubility, the setting time
and strength were not significantly affected. When SL increased gradually, the mechan-
ical strength was slightly improved, and the setting time was slightly shortened. When
excessive SL was added, the unreacted SL existed in the form of portlandite crystals [35].
Portlandite crystals are hexagonal plates with a layered cleavage surface and brittle inter-
face and can affect the growth of mechanical strength [8,36]. Meanwhile, the workability of
the mortar in the plastic state was reduced due to the higher water requirement of SL, thus
reducing the compactness and also affecting the mechanical properties [37]. In the SS-SL
system, when the SS content was too high, excessive SS existed in the form of hexagonal
plate-like crystals without the gelling property, which were not easily dissolved in water
and produced pores in the cement stone, thus reducing the strength. At the same time,
the alkalinity of the system increased, and the coupling between SL and SS enhanced the
hydration reaction. The increased strength of the system was attributed to the formation of
ettringite, which had a denser microstructure, resulting in higher strength [27,38,39]. In
conclusion, in terms of mechanical strength, a high SL content was preferred when slaked
lime was added alone. When SS was mixed with SL, a low SL content was preferred.

3.3. Autogenous Shrinkage

Figures 5 and 6 depict the autogenous shrinkage of AASC. Compared with the SL
system, obviously, the autogenous shrinkage of the SS-SL system was greater. The auto-
genous shrinkage of the SS-SL system grew more rapidly than that of the SL system. The
autogenous shrinkage of the AASC paste prepared with a mixture of SS and SL as the
base component was 2–3 times greater than that of ordinary Portland cement with the
same water–binder ratio. When SL increased, the autogenous shrinkage of the two AASC
systems increased. It increased rapidly within 24 h and then increased gently with the
increase in age.
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As shown in Figure 6a, when SL was used alone and the content increased from 3% to
12%, the autogenous shrinkage within 24 h increased by 43.0%. The autogenous shrinkage
within 7 days increased by 15.4%. The autogenous shrinkage within 24 h accounted for
58.9% to 73.0% of the autogenous shrinkage within 7 days. As depicted in Figure 6b, when
SS was used alone (SS-SL0), the autogenous shrinkage was only 0.63 mL/100 g within 24 h
and 1.98 mL/100 g within 7 days. When SL and SS were added, the autogenous shrinkage
increased significantly. When the SL content was 12%, the autogenous shrinkage increased
by 346.0% and 477.8% within 24 h, and 92.9% and 123.2% within 7 days compared with
0 and 3%. When the SL content was 3% and 12%, the autogenous shrinkage within 24 h
accounted for 73.6% and 82.4% of the autogenous contraction within 7 days, respectively.

Autogenous shrinkage mainly includes chemical shrinkage and self-drying shrinkage,
both of which are closely related to the hydration process [29,40,41]. Self-drying shrinkage
refers to the continuous consumption of water during AASC hydration, which causes a
decrease in the internal humidity of the paste and the liquid level of the gel hole, forming a
meniscus, and the resulting capillary stress causes a large shrinkage. The acceleration of
hydration leads to a reduction in the internal humidity of cement paste, leading to capillary
stress and greater self-drying shrinkage [42]. Thus, on the first day of initial hydration, au-
togenous shrinkage is thought to be primarily induced by chemical shrinkage [43]. During
the hardening phase, the rearrangement and sequential recombination of gel structures
may also result in autogenous shrinkage [43–46]. In this paper, when SL increased, the
alkalinity of the AASC paste increased, and the AASC hydration accelerated, forming more
gel and capillary stress [44]. So, autogenous shrinkage increased [17,47,48]. In addition, on
account of the high-water demand of SL, when SL increased, the free water in the AASC
paste decreased, and the internal humidity decreased more, which easily caused large
capillary stress and large autogenous shrinkage. The sulfate ions in the SS-SL system would
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contribute to forming the sulfate-containing (N) -C-A-S-H phase. The microstructure was
more compact, leading to large capillary pressure and shrinkage [44].

When SS was added alone (SS-SL0), due to the low alkalinity of the system, the
setting time was not measured within 1 day, and the mortar could not be molded properly.
However, a slight amount of shrinkage occurred, as depicted in Figure 5b. The authors
believed that this was primarily because of the adsorption of free water by precursor
powder material.

3.4. Drying Shrinkage

Figure 7 displays the drying shrinkage of the AASC mortar. It developed quickly in
the early 28 days and slowly thereafter. In the SL system, the drying shrinkage gradually
increased when SL increased. When SL increased from 3% to 12%, the drying shrinkage
increased from 0.08% to 0.10% at 28 days and from 0.12% to 0.14% at 180 days. The
percentage of drying shrinkage at 28 days was 66.7~71.4% of that at 180 days. In the SS-SL
system, the drying shrinkage gradually decreased when SL increased. When SL increased
from 3% to 12%, the drying shrinkage decreased from 0.13% to 0.09% at 28 days and from
0.18% to 0.16% at 180 days. The 28-day drying shrinkage accounted for 72.2–56.3% of the
180-day drying shrinkage. Additionally, when the content of SL was same, the drying
shrinkage of the SS-SL system in late stage was greater than that of the SL system. This
indicated that the influence of SL on drying shrinkage was different when SL was added
alone and when SL was added simultaneously with SS.
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Figure 7. Drying shrinkage of AASC (a) SL system (b) SS-SL system.

The drying shrinkage of AASC is affected by the type of hydration product, pore
structure and properties of the gel [17,49]. Portlandite (CH) and ettringite (AFt) in PC
hydration products result in a decrease in drying shrinkage. A lot of gel is formed during
AASC hydration. Under the experimental conditions, the increase in AASC mortar drying
shrinkage was due to the loss of adsorbed water on the gel surface [50,51]. Collins et al.
found that up to 81.3% of the pores in AASC were mesoporous (10–50 nm), and it was
believed that the mesopores in the hardening stage were the main reason for drying
shrinkage [52–54].

Figure 8 displays the pore size distribution of AASC. The cumulative pore volume
of the SS-SL system was greater than that of the SL system, thus resulting in larger dry-
ing shrinkage of the SS-SL system. When the SL content changed from 5% to 10%, the
cumulative pore volume of the SL system reduced, while the mesopore volume percentage
increased from 57% to 60%. In the SS-SL system, the cumulative pore volume decreased,
and the mesoporous volume percentage also decreased from 67% to 47%. So, when SL
increased, the shrinkage of the SS-SL-activated AASC decreased, and the SL system in-
creased. From the pore structure analysis, the percentage content of mesopores increased
while the SL-SS system decreased when SL was used as an alkali component alone, which
is the reason why the former drying shrinkage increased with the increase in SL content,
and the latter drying shrinkage decreased with the increase in SL content. Although the
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number of mesopores decreased with the increase in SL in the SL system, the percentage
occupied by the mesopores increased. It can be seen from Figure 9b that in the SL system,
the total number of pores decreased with the increase in SL, indicating that the system
structure became more compact with the increase in SL, which was also the reason for the
increase in strength. Moreover, there were more large pores in SS-SL10, so its mechanical
property was lower than that of SS-SL5 with less SL (see Section 3.2).
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In addition, with the increase in SL, the increase in alkalinity and the introduction
of more Ca2+ favored the formation of more gel, resulting in increased shrinkage. The
product of crystalline phase hydrotalcite and AFt, as well as residual CH crystals, can
inhibit the development of drying shrinkage. From the analysis in Section 3.5, it appeared
that the increase in SL had little influence on the crystal phase products. Of course, the
presence of more AFt, hydrotalcite and portlandite in SS-SL10 than in SS-SL5 helped reduce
drying shrinkage.
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3.5. Effect of SL on the Microstructure of AASC
3.5.1. XRD of AASC

Figures 10 and 11 show the composition of the phases of AASC obtained with XRD. As
depicted in the images, the hydration products were primarily composed of hydrotalcite,
portlandite, and gel, regardless of the SL content and activator type. When SL increased,
the characteristic peak of hydrotalcite became sharper, and the portlandite diffraction peak
appeared and was higher, which was more obvious at 28 days. This indicated that SL
could promote the hydration of AASC; however, some of the SL did not participate in
the reaction. In the SS-SL system, the diffraction peak of AFt appeared, and when SL
increased, the diffraction peak was enhanced slightly. This indicated that SS contributed
to the formation of AFt, and SL promoted this process. Compared with the SL system,
the diffraction peak of hydrotalcite was relatively low. Since the SO4

2− introduced by SS
that would first react with Ca2+ and Al3+ was consumed, AFt was preferentially formed
over hydrotalcite, thus inhibiting the formation of hydrotalcite [37]. At 3 days, a strong
diffraction peak of thenardite was found (Figure 11a), and at 28 days, the diffraction peak
was weakened (Figure 11b), indicating that with the extension of age, more SS participated
in the reaction but was not fully reacted.
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3.5.2. TG-DTG of AASC

Figure 12 and Table 5 show the TG-DTG of the AASC paste at 28 days. When the
temperature was about 40–220 ◦C, it was accompanied by the volatilization of free wa-
ter and the decomposition of gel-adsorbed water [55]. When the temperature rose to
about 260–300 ◦C, the mass loss was AFt dehydration [55]. When the temperature rose
to 390–450 ◦C, the mass loss was the dehydration of bound water in hydrotalcite [55,56].
When the temperature rose to about 580–700 ◦C, the mass loss was the dehydration of
portlandite [55]. When the temperature rose to about 730–780 ◦C, decomposed the car-
bonate phase in hydrotalcite [55]. The percentage of mass loss in the above five stages
was expressed by ∆m1, ∆m2, ∆m3, ∆m4 and ∆m5. The experimental results show that the
incorporation of SL promoted the formation of hydration products. Moreover, only ∆m2
corresponding to AFt appeared in the SS-SL system, and ∆m2 increased slightly with the
increase in SL from 0 to 10%. This further explained that the drying shrinkage in the SS-SL
system decreased with the increase in SL.
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Figure 12. TG-DTG of AASC (a) SL system (b) SS-SL system.

Table 5. Mass loss of the AASC paste at different temperatures (wt. %).

Specimen

Temperature (◦C)

40–220 ◦C 260–300 ◦C 390–450 ◦C 580–700 ◦C 730–780 ◦C

∆m1 ∆m2 ∆m3 ∆m4 ∆m5

SL5 3.69 - 0.54 1.19 0.11
SL10 4.51 - 0.86 1.67 0.21

SS-SL0 4.37 0.41 0.50 0.46 0.01
SS-SL5 5.99 0.63 0.60 0.63 0.01

SS-SL10 6.83 0.73 0.91 1.42 0.15

3.5.3. SEM of AASC

Figure 13 shows the SEM image and EDS of the AASC paste. Table 6 shows the
phase fractions of EDS. As shown in Figure 13a, when SL was added alone, unhydrated
SL crystals were interspersed in the gel. As shown in Figure 13b, when SS alone was used
as an activator, the overall structure was very loose. The XRD and EDS analyses showed
that there were many unhydrated GBFS particles and long strips of unreacted SS particles.
When SL and SS were mixed together, it was found that there were irregular needle-like
substances and flocculated substances, which were AFt and C-A-S-H gel [35,57]. The gel
appeared in a cross shape or honeycomb shape on the paste surface or embedded in the
paste, which improved the overall hydration degree and made the paste of the AASC
denser [58,59]. As shown in Figure 13d, many hexagonal flake crystals grew from the
surface of the hydration product. It could be inferred that this was portlandite combined
with EDS and XRD [60–63]. This further indicated that SL was not fully involved in the
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reaction. The presence of Al, Si, Na et al. in EDS may be caused by secondary electrons
penetrating into the surrounding gel.
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Table 6. The phase fractions of EDS (wt. %).

Serial Number C O Na Mg Al Si S K Ca Fe

1 1.16 45.19 32.58 -- -- -- 20.01 -- 0.56 0.14
2 8.20 53.66 1.55 0.48 5.31 2.55 7.98 0.12 20.14 --
3 4.78 40.91 4.97 -- 4.86 3.51 2.85 0.23 37.89 --

4. Conclusions

(1) When SL was mixed alone or SL was mixed with SS, when SL increased, the setting
time decreased, although the decrease was small. The mechanical strength of the SL
system was poor. In the SS-SL system, when SL increased, the setting time decreased,
but the mechanical properties did not increase. When the content of SL was 3%, its
mechanical properties were optimal.

(2) The autogenous shrinkage of the SS-SL system was obviously greater and developed
more rapidly than that with SL alone. When SL increased, the autogenous shrinkage
of both systems increased.

(3) When SL was added alone, the increase in SL led to an increase in drying shrinkage.
When SL and SS were mixed, the increase in SL led to a reduction in drying shrinkage.
The influence of SL on the dry shrinkage in these two systems was different. From
the perspective of the hydration product, when SL was used alone, the increase in
SL led to an increase in alkalinity, and the introduction of Ca2+ was conducive to the
formation of more gels. When SS-SL was mixed, the crystalline phase in the product
was mainly hydrotalcite and AFt, which can inhibit the development of dry shrinkage.
From the analysis in Section 3.5, the increase in SL had little effect on the crystalline
phase product. The greater amounts of AFt, hydrotalcite and portlandite in SS-SL10
compared with SS-SL5 all contributed to reducing drying shrinkage.

(4) SL as an activator can effectively promote the hydration of AASC. However, the
addition of SS promoted the formation of AFt with micro-expansion properties, which
helped to reduce drying shrinkage.

(5) SS could not be used as an activator alone, while SL could be used as an activator
alone. SS could be combined with SL to prepare AASC. Although SL could be used as
an activator alone, it was detrimental to the development of mechanical strength. The
AASC prepared by mixing SS and SL had better mechanical strength: when the content
of SL was 3%, the highest mechanical strength was obtained, but the drying shrinkage
was the largest. Therefore, when SS and SL were used as compound activators,
their effects on mechanical strength and drying shrinkage should be considered
comprehensively.
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