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Abstract: Design processes are always in motion, since more and more data-driven methods are
used for various design and validation tasks. However, small and medium enterprises especially
struggle with enhancing their processes with data-driven methods due to a lack of practical and
easy-to-use analysis and redesign methods which can handle design process characteristics. In
this paper, we present PADDME, which stands for process analysis for digital development in
mechanical engineering, as a novel method that, in contrast to currently available analysis methods,
considers those design process characteristics with respect to the integration of data-driven methods.
Furthermore, a novel technology-readiness framework for digital engineering is introduced. Using
the PADDME method, an industrial case study on introducing data-driven methods into the design
and evaluation process chain is presented. The usability and novelty of the method are shown by
the case study. Thus, PADDME allows a detailed capturing of current design processes and paves
the way for process optimisation through data-driven methods. PADDME is a valuable method for
advancing digital mechanical engineering processes in small and medium enterprises, and future
work will focus on refining and expanding its application and evaluation.

Keywords: digital engineering; design process; business process management; process evaluation;
digitalisation; data-driven method

1. Introduction

In the dynamic landscape of modern product development, where interconnected
systems, changing work environments, and emerging technologies shape the industry,
the need for adaptation in traditional processes is paramount [1,2]. As a result, traditional
product development processes need to adapt to this new reality [3]. This evolution
presents challenges and opportunities for the industry, demanding a seamless integration
of digital engineering and data-driven methods.

Those product development processes can be viewed as a continuous problem-solving
cycle, guiding the transformation from unresolved requirements to the final product [3].
However, many existing methodological approaches in this domain tend to focus pri-
marily on either mechanical [4,5] or mechatronic [6,7] product development processes,
often overlooking the industrial perspective. Industrial product development is typically
milestone-driven, emphasising deliverables and tight timeframes.

Currently, product development processes heavily rely on virtual engineering tech-
niques, such as computer-aided design (CAD) and computer-aided engineering (CAE),
which excel at processing and generating data. However, they fall short in terms of in-
terpreting and evaluating the data. The real value lies not just in the data itself but in
the knowledge it holds [8]. In the past, gathering knowledge and data was a painstaking
process, involving expert interviews and elaborate experiments [9]. This data collection
was systematised and automated through knowledge-based engineering (KBE).
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Recently, technological barriers to data collection and analysis have diminished, aided
by increased computational power. These advancements have significantly reduced the
obstacles to digitalisation, opening the door to various digital applications that can support
designers throughout the entire product development process [2,10]. Leveraging data-
driven methods can enhance efficiency and error avoidance. Data-driven methods allow
product developers to extract valuable information from diverse data sources, supporting
informed and partially autonomous decision making [9].

To fully realise the potential of these new digital engineering and data-driven methods,
they must be seamlessly integrated into existing development processes. These processes
need to have a certain technology readiness to ensure the applicability of the new methods.
This transformation not only unlocks hidden potential but also shifts virtual product
development towards comprehensive digital engineering.

The primary objectives of this work are to address the following research questions:

1. How can a method for process analysis in product development be designed to
facilitate cost-effective process optimisation for digital engineering?

2. In what way can a technology’s readiness level for digital engineering methods be
measured based on a process analysis?

While the research questions posed in this study focus on process analysis and technol-
ogy readiness in digital engineering, the underlying problem extends to the broader context
of enhancing efficiency, mitigating errors, and realising the full potential of comprehensive
digital engineering practices. The inability of existing methodologies to adequately address
these challenges highlights the importance of this research.

Within the scientific discipline of design process management, this research advances
our understanding of the digital readiness of design processes and process evaluation
regarding the integration of digital engineering methods, providing a foundation for
future studies at the intersection of product development, digital engineering, and process
management. These contributions go beyond the existing literature by addressing gaps
in current methodologies, as shown in Section 2.2. Furthermore, current methods for
integrating digital engineering methods mainly address the implementation work while
disregarding the important process analysis part.

To achieve this, the foundational knowledge required is provided in the Section 2.
Subsequently, in Section 3, the purpose and scope of the work are outlined. This is followed
by the introduction of the developed PADDME method and the technology-readiness
framework for digital engineering in Section 4. The application of the method in an
industrial context, including an evaluation, is presented in Section 5. Finally, the work
concludes with a discussion of potential future research.

2. Materials and Methods

In order to be able to integrate digital engineering methods into existing product de-
velopment processes, the basic concepts and methods of digital engineering are introduced.
Afterwards, the fundamentals of design process management are explained.

2.1. Digital Engineering

Several definitions of digital engineering exist, for example, in [11–14]. These def-
initions emphasise the continuous use of digital methods and tools, where knowledge
generated in later product life-cycle phases is leveraged for optimisation and development
based on existing data [15]. This contribution follows the definition given by [13]. Thus,
digital engineering is the consistent knowledge and information extraction, using data-
driven methods, from data generated in design, testing, or operation and the usage of
these insights during engineering processes. Figure 1 gives an overview of relevant terms
and methods. The available methods are subsumed within the overall terms data mining
and machine learning.
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Figure 1. Overview of terms in digital engineering, according to [16].

According to Fayyad et al. [17], data mining is the application of specific algorithms to
extract patterns from data. Its main applications are regression, classification, or clustering
tasks. However, no clear definitions exist for machine learning. Samuel [18] defines it as
enabling computers to learn a task without being programmed explicitly to perform this
task. Furthermore, an adaption to new and unknown data is possible [19]. In design pro-
cesses, machine learning is defined more specifically, and is used for knowledge extraction
and decision making [20]. Both categories enable the support of different development
tasks with individual objectives [15]. Several explicit use cases for data-driven methods
have been reported in design processes [21,22], as well as overview papers on the early
phases [20] or mechatronic product development [23,24].

Two common methods for implementing data-driven methods are the KDD
(knowledge discovery in databases) [25] and CRISP-DM (cross-industry standard process
for data mining) [26] frameworks, which are further detailed in Appendices A.1 and A.2,
respectively.

To integrate data-driven methods in established development processes, some prereq-
uisites have to be met. Mehlstäubl et al. [27] identify 19 aspects, divided into four clusters,
which can serve as levers for successful method integration. The four clusters are the man-
agement and business view, the data view, the method development view, and the method
user view. From the management view, the need for integrating data-driven methods has
to be present and the necessary qualifications and capacity must be provided. Data in the
process must be available in a digital format and, in the optimal case, consistent through
different phases. Furthermore, the data storage is highly relevant for the application of
data-driven methods, since the data needs to be accessed and evaluated. For the modelling
phase, the process needs to be tool-supported and the required computing power has to be
provided. Lastly, the employees have to use the developed tools for the evaluation.

2.2. Design Process Management

In the industrial context, several types of processes exist, such as manufacturing,
controlling, or management. According to ISO 9001 [28] (standard for quality management
systems), a process is defined as a set of interrelated or mutually influencing activities
that uses specific inputs to achieve a predetermined result. In contrast, a business process
is a sequence of tasks or activities that span several organisational units and pursue the
general business strategy [29]. Following Scheer [30], the business process is the model-like
description of the function to be carried out in a company in its content and temporal
dependence. In the opinion of the authors, business processes are influenced by controlling
and supporting tasks, which cannot directly be mapped to inputs or outputs as visualised
in Figure 2. To support or automate a process step or a whole process using data-driven
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methods, all influencing factors—input, output, control, and support—have to be known
and digitally available.

ProcessInput Output

Controlling

Support

Figure 2. Representation of a business process, according to IDEF0 model [31].

Business process management sustainably pursues the goal of effective and efficient
business processes. Several methods for business process management (BPM) are available
in the literature and industrial praxis [32]. BPM can be divided into four main areas:
process organisation, controlling, management, and optimisation [33]. Since the integration
of data-driven methods can be seen as a process optimisation or a business process re-
engineering (BPR), the focus in the following is on those methods. BPR is a concept that is
detached from previous structures and fundamentally scrutinises the processes [34]. One
core idea of BPR is the support of the new processes with IT systems [35]. A less drastic
approach is process optimisation, which has the main goal of an increase in efficiency [33].
The main procedure during process optimisation is according to the plan–do–check–act
(PDCA) cycle. The most prominent representatives of this approach are total cycle time
(TCT) [36], Kaizen [37], and six sigma [38].

All of these optimisation approaches are based on an initial process analysis and
capturing to transfer real processes into process models. This is necessary, since processes
are not directly tangible and need this model to interact with [39]. Depending on the target
of the analysis, several types of models are available according to Stacey et al. [39]. Possible
targets are visualisation, planning, control, and development. To transform processes
into process models, process discovery is used, in which the focus lies on information
capture [29]. There are different discovery models [40–42], which roughly follow a similar
structure [43]. After an initial definition of the setting, level of detail, and boundaries,
the information capture is performed. Thereafter, the gathered information is transformed
into a process model, and finally, validated.

Process discovery is only the first step of process analysis. Subsequent process
model visualisation has to be employed. The two most common methods are data-
flow-oriented [44] and control-flow-oriented [45] methods. An in-depth analysis of all of
the available approaches would go beyond this article. Therefore, they are summarised
in Figure 3.

An example of a data-flow-oriented method is integration definition for function
modelling (IDEF) diagrams [31]. With the unified modelling language (UML) [46] a
general-purpose modelling language is available. The business process model and notation
(BPMN) is a graphical notation to represent business processes in a control-flow-oriented
manner [47]. With event-driven process chains (EPCs) [48], a business modelling technique
is available to represent sequences of events and functions within a process. Based on EPCs,
the architecture of integrated information system (ARIS) was developed [30] to support
different views. The lean management technique value stream mapping (VSM) is used
to analyse and improve the flow of materials and information in a process and is mostly
used in production contexts [49]. Data-flow-oriented methods can document data but
have weaknesses in control and process flows. Therefore, several control-flow-oriented
methods were developed. Within those methods, data can barely be taken into account [50].
Combinations of the approaches are possible as well, to mitigate the weaknesses of
individual methods [51].
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Figure 3. Overview of process-modelling approaches.

A common characteristic of all the introduced approaches is their development for
classical processes in management or production. To deal with the characteristics of
product development mentioned above, at least 23 different modelling approaches are
available [52]. One of the most known approaches is the design structure matrix (DSM),
developed by Eppinger and Browning [53]. Another possible way of managing engineering
activities is the engineering operating system [3]. Two excellent reviews of product devel-
opment process-modelling approaches are given by Smith and Morrow [54] and Wynn and
Clarkson [52]. Kossak et al. [55] compare the available modelling languages with respect to
the relevant aspects and the integration, while Trauer et al. [51] present criteria for selecting
a suitable method for the individual use case.

Business processes can be evaluated in quality and quantity. Qualitative process
analysis asks about process capability and the presence of certain process characteristics,
while quantitative evaluation measures process performance.

Probably the best-known qualitative analysis of business processes is the maturity
model. An example is the 20-keys system, which allows companies to evaluate the
implementation status of lean production [56]. The European Foundation for Quality
Management (EFQM) model is also a qualitative analysis tool for process evaluation and
is based on the total quality management movement [57]. In order to assess the current
state of development in digital transformation, there are also maturity models that specif-
ically query the state of digitalisation. Three maturity models record the development
status of the entire company [58–60], whereas the latter specifically records the status of
the processes [61].

In the quantitative evaluation of actual processes, they are first recorded structurally
and then evaluated using ex-ante process analysis techniques. The quantitative analysis of
processes is an important tool for assessing the plausibility of qualitative considerations
such as calculations, simulations, or models with qualitative figures. As examples, the par-
ticularly well-known process indicators should be mentioned. They are multifunctional
and indispensable for understanding company-related thinking and actions [62].

Important and relevant parameters are shown in Figure 4. These can be recorded in a
process analysis in the operational or administrative environment.
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Figure 4. Overview of quantitative process analysis parameters.

Product Development Characteristics

The aforementioned processes from manufacturing, controlling, or management are
mostly fixed and reproducible, with defined outputs [63]. In contrast, engineering design
processes differ from those process types [64]. Gonnet et al. [65] confirm this statement
and argue that design processes are mostly vaguely defined. Innovation and creativity
are essentially dependent on the environment, the working climate, and the level of
qualification of the employees. Furthermore, product developers within their own company
use different technologies and program versions in the processes. From classic CAx systems,
virtual reality, EDM/PDM systems, office, and internet applications, a wide variety of tools
are in use, depending on personal (company) preference. Due to this diversity, the available
possibilities are often not fully exploited. Employees are faced with the challenge of finding
the most suitable system for the development task and the corresponding information,
knowledge, and documents at the right time, in the right quality, at the right place. The non-
transparent flow of information also makes it difficult to grasp the current status of the
development. Additionally, the following characteristics can be found:

• Design processes are highly dynamic and creative [63].
• Results are known in substance but are not finally defined [63,64].
• Changing product requirements or boundary conditions [64].
• Every design process differs, since a unique product, not existing at the beginning,

is designed [66].
• The process is highly problem-driven and generates new knowledge [67].
• Shared information is not taken into account [3].

3. Purpose and Scope

In this section, the research gap and the novelty of the developed method is elaborated.
The potentials of digital engineering are undisputed. Unfortunately, they are not widely
spread in industrial praxis yet. One possible reason is the lack of sufficient process analysis
approaches focusing on the crucial aspects for method integration and the identification of
beneficial use cases for data-driven methods [43]. Additionally, the flows of data and infor-
mation in existing processes lack adequate representation in established documentation
approaches [67]. Therefore, this data and information documentation is not sufficient to
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analyse the processes with respect to the application of data-driven methods, since data
are the critical basis for these methods. The transformation hereby crucially relies on the
capture of existing processes and the analysis of their bottlenecks, as well as beneficial
use cases for data-driven methods [43]. Summarising the mentioned characteristics of
design processes, established process management tools are not directly applicable to
design processes [64]. Especially the high abstraction level of established methods results
in disadvantages in the documentation of information flows [67]. Often only development
results are captured, but not the development procedure [65]. Furthermore, self-developed
tools, used information, and data which are archived but not further used, are also not
captured [43]. Lastly, most existing methods only focus on the capturing of the process.
The decision as to whether a process is already sufficiently qualified for the integration of
digital engineering methods and where in the process these can be integrated is based exclu-
sively on experience. A framework for process evaluation and the subsequent identification
of digital engineering potentials is missing. Since the integration of these new techniques
in existing design processes offers great potential, an appropriate method is needed.

The proposed method introduces a novel approach for analysing and evaluating
design processes, with several innovative aspects at its core. First and foremost, it em-
powers small and medium enterprises to assess their current level of digitalisation in
design processes. Additionally, it pinpoints specific subtasks within the design process
where data-driven methods can be instrumental in assisting designers. This diagnostic
capability is particularly valuable as it helps organisations understand whether they need
to make further process improvements before integrating data-driven methods effectively.
This technology-readiness level for design processes outperforms the methods currently
available for design processes. Given the inherent challenges related to the intangible
and model-based nature of design processes [39,67], a holistic capturing is not possible.
But the presented approach captures not only the procedural steps but also the software
tools, information sources, and archival data fragments. This comprehensive perspective
includes well-established aspects such as the final results, the team members involved,
and the timeframes. The method excels in providing a detailed overview of the current
design processes, with a specific focus on the data generated and the corresponding data
types. It generates a structured representation that meticulously documents the essential
components: procedural steps, software tools, data sources, and data types. This doc-
umentation serves as a foundation for process optimisation using data-driven methods.
Ultimately, the primary objective of this method is to facilitate the evaluation of the design
process, emphasising its optimisation by incorporating data-driven techniques. In doing so,
it addresses a central and overarching goal, making it a distinctive and valuable innovation
in the field.

4. Methodological Approach

The aim of this section is to create a formal method for design process analysis, focusing
on the integration of data-driven methods into these processes. Therefore, an initial use case
is presented before the requirements for process analysis in design for small and medium
enterprises are introduced. Afterwards, the novel analysis method PADDME is shown,
followed by an explanation of the developed evaluation framework.

4.1. Use Case: Integrating Data-Driven Methods into Product Development Processes

In product development, it is crucial to prioritise data analysis and uncover hidden cor-
relations that may not be immediately apparent. Fortunately, there are powerful evaluation
methods available, as mentioned earlier. Understanding the capabilities of these methods
and finding a suitable use case for initial implementation is essential. Once identified, com-
panies can integrate these new methods into their product development process. Figure 5
provides a summary of the principal steps to transform established design processes to
digital design processes.
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Figure 5. Use case of integrating data-driven methods into design processes.

4.2. Requirements for Process Analysis in Design Departments of Small and Medium Enterprises

Small and medium enterprises mostly focus on slightly different aspects when aiming
for process optimisation. To consider those aspects, requirements for process analysis in
small and medium enterprise design departments are analysed in a first step. For con-
ventional processes, those requirements are defined by Becker, Rosemann, and von Uth-
mann [68] in principles of process modelling. In addition, design process characteristics
have to be met.

The following requirements are defined:

• the method must be economical [68];
• correct representation of reality [68];
• comparability of different captures [68];
• consideration of knowledge, information, and data as well as their storage location [67];
• consideration of the variability in design processes [43].

The aspect of the economic evaluation of process capture in design was analysed in
more detail as part of an industrial survey. In our study, eight industrial partners were
asked to take part in a survey on the platform Unipark, in which different requirements are
weighed against each other in order to obtain a ranking of the requirements.

The participants were asked to rank the five aspects quality, required time, cost,
quantifiability, and consistency. Rank five is the most important aspect, while rank one is
the least important. The average rank of the individual aspects is visualised in Figure 6. It is
shown that the most important aspect is small cost, directly followed by the required time
to perform the process capture. In addition to the ranking, the participants reported a high
relevance of comprehensibility, easy usage, and compatibility with data protection rules.
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2.75
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Quality

Quantifiability
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Required Time

Figure 6. Result of the requirements ranking for process analysis. Rank five is most important, rank
zero least important.
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4.3. Analysis Method—PADDME

In the following, the methodical approach PADDME—process analysis for digital
design in mechanical engineering—[69] will be introduced in detail. In Figure 7, the whole
process is shown. The proposed method represents the further development of the basic
concept for the capture method presented by Gerschütz et al. [43,69]. While the previous
work focused on capturing the process, the following steps present the overall method with
a focus on the analysis and evaluation of the design process and the necessary preparation
steps to realise pilot design processes supported by data-driven methods.

• Documented Processes

• Process Structure Plan
• Development Status of Digital Transformation

Phase 0

Digitalization Level
Process 
Identification

• Evaluated Processes/ Bottlenecks

Phase 2

Process Evaluation

• Identified Use-Cases

• Digital Design Process

Phase 4

Integration AndA pplication
of Data-Driven Methods

S
ta

nd
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di
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d 
P

ro
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du
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In
di

vi
du

al

Phase 3

PotentialA nalysis ?
Machine Learning
Data Mining

Phase 1

Process Capturing

Figure 7. PADDME method overview according to [69]. The five phases are introduced and explained
in detail below.

To realise a systematic analysis of design processes with respect to digital technology
transformation, a reproducible meta-model is necessary. The method consists of five
successive phases, where the order is not fixed and loops and feedbacks are allowed. The
five phases are:

0. Preparation;
1. Process capturing;
2. Process evaluation;
3. Potential analysis;
4. Process redesign and integration of data-driven methods.
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Each phase ends with defined results. These are to be completed before moving
to the next phase. In the following subsections, the individual phases are introduced
and explained. For each phase, a description of the central goal and results is presented,
followed by the underlying methods and, if applicable, the tools used.

4.3.1. Phase 0: Preparation

At the beginning of each PADDME process optimisation, some general preparations
have to be performed. For design process optimisation, it is useful to check the goals of the
company against the goals of the process optimisation for compatibility. To measure the
success of the design process redesign, optimisation targets should be set according to the
company goals.

Goal and Results

The central goal of this phase is the evaluation of the initial digitalisation level of
the company as well as an identification of processes which are promising for digital
engineering integration.

Methods

At first, an overall process structure plan should be created if none is available in the
company yet. In this plan, all central processes, within the company and reaching out to
others, are documented. Based on this process structure plan the chosen design process
can be easily set into a bigger context. Although PADDME focuses mainly on product
design, processes influencing or depending on product development should be added to
the structure plan as well. In addition to start and end events, all relevant organisational
units have to be identified during the preparation phase. Best and Weth [42] emphasise the
relevance of this step to prevent structural mistakes.

The last task of the preparation phase is to evaluate the current level of digitalisation of
the company. In order to integrate data-driven methods in design processes, the company
should have developed several prerequisites according to digitalisation. Transformation
models allow a description of the current digitalisation state in an efficient and comparable
way. When using these models, the purpose and meaning must be explicitly emphasised
in order to avoid misunderstandings. When critically examining the term transformation
model, especially in the context of digital transformation, it may be more economic for
companies not to achieve the highest maturity level of the model. The high investment
costs for (further) digitalisation may not make economic sense for some processes due to
the low process flows.

4.3.2. Phase 1: Process Capturing

In the first phase of the PADDME method, the capturing of the current conditions in
the product development is performed. Therefore, an in-depth process capturing of the
design process is executed.

Goal and Results

At the end of this phase, a process documentation of all relevant processes is available.
The documentation focuses on process steps and employees as well as the used and
generated data.

Methods

The methods used in this phase can be divided into two main subgoals: process
capturing and process documentation.

Process capturing: The caption process is performed through the three-piled method
presented by Gerschütz et al. [43] and shown in Figure 8.
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Figure 8. Three-piled design process capturing method according to [43].

The key advantage of this approach is the separated view on the real process through
the employee view as well as on the planned process through the management view.
These two aspects open the opportunity to identify optimisation potentials with a target–
performance comparison. The focus on the single tasks as well as the included data
enables the capture of the relevant design process aspects. Both views are captured by
semi-structured interviews. This method is abstract enough to support the problem-driven
and dynamic characteristics of design processes. By providing guidelines, the interviews
are comparable but also give the option to react to individual particularities. During the
interviews, the interviewer should ensure they capture the important aspects of the process
as well as the influence of changing product requirements and boundaries.

Process documentation: During the process interviews, the process is visualised
by the process engineer. For this purpose, a combination of business–process–modelling–
notation (BPMN) and the value-stream method is used. This combination is necessary
since in classical BPMN data and information flows are under-represented or fully missing,
which is not the case in the value-stream method. However, this method lacks a sufficient
process documentation. By combining both methods, all relevant aspects of product design
processes regarding the integration of data-driven methods can be documented.

The combined method should represent all of the captured process aspects in a clear
and understandable way. The developed representation is shown in Figure 9.

At the top, the established BMPN flowchart is shown. Additionally, the bottom part,
with the orange swim lanes, shows the value-stream part of the documentation. These swim
lanes allow the modelling of different storage pools, no matter if they are analogue, digital,
or network-based. Furthermore, a distinction between data, information, and knowledge
is made. Data refers to every artefact which is generated or changed during the process.
Information is all aspects which are needed during the process, like simulation guidelines,
while the term knowledge comprises the experience of the employees. For every storage
pool, one swim lane is generated. The arrows, pointing from the individual process steps
to a data pool symbolise the generation of data. If the arrow is pointing from the data
pool to a process step, the data are used or needed by the process step. It is important to
realise that the data pools represent knowledge as well as information. For example, if an
employee needs information from another, this would be an arrow from a data fragment
in the employee swim lane to the respective process step. Since the basic notation of the
approach is well known, we do not explain every element in detail, but some reference
material (http://www.bpmb.de/images/BPMN2_0_Poster_EN.pdf (accessed on 7 January
2024)) exists.

http://www.bpmb.de/images/BPMN2_0_Poster_EN.pdf
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Tools

The documentation and visualisation is realised in the program Camunda Mod-
eler (https://camunda.com/de/products/camunda-platform/modeler/, (accessed on
7 January 2024)). Camunda is a BPMN modelling tool that, unlike others, is adaptable and
customisable. This allows the implementation of a plug-in, enabling functions needed for
the PADDME representation.

The following additions have been implemented:

• In communication tasks, the medium of the messages can be set (e.g., e-mail, paper, or
by voice).

• In normal tasks, the used programs and tools are added to the context menu.
• Approvals have also been realised by adapting the existing task template using custom

fields for sender, receiver, and approval information.
• The data and information fragments are extended by the data format and version. If a

task has the same input and output file, the version is incremented.

Intermediate Summary

After this first phase, insight in two central aspects is generated. On the one hand,
the company acquires an in-depth look into its state of digitalisation, and on the other hand
potential product development processes are captured, which can be further analysed and
optimised in the subsequent process.

4.3.3. Phase 2: Process Evaluation

After the capture of the actual design processes, a detailed analysis of the data is
performed in the second phase of the PADDME method.

https://camunda.com/de/products/camunda-platform/modeler/
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Goal and Results

After this phase, an in-depth evaluation of the process, especially in respect to aspects
about bottlenecks, is available. The goal of this evaluation is to identify bottlenecks in the
design process which can be optimised with data-driven methods.

Methods

At first, the decomposition of the design process into sub-processes and iterations is
performed as shown in Figure 10.

1.1

1.2

1.3

1.5

1.6

1.4.1

1.4.2

1.4.3

Business Process Sub-Process/ 
Iteration

Process Step …

Business 
Process 1

1.4

Figure 10. Schematic process decomposition of a business process to sub-process and process steps
and procedure for evaluating different process levels. The relevant decomposition level is highlighted.

This split enables the identification of weak spots on all process levels. With this
horizontal subdivision, a structured dissection is generated which fits the borders of the
super-ordinate processes at all levels. To identify sub-processes, the following criteria
are used [29]:

• accrual of services, e.g., changing responsibility;
• defined output of a sub-process;
• distinct requirement profile or client–contractor relationship;
• defined individual-provided resources;
• autonomy with respect to subsequent units;
• performance goals for specified sub-processes.

After process decomposition, every level of detail is evaluated independently to
generate a digital-engineering-technology-readiness level of the process step. Since this
section mainly focuses on the overall procedure, the evaluation criteria are introduced
in Section 4.4.

With the catalogue of criteria created, small and medium enterprises can evaluate their
design processes independently. The maturity model of the business processes for the use
of data-driven methods is supported by quantitative key figures for process evaluation.
The result of the evaluation is shown in a spider diagram, which is common for maturity
models (see Figure 11). This provides a visual representation of the current state of digital
transformation of the business processes.

The identification of bottlenecks is performed using a top-down approach, from the
business process level to the sub-process, process step, and work step level, as visualised
in Figure 10.
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Figure 11. Example result of a process evaluation. Five is seen as the best rating, zero as the worst.

The decomposition also allows a comparison of the identified process components (see
Figure 12). Each sub-process or iteration loop can be evaluated in terms of its performance
relative to the other sub-processes. The evaluation and identification of weaknesses is
carried out by a process engineer. In this way, weaknesses can be identified and compared
across the entire process flow. This gives companies the opportunity to investigate root
causes and close gaps in the process flow for a successful digital transformation.
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Technology Quality Organisation Data

1

1.3

1.4.2

1.6

Figure 12. Comparison of process levels and steps to identify weaknesses. Left: the analysed
decomposition levels. Right: the table presents the average rating of the four dimensions, the graph
represents the table graphically. Bottom right: the four (sub)process results are shown in detail.

Intermediate Summary

This phase allows weak points to be identified and compared across the entire pro-
cess flow using a technology-readiness-level system. Furthermore, companies have the
opportunity to investigate the causes in a targeted manner in order to close gaps in the
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process flow for a successful digital transformation. Additionally, the influence of the
design process’s inherent dynamic and changing requirements on the different levels is
evaluated and, therefore, can be optimised too.

4.3.4. Phase 3: Potential Analysis

After analysing the processes in phase two, the optimisation potentials and use cases
for data-driven methods are elaborated in phase three of the PADDME method, to sup-
port companies.

Goal and Results

The central goal of this phase is the identification of suitable use cases as well as
data-driven methods which can be integrated into those use cases.

Methods

In the first step, the result from the previous section is examined with regard to the
applicability of data-driven methods. It is possible that companies score well in the general
digital transformation assessment but their processes are not developed enough to directly
apply all types of data-driven methods yet.

Therefore, in a second step, minimum requirements with respect to the evaluation
criteria are set. Those requirements have to be fulfilled by the companies in order to use
data-driven methods in an economically and technologically sensible way. Using method
stencils, companies can evaluate which prerequisites are needed for the individual type of
data-driven method.

Four central approaches for the use of data-driven methods can be identified. For easy
communication of the potentials of data-driven methods, those approaches can be formu-
lated in a comprehensible, practical way:

1. Prediction of different values;
2. Identification of interrelationships and contexts;
3. Use of old data as a basis for new product generations;
4. Support for decisions.

With these application tasks, the data-driven methods can be classified. Based on the
evaluation criteria, the necessary technological, organisational, qualitative, and data-based
prerequisites can be determined, as shown in Figure 13. Companies thus find out which
methods can already be used in the actual process and also have a direct comparison of the
points at which the digital transformation should be advanced.

The visually presented prerequisites of the application types for data-driven methods
enable companies to quickly recognise which technologies they can already use. The tem-
plates also provide good guidance for future development projects.

To identify explicit methods for integration, the AI4PD ontology [70] is used. Here, the
captured process can be described and suitable methods are proposed. Since this has been
presented in previous contributions, it is not presented in detail here. For managers and
decision-makers, this approach offers a clear path to assess their organisation’s readiness
for data-driven methods. By identifying the specific prerequisites and their current status,
they can make informed decisions about where to invest resources and efforts. However,
it is important to note that while this assessment provides a qualitative understanding of
readiness, an a priori numerical assessment of the time and cost required for implementa-
tion will need further research. Nonetheless, this structured evaluation provides a solid
foundation for strategic planning, helping companies harness the potential of data-driven
methods in a purposeful and efficient manner.
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Figure 13. Template for methods to use old data as a basis. Five is seen as the best rating, zero as
the worst.

Intermediate Summary

In this phase, application potentials and digital engineering methods are evaluated
using the presented technology-readiness evaluation and the AI4PD ontology.

4.3.5. Phase 4: Process Redesign and Integration of Data-Driven Methods

The final step of the PADDME method is implementation and process redesign. Pi-
lot projects in cooperation with comparable companies or research institutions can be
particularly helpful here.

Goal and Results

After this phase, an implemented pilot process is realised and the digital engineering
method is integrated into the existing process.

Methods

Unlike the previous phases, phase four of PADDME cannot provide standardised
implementation support, although methods like the CRISP-DM [26] can give guidelines
for some problems. Each company has its own individual competencies and weaknesses
that should be taken into account during implementation and realisation. Depending on
the application, outsourcing can save time and money for companies with a low level
of qualification. Companies can also merely obtain the algorithm as a service and have
customisation and training carried out by their own employees.

Speaking about customisation, further clarification of this term should be given. To
integrate data-driven methods into existing design processes, they have to be adapted
to the given company infrastructures and specialities. This adaption is referred to as
customising of methods. To be exact, a data-driven method has to be seen as a black
box and is not customisable by SMEs by design, since they are implemented already.
Therefore, customisation of the interfaces has to be performed. For this purpose, the digital
engineering method is embedded in a program framework, as shown in Figure 14. The
interfaces can be implemented in this framework.

A first interface is required to the “IT system training”, which takes over the model
training. This generally requires a system with high computing power, which is either
available in the company or can be purchased, for example, through cloud hosting services
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in the “as-a-service” model. Furthermore, the program framework must enable integration
into the existing process flow and realise the most seamless integration possible into the
existing process and software landscape. This requires a human–machine interface or a
graphical user interface (GUI) to enable the users to operate the system, which is realised
in the interface “IT system utilisation”. Digital engineering methods always work on
the basis of data on both the input and output side, which is why further interfaces are
necessary. The actual data evaluation or “data analytics” is carried out in the “digital
engineering method” block. Input data must be identified, converted, and made available.
Data handling must, therefore, be implemented. Output data must also be identified in
the first step in order to define which results are to be determined. Then, the results have
to be generated and presented. In addition, companies generally have data management
systems in place that also have to be connected to the program framework. This ensures
that the required data can be accessed.

Program Framework

Digital Engineering Method

User/ IT
System Using

Process

Data Output

IT System Training

Datamanagement System

Data Input

GUI

Identifiy

Convert

Identify
Present

Integr
ation

Interface

Interface

Figure 14. Interfaces for the integration of data-driven methods.

Intermediate Summary

After this phase, a customised digital engineering method is integrated into the
design process and supports bottlenecks. It is especially important to directly involve the
employees in the early phase of planning. This not only increases motivation among the
staff but also ensures an exchange of information and knowledge. Especially when external
providers support the integration of the methods, the experience gained from everyday
processes is urgently needed.

4.4. Technology-Readiness Framework

During phase 3 of the PADDME process, an evaluation with respect to the integration
of data-driven methods into product development processes is performed. Therefore,
the aim is to develop criteria that enable the analysis and evaluation of digital processes in
product development. The developed system is based on the evaluation model developed
by Bitkom [61]. The four major dimensions of technology, data, quality, and organisation
cover the main topics that are important for the further digitalisation of business processes.
Since the method to be developed is based on a visualised process model and a supple-
mentary interview questionnaire, the evaluation criteria presented by Bitkom cannot be
adopted directly. Additionally, the criteria are matched to the requirements for data-driven
methods presented by Mehlstäubl et al. [27] and the relevant design process aspects shown
by Gerschütz et al. [43]. Various types of scales are available, as presented in Table 1.

The evaluation structure is built up with a five-level scale. Level 1 corresponds to the
basic level and the maximum degree of development is reached at level 5. In the following,
the key figures were defined to realise the technology-readiness framework for data-driven
processes. The qualitative self-assessment of the companies is supported by quantitative
elements. For this purpose, key figures were determined that also provide a mathematical
basis for individual categories. The individual technology-readiness aspects need different
scale types, as shown in Table 2.
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Table 1. Used scale types for process evaluation.

Scale Level 1 Level 2 Level 3 Level 4 Level 5

Likert Not digital Mostly not
digital Partly digital Mostly digital Fully digital

Percentage Less than 20% 20–40% 40–60% 60–80% More than
80%

Consent Not
applicable

Mostly not
applicable

Partly
applicable

Mostly
applicable Applicable

Table 2. Assignment of aspect scale types. The letter “x” symbolises the use of the respective scale
type for the aspect

Aspect Likert Percentage Consent

Technology
Technology basis x
Tools x
System integration x
Media discontinuity x

Data
Data acquisition x
Data transfer x
Data provision x
Data usage x

Quality
Operation x
Traceability x
Transfer time x
Security x

Organisation
Responsibility x
Qualification x
Gateways x
Knowledge-based work x

The criteria are summarised in a criteria catalogue as explained below. Companies can
use these newly developed technology-readiness statements to evaluate their own level
of performance.

4.4.1. Technology

A successful digital process should have a good technological environment and a well-
developed IT infrastructure. The used IT structure and the way information is transferred
between departments or employees is very important. All processes should be systemically
linked to each other and have as few system discontinuities as possible.

Technology Basis

For a uniform digital technology basis, incoming and outgoing information from the
process or from the process step should be available in digital form. On the one hand,
this enables fast process handling, as data do not have to be entered or, in the worst
case, transferred, and on the other hand, the available data can be used for data-driven
methods. The processing of the (sub)process should take place digitally in a network for
uncomplicated cooperation, for example, in the company’s own network or on the internet.

Tools

Evaluation of the current support with digital tools relevant for design processes.
Possible tools are CAx as well as digital management tools like PDM systems. Automation
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can be used as well. The degree of automation puts already automated process steps (AA)
in proportion to the total number of process steps (AG). Equation (1) calculates the degree
of automation pA according to IEC 60050-351 [71]. Although IEC 60050-351 refers to the
electronics industry, adaption to the design domain is possible since similar problems are
being solved.

pA =
AA
AG

≤ 100% (1)

The degree of digitalisation compares the already digitalised process steps (AD) with the
total number of process steps (AG) to obtain the degree of digitalisation (pD). The goal is
to digitalise as many process steps as possible.

pD =
AD
AG

≤ 100% (2)

System Integration

All used programs and tools are integrated in a central product or simulation data
management and the generated data are collected here. This allows easy access to the
database for the use of data-driven methods. Complex interfaces, different data sources,
and inconsistencies in the data are avoided.

Media Discontinuity

Media discontinuities make it difficult to integrate the data into data-driven processes.
As soon as the medium is changed during the transfer of information within a process,
for example, from e-mail to paper, media discontinuities occur. When searching for a
suitable database, this information, which is partly analogue, cannot be taken into account
without further work. Therefore, media discontinuities are captured. For the qualitative
assessment, the number of media breaks (AM) is put in proportion to the total number of
process steps (AG). In Equation (3), the ratio of media discontinuities (pM) is calculated.
Here, the ideal ratio is as small as possible.

pM =
AM
AG

(3)

Media discontinuities can also result from different data formats, for example, the CAD-to-
simulation data transformation.

4.4.2. Data

A uniform database is the ideal state for the use of data-driven methods. However,
this also includes extensive data collection in order to gather as much data as possible and
to simplify the use of the obtained data.

Data Acquisition

All relevant data should be captured and archived automatically. In this regard,
all data is captured explicitly from erroneous process runs too. Especially in simulation
departments, results are deleted after a defined time. This should be taken into account
as well.

Data Transfer

Data in the process is transferred with identical methods and to the same database.
Data transfer between departments is automated to reduce transfer and waiting times. The
total number of transmission methods used (AT) in relation to the number of process steps
(AG) determines the proportion of the total process (pT). The result reflects the proportion
of method changes in the process. The aim is to achieve the smallest possible value so that
the flow of information can be documented without interruptions.
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pT =
AT
AG

(4)

Data Provision

Existing data should be provided digitally to all departments to generate the greatest
possible benefit. Especially in design departments, this could be difficult due to different
programs being used. The company should also prepare the data in a visual, easily
understandable form. Each department is responsible for archiving the input and output.

Data Usage

Existing data is used in the current processes, regardless of whether the use is auto-
mated or manual. In order to find the maximum benefit from the data for the company,
there should be a central interface for accessing the internal database. Then, other AI appli-
cations can also access the data externally. When accessing data from external networks,
data security should have the highest priority (see the point on security in the dimension
of quality). All decisions made in a digital company are based on data and no longer on
empirical values.

4.4.3. Quality

Particular importance for successful digital processes has to be attributed to the quality.
The following criteria in the evaluation concept focus on this.

Operation

Process operation is evaluated with respect to quality and stability. Additionally, input
should be digital and used digitally as well. The focus is on the digital process step to be
able to digitally track the complete process. Peak loads are, therefore, no problem for the
digital process.

Traceability

Digital processes should be digitally traceable with respect to their current status and
progress. This allows flexible reactions in case of problems.

Transfer Time

The proportion of transport, transfer, and waiting times do not exist due to digital
transport (e.g., for other departments like simulation or service providers).

Security

Legal and regulatory requirements are respected and regularly checked in audits.
The security of the company’s internal data is regularly updated by an appropriate firewall
and well-trained IT experts.

4.4.4. Organisation

The entire organisation plays a mostly underestimated role when implementing de-
velopment projects. It is important to involve and motivate all employees from the lowest
level up to top management to give them the opportunity to contribute their experience
and knowledge about products and processes.

Responsibility

Decisions during the process are made by people with technical responsibility. A clear
assignment of who is responsible for which sub-step of the process leads to a better process
flow. This is also linked to the criterion that decisions are always made by the next-highest
hierarchical level. In the ideal process flow, i.e., without considering iterative loops, each
department should only be assigned responsibility once.
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Qualification

The digital competence of the employees is measured. A successful digital company
needs a high digital competence, which needs consistent development. Employees are
trained to use new technologies effectively and efficiently.

Gateways

Gateways are clearly defined between departments and supported with rules and
expectations. Additionally, transfer documents enable consistent documentation.

Knowledge-Based Work

To support processes with data-driven methods, the proportion of knowledge-based
work (AK) with respect to routine tasks (AR) is evaluated:

pkbw =
AK
AR

(5)

5. Case Study

To prove the usability of the PADDME method, a case study was carried out in
cooperation with the PSW automotive engineering GmbH.

5.1. Phase 0: Preparation

In the preparation phase, the current state of digitalisation was captured and an overall
process map was developed. Additionally, the current digital capabilities and optimisation
goals were elaborated with the project-responsible process manager. In this talk, we
identified sufficient digital possibilities concerning the general use of data-driven methods.
IT and storage capacity were available, as well as general knowledge about these methods.
The central company goal is to support designers in CAD work steps by providing useful
information. Furthermore, a general analysis for further process digitalisation should be
carried out.

During this case study, the process chain of development in between the disciplines of
design, simulation, and testing of automotive parts was analysed, as shown in Figure 15.
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Figure 15. Process map of the processes conducted within the case study.

5.2. Phase 1: Process Capturing

During the process-capturing phase, a total of seven interviews were conducted in
June and July 2021. The two-hour interviews, with various employees from the simulation
(2 interviews), testing (1 interview), design (2 interviews), and production (1 interview)
departments, were performed from the employee view. In addition, a two-hour interview
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with the development manager provided insight into the planned process from the man-
agement view. The inclusion of the data view was not possible. Therefore, that information
is missing. The interviews were carried out with two interviewers, one of them leading
the interview. The other one was responsible for the simultaneous process visualisation,
allowing potential errors in the documentation to be corrected during the interview. The
visualisation presented in Figure 9 was used to document the recorded processes.

During the interviews, the employees could give their subjective insights on problems
and optimisation potentials. A summary of the central problems is given in the following list:

• Many iterations and change requests in design processes. This leads to long develop-
ment times and many repetitive work steps.

• High coordination requirement between departments, which results in many reconcil-
iation meetings and a high number of iterations as well.

• Short timeframes combined with long waiting times, for example, for simulation or
test results, during the design.

• Data retrieval from simulation to design is subject to media discontinuities, since
simulations needs different data formats to design.

• Elaborate evaluation of simulation results requires a high level of staff expertise and
time, which is not always available and results in a high workload in the department.

• Correction iterations with simulation service providers are necessary if there are errors
in the simulation setup. The data check as well as the iterations cost time.

• Testing is the bottleneck in the approval process due to long timeframes. Therefore,
test results are available not until two iteration loops ahead. This results in additional
iteration loops being required to fix potential errors.

5.3. Phase 3: Potential Analysis

The recorded development processes were evaluated based on the criteria described
in Section 4.4 during the potential analysis phase. The evaluation was performed by the
first author in cooperation with the second one. Following the decomposition procedure
shown in Figure 10, the evaluation was performed for the whole process, the department
levels as well as the process step and task levels. Figure 16 shows the results for the whole
process as well as the department results for design, simulation, and testing. Further details
cannot be shown due to company rules.

Based on the evaluation results and feedback, various optimisation potentials were
identified. For most data-driven methods, prerequisites are met, especially in the sub-
processes of design and simulation. One approach is a reduction in iterations through
design and simulation departments like result estimations during the design phase. This
could give designers insights into whether new designs have problems in standard load
cases. Furthermore, plausibility checks can support the simulation result evaluation, which
also leads to a reduced workload in the department. Within the test sub-process, additional
effort is needed to enable the identified digitalisation potential. This can be seen in the
test evaluation results in Figure 16 as well. The central weakness of this process is the low
digitalisation ratio, since only a few digital tools are used, and the administrative aspects
like traceability and data provision should be strengthened as well. After these aspects are
optimised, similar approaches as in the simulation are found in the testing process chain.
Additionally, decision support would be helpful to evaluate if a test is even necessary. The
potential use cases were evaluated with the industry partner to identify a pilot use case
that is implemented in the process redesign phase.
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Figure 16. Evaluation results for the captured processes. Top: the full development process is shown.
Bottom: (left) the design process, (middle) the simulation process, and (right) the test process results
are visualised. Five is seen as the best rating, zero as the worst.

5.4. Phase 4: Process Redesign

The high-effort iterations between the simulation and design departments have been
identified as the problem with the highest potential. To solve this, a design support system
is developed during the process redesign phase, in which the design is evaluated for
standard load cases. The identification of possible data-driven methods is achieved with
the possibilities of the AI4PD ontology [70]. The data-driven methods are used on existing
simulation data to predict maximum displacements at critical points using neural networks,
as shown in Figure 17. The method had to be customised, as presented above. The following
customisation steps were performed.
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Figure 17. Schematic representation of the developed use case of a simulation copilot for prediction
of simulation results.

5.4.1. IT System Training

A machine learning model was generated to predict the results. For this purpose,
the data of the respective load cases were read in and the model was trained on this
basis. In addition, quality criteria were implemented to achieve adequate model quality.
A detailed consideration of these quality criteria would go beyond the scope of this report
and is not the subject of this research. In particular, overfitting or excessive validation
errors were prevented.

5.4.2. IT System User

A user interface was implemented for the user-friendly execution of the prediction.
In addition, the status of the prediction was clearly visualised via a traffic light scheme and
the results were also listed in tabular form. The user can load the necessary model and
check new components with just a few entries.

5.4.3. Data Management System

In the prototype developed, the data were stored in a folder structure on a shared
network drive. In this folder structure, component databases were stored in which all data
belonging to the same component were saved.

5.4.4. Data Input

To create the meta-model, the raw data contained in the stored data had to be extracted.
The extraction was performed by reading out the data via a Python script. The material
and thickness of the individual parts, and the node IDs of the load application points
were derived. In addition, the simulation result data were read from the result files and
transformed into text form. The data were then normalised and scaled.

5.4.5. Data Output

The predictions were shown graphically in the user interface. Three levels of detail
were available. These were the aforementioned traffic light scheme, maximum deformation
and stress, as well as a plot of the predicted values as a false colour image of the component.
The prediction was also saved in the file structure to enable later access.

5.4.6. Process

At the current stage, a prototype is available, which is realised as a standalone program.
To use it, the model must be exported from the CAD program and integrated into the
prediction program. For complete process customisation, a direct plug-in for the CAD
program is desirable.

6. Discussion

To verify the functionality of the PADDME method, an evaluation with respect to
the requirements presented in Section 4.2 was performed in cooperation with the case
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study partner and is presented in Section 6.1. After the case study discussion, a method
discussion is presented, analysing the PADDME method independent from the use case.

6.1. Case Study

The presented and evaluated criteria were the economics (cost and time), quality,
quantifiability, and consistency, as well as easy usage, as introduced in Section 4.2. Further-
more, knowledge, information and data should be recorded with their storage location.
It was possible to confirm the functionality of the process with the help of the interviews.
However, existing problems with the recording of processes, as presented by [29], were
also confirmed.

6.1.1. Economy

The economics of process capturing is further divided into cost and time. Of course,
time can be transformed to labour cost, which often is the biggest cost in process improve-
ment. Therefore, the relative cost with respect to the required time has a great effect on
economy, as shown in the industry study in Section 4.2. The sub-process capturing relied on
interviews of about two hours per employee. Afterwards, the analysis and evaluation took
an additional two to three hours per sub-process. Overall, since the amount of employee
time for the interviews was small, the sub-requirement of required time was met. There are
no further costs, except the relative cost for the required time. There are no license costs;
in the current state of the method there are also no certification courses resulting in costs.

6.1.2. Quality

The subsequent check of the developed process models with the interview partners
proved the high quality of the whole method. No significant errors were found. This is
particularly due to parallel process modelling and, thus, immediate error correction during
the interviews. Furthermore, after finishing the case study, a retrospective on data-driven
method identification and integration showed the high quality of both steps. Of course,
one case study does not allow a general statement but allows a first resilient inclination.

6.1.3. Quantifiability

Using the quantitative parameters, as well as the score system for qualitative evalua-
tion, a quantification of the results is possible. Therefore, different processes are comparable.
In particular, the quantification of the benefit of process redesigns should be evaluated in
more detail.

6.1.4. Consistency

The given elements of the process visualisation enable a consistent process representa-
tion of different tasks but allow the consideration of individual process characteristics.

6.1.5. Representation of Data, Information, and Knowledge

Data, information, and knowledge are the main basis for the application of data-driven
methods. Therefore, those aspects should be captured and documented alongside the main
process to allow a retrospective analysis. With the developed visualisation approach, these
aspects are documented and visualised in an easily understandable and graphical way.

6.2. Method

It was possible to confirm the functionality of the PADDME process. However, existing
problems with the recording of processes, as presented by [29], were also confirmed.
The problem of distributed process knowledge is less significant due to the broad base of
the interview partners from all relevant departments and knowledge levels, like senior
experts, designers, and simulation and test engineers. Problems of case thinking and the
reporting of the processes in as general a way as possible had to be counteracted during
the interviews by regularly returning to the central questions.
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At this point, a critical view on the requirements of the method presented by [43] has
to be presented. Foremost, the authors postulate a holistic process capturing, which seems
rather difficult through interviews due to the known issues presented by [29]. These are
distributed process knowledge, case thinking, and a lack of understanding for business
modelling languages. According to the process model categories presented by [39], our
claim is to develop a method with the purpose of process development.

Additionally, in our studies the data view encountered some problems. In most
companies, highly dynamic processes like product development are not fully logged in a
central system. This is because many tasks are rather social (like meetings or information
exchange) or a development of data versions. Current PDM systems generate logs but they
are counterparts of the planned processes in the system and often only represent several
development states. The time during those states is not logged. Therefore, data view has
no great influence for now but may become more relevant in the future. PADDME, like
any process analysis method, provides insights based on a snapshot of the current state of
digital engineering processes. It may not inherently capture the dynamic nature of evolving
technologies, market trends, or changing organisational priorities. While PADDME focuses
on digital engineering processes, it might not comprehensively address the human factors
involved. People’s skills, collaboration dynamics, and adaptability are crucial components
of successful digitalisation, and the method may not fully capture these elements.

An evaluation on different levels of detail is necessary, since individual situations may
offer different potentials. Some companies may implement a data-driven method for a
whole business process, while others do not meet the necessary requirements on this top
level but on a lower one. For example, a design department considering FE results for a first
design evaluation may not have sufficient data provision. A simulation department with
the same task has a different initial starting point, since other data are available, for example.
With this section, a comparison between the identified levels and sub-processes can be
performed with respect to their value and strength.

The PADDME method holds practical implications that can significantly impact the
efficiency, effectiveness, and overall success of digital engineering practices in product
development. One key implication lies in cost-effective process optimisation, where the
method facilitates the identification of bottlenecks, redundancies, and inefficiencies, allow-
ing organisations to streamline workflows and allocate resources more efficiently. Addition-
ally, the method enables informed decision-making by providing a deeper understanding
of the product development life cycle. Practitioners can make more informed decisions
based on a comprehensive analysis of relevant data, contributing to better outcomes and re-
duced risks. Moreover, PADDME promotes enhanced collaboration among cross-functional
teams involved in digital engineering. By visualising and analysing the entire product
development process, teams can better understand their roles and dependencies, fostering
a collaborative environment that enhances overall productivity. The inclusion of a frame-
work for assessing the technology-readiness level of digital engineering methods is another
practical implication. This allows organisations to gauge the maturity and applicability
of their digital tools and methodologies, helping them to make informed decisions on
technology adoption and implementation. PADDME supports a continuous improvement
mindset by providing a structured approach to process analysis. Organisations can use the
method iteratively to assess the impact of changes, implement adjustments, and monitor
the outcomes, supporting an ongoing cycle of refinement for digital engineering practices.
Practical implications also extend to resource allocation and training initiatives. Organi-
sations can identify specific skill gaps or resource needs through the PADDME analysis,
allowing them to invest in targeted training programs or allocate resources strategically to
enhance competencies in digital engineering. Furthermore, PADDME helps organisations
to adapt to changing work environments, technological advancements, and industry trends.
By understanding the current state of digital engineering processes, organisations can
proactively adjust their strategies to stay aligned with the dynamic landscape of product
development. Lastly, the method promotes the integration of digital engineering into the
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entire product development life cycle. This holistic approach ensures that digital methods
are seamlessly embedded in existing processes, maximising their impact on efficiency and
innovation. In summary, the PADDME method offers practical implications that empower
organisations to optimise processes, make informed decisions, enhance collaboration, assess
technology readiness, drive continuous improvement, and adapt to the evolving demands
of modern product development. These implications can contribute to the overall success
and competitiveness of organisations in the digital era.

Regarding the research question, the PADDME method allows an economic process
evaluation, as shown above. Furthermore, novel key factors for potential analysis were
developed and their suitability was checked in the case study. The factors are suitable
for identifying bottlenecks and possible data-driven methods to integrate them into these
process steps, which is an innovation compared to existing methods. Comparing PADDME
to established methods such as CRISP-DM or the KDD process, it is clear that these methods
excel at the actual programme development, but lack support in identifying use cases and
appropriate methodologies. Therefore, PADDME can serve as an upfront framework to
support the application of those well-known tools. Additionally, the phase-like character of
the method allows companies to split the process evaluation or drop, for example, phase 0
if that information is already available. Iterative process optimisation is possible with this
design too. Furthermore, the method focuses only on the aspects that are relevant for a
digital process transformation, making it a light and easy-to-use method when compared
to methods like ARIS, which is great for a high-level overview of full company processes
but, on the downside, is hard to generate due to the complexity of different information
layers. The transferability of the method to other domains and areas has not yet been tested
in practice. Nevertheless, such functionality is expected, at least in the area of product
development with the associated sub-domains.

Looking at the second research question, the development of a technology-readiness
framework for digital engineering was postulated. This framework was presented in
Section 4.4. Of course, many maturity models are already available, as shown in the
Introduction. Nevertheless, the presented digital engineering framework focuses on the
problem of digital engineering and the prerequisites and aspects which are relevant for
a successful process transformation. The mix of qualitative and quantitative aspects, all
available from the process-capturing step of the PADDME method, allow for an easy-to-use
process evaluation and a comparability through different processes and sub-processes.

7. Summary and Outlook

The digital revolution of product development processes in small and medium enter-
prises is crucial for the future success of this highly relevant economic sector. To realise this,
an in-depth process analysis concerning mechanical engineering and data-driven methods
has to be carried out. For this purpose, we introduced PADDME, a method for economic
process optimisation for digital mechanical engineering in those companies. As shown
before, PADDME enables an easy-to-use method for digital transformation, while utilising
the potential of well-known methods like CRISP-DM. Additionally, a novel framework
was introduced, allowing a process evaluation regarding digital engineering applications,
further potential, and use cases, as well as weaknesses of the given design process. The
method was evaluated successfully with an industrial case study, which confirmed the
availability of a practical approach for process analysis and integration of data-driven
methods in design processes. Future work will focus on the process redesign phase to
further integrate PADDME into the established CRISP-DM to make it even more reliable.
Additionally, the development of evaluation criteria to show the advantages of a digital
process redesign will be carried out in future work. Given this, an ex-ante evaluation of the
benefits of digital engineering would be possible before even starting the transformation.
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The following abbreviations are used in this manuscript:

ARIS Architecture of Integrated Information System
BPM Business process management
BPMN Business process model and notation
BPR Business process re-engineering
CAD Computer-aided design
CAE Computer-aided engineering
CRISP-DM Cross-industry standard for data mining
DSM Design structure matrix
EDM Enterprise data management
EFQM European Foundation for Quality Management
EPC Event-driven process chain
IDEF Integration definition for function modelling
KBE Knowledge-based engineering
KDD Knowledge discovery in databases
PADDME Process analysis for digital development in mechanical engineering
PDCA Plan–do–check–act
PDM Product data management
SME Small and medium enterprises
TCT Total cycle time
VSM Value-stream mapping

Appendix A. Approaches for Integrating Data-Driven Methods

For further explanation, the detailed steps of the KDD and CRISP-DM processes are
presented in the following section. Furthermore, a comparison to the presented PADDME
approach is possible, due to the in-depth description.

Appendix A.1. KDD Process

The KDD process consists of the following stages [25], as shown in Figure A1:

1. Data selection: In this initial phase, relevant data are identified and selected for
analysis. The dataset is chosen based on the project’s objectives, domain knowledge,
and data availability. The selected data should align with the specific problem or
research question at hand.

2. Data preprocessing: Once the data are selected, they undergo preprocessing to pre-
pare them for analysis. This phase involves cleaning the data by handling missing
values, correcting errors, and resolving inconsistencies. Data integration may also
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be performed to combine multiple datasets into a unified format. Transformation
techniques, such as normalisation or aggregation, can be applied to make the data
suitable for further analysis.

3. Data transformation: In this phase, the preprocessed data are transformed into a
suitable representation for analysis. This typically involves converting the data into
a format that can be effectively processed using data mining algorithms. Feature
selection or extraction techniques may be applied to reduce the dimensionality of the
dataset and capture the most relevant information.

4. Data mining: The core of the KDD process lies in the data mining phase. Here,
advanced algorithms and techniques are applied to extract patterns, relationships,
and insights from the transformed data. Data mining algorithms can be categorised
into various types, including classification, clustering, regression, association rule
mining, and more. The choice of algorithm depends on the nature of the problem and
the knowledge that is desired to be extracted.

5. Pattern evaluation: Once patterns and relationships have been discovered through
data mining, they need to be evaluated for their quality, significance, and useful-
ness. This evaluation is performed based on domain expertise, statistical measures,
and evaluation metrics specific to the problem domain. Patterns that meet the desired
criteria are considered valuable and can be further analysed.

Selection

Preprocessing

Transformation

Data Mining

Evaluation

Figure A1. KDD process for applying data mining, according to [25].

Appendix A.2. CRISP-DM Process

The CRISP-DM process consists of six major phases [26], as shown in Figure A2:

1. Business understanding: This initial phase focuses on understanding the project
objectives, requirements, and constraints from a business perspective. It involves
identifying the goals of the project, defining the problem statement, and forming a
clear understanding of how the project outcomes will benefit the organisation.

2. Data understanding: In this phase, data sources are identified and collected. The data
are then explored to gain a comprehensive understanding of their structure, quality,
and potential limitations. Data issues and challenges are addressed, and initial insights
are derived to determine the feasibility of the project.

3. Data preparation: This phase involves preparing the data for analysis. It includes data
cleaning, transformation, and integration to ensure data quality and consistency. Data
preprocessing techniques, such as handling missing values or outliers, are applied to
create a clean and reliable dataset.
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4. Modelling: In this phase, various data mining and machine learning techniques
are applied to build and validate models. The appropriate modelling techniques
are selected based on the project objectives and the nature of the data. Iterative
experimentation and model refinement are performed to achieve the desired level of
accuracy and performance.

5. Evaluation: The models developed in the previous phase are evaluated against the
business objectives and criteria established in the first phase. Model performance
and effectiveness are assessed using appropriate evaluation metrics. This phase helps
determine if the models meet the project requirements and if further improvements
are needed.

6. Deployment: The final phase focuses on deploying the data mining results into
the operational environment. This involves integrating the models into existing
systems or processes, creating user interfaces or reports for end-users, and providing
documentation and training to ensure the successful implementation and adoption of
the results.

Business
Understanding

Data
Understanding

Data
Preparation

Modelling

Evaluation

Deployment

Data

Figure A2. CRISP-DM process for implementing data-driven applications, according to [26].
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