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Abstract: This paper introduces an innovative adaptive control approach utilizing a nonlinear filter
for a specific subset of nonlinear discrete-time systems, considering the presence of both input and
output noise. The system can be transformed into a nonlinear autoregressive moving average with
exogenous inputs (NARMAX) model. The concept of discrete Nussbaum gain is introduced to
address the theoretical constraint associated with unknown directions of feed-forward or control
gains, and the extended adaptive tuning sequence is introduced to facilitate the acceleration of
parameter updating. In the case of no noise, asymptotical output tracking and global stability are
achieved with the adaptive control. Further, in the presence of input noise and output noise, a
novel nonlinear filter is designed to generate a more accurate filtered output, which improves the
control system’s ability to adapt and track accurately. Finally, examples are provided to showcase the
effectiveness and precision of the method.

Keywords: nonlinear discrete-time systems; adaptive control; input feed-forward; nonlinear filter

1. Introduction

In past years, a substantial amount of research has been devoted to advancing the field
of adaptive control for continuous-time nonlinear systems. Numerous industrial processes
exhibit nonlinear behavior, and various methods have been developed for identifying
nonlinear systems, which can be applied to input nonlinear systems, output nonlinear
systems, and systems with both input and output nonlinearities [1–4].

This effort has entailed a thorough investigation into the backstepping design method,
broadening its scope to cater to the needs of nonlinear continuous-time systems. Such sys-
tems can be efficiently converted into output feedback forms or parametric strict-feedback
forms [5–8]. The results of these inquiries have also been expanded to encompass the
domain of continuous Multiple-Input Multiple-Output (MIMO) systems [9–11]. Despite
the considerable strides made toward comprehending adaptive control in continuous sys-
tems, it is noteworthy that the discrete counterparts of these findings have not received
commensurate exploration.

In groundbreaking studies [12,13], progressive developments in adaptive control
schemes for linear discrete-time models have been achieved. These outcomes have been
expanded to address the challenges posed by discrete Multiple-Input Multiple-Output
(MIMO) systems featuring nonparametric uncertainty [14]. It is worth noting, however,
that within a substantial body of literature on adaptive control, a prerequisite for a priori
knowledge is the awareness of control gains’ signs, referred to as control directions.

There are numerous methods commonly used for nonlinear system identification,
including the joint two-stage least squares method proposed by Hu et al. [15]; based on
recursive identification methods, advancements have been made with the introduction of
the recursive least squares sub-algorithm and the gradient stochastic sub-algorithm. These
techniques are specifically designed for parameter estimation and fractional-order estima-
tion, respectively. Paper [16] proposes a projection identification algorithm and stochastic
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gradient identification algorithm for Hammerstein nonlinear systems. Additionally, the
Newton recursive and Newton iterative identification algorithms derived in the study
enhance the convergence speed of the stochastic gradient algorithm. In order to address
the computational complexity associated with signal modeling involving a large number
of feature parameters, a parameter separation approach based on the distinct character-
istics of the signals being modeled is proposed. To achieve high precision performance
while reducing complexity, a gradient search method is employed [17], and two iterative
sub-algorithms based on multi-innovation gradient (MIGI) are introduced. Then, a novel
approach, known as the layered forgetting factor stochastic gradient algorithm, based on
extended Kalman filtering, is introduced for the estimation of unknown states, parameters,
and fractional orders [18].

In recent years, to address the prevalent issue of data loss in industrial processes, a
novel approach has been introduced [19]. This approach combines auxiliary models and
particle filters to accurately estimate missing outputs. Specifically, for a specific class of
nonlinear systems, such as bilinear systems, which are prone to irregular missing data, two
unbiased parameter estimation methods are proposed. The parameter estimation problem
of controllable autoregressive moving average (ARMA) systems has been investigated using
the maximum likelihood multi-innovation stochastic gradient algorithm [20], resulting
in a substantial enhancement in computational efficiency. Wang et al. [21] focus on the
parameter estimation problem in fractional-order nonlinear systems with autoregressive
noise. By minimizing two criterion functions, a two-stage gradient-based iterative (2S-
GI) algorithm was developed to address this challenge. The 2S-GI algorithm effectively
reduces computational complexity while enhancing the accuracy of system identification.
By introducing the U-model based control approach [22], the efficiency and generality
of the control system design have been significantly improved. The approach presented
in [23,24] utilizes a combination of the least squares algorithm and an observer-based
parameter estimation algorithm to estimate the parameter matrices and states of state space
systems with limited output availability. The reconstructed states are employed in accurate
parameter estimation. In the research in [25,26], the focus lies on exploring recursive
estimation algorithms that utilize the modified extended Kalman filter for Wiener nonlinear
systems experiencing both process noise and measurement noise. The primary objective
is to accurately estimate the parameters associated with the linear subsystem. In the
context of parameter estimation for an input nonlinear controlled autoregressive moving
average system with variable-gain nonlinearity, this study introduces an appropriate
switching function to establish an analytical representation of variable-gain nonlinearity.
Furthermore, it develops two estimation algorithms based on auxiliary models [27]: a
modified extended stochastic gradient algorithm with a forgetting factor and a recursive
extended least-squares algorithm.

In order to achieve a more seamless integration of the universal output feedback
method with the Nussbaum gain method [28–30], a specially designed controller adjust-
ment rule is implemented to update the Nussbaum gain. This innovative approach [31]
successfully resolves the challenge of controlling the direction position. The presented
control scheme, utilizing the multi-innovation stochastic gradient algorithm, offers a self-
correcting capability, enabling the attainment of virtual optimal control. Notably, this
approach both ensures closed-loop stability in the system and delivers remarkable im-
provements in performance. Ding Feng et al. [32–35] have made significant contributions
to the field of nonlinear system adaptive control. Their research focuses on vital theoreti-
cal concepts in system identification, including auxiliary model identification principles,
multi-innovation identification theory, and hierarchical identification principles. They
have successfully validated the effectiveness of least squares and multi-innovation least
squares parameter estimation algorithms, extending their application to diverse systems
with colored noise. Furthermore, they have proposed an adaptive solution specifically
tailored for dual-rate nonlinear systems, addressing the limitations imposed by hardware
constraints on output sampling rates. Xu Ling et al. [36,37] focus on the problem of pa-
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rameter estimation in nonlinear models. They apply the gradient recursion algorithm and
utilize dynamic data windows to enhance estimation accuracy, providing valuable insights
for subsequent research in this area. This method is designed to achieve highly accurate
parameter estimation, making a substantial contribution to enhancing the precision of
parameter estimation techniques.

In an effort to overcome this theoretical constraint, a significant contribution was made
in [38], where the discrete Nussbaum gain was initially introduced to establish a globally sta-
ble adaptive control framework even when control directions are unknown. Subsequently,
the discrete Nussbaum gain has been systematically applied in the adaptive control of
nonlinear discrete-time systems, taking forms such as NARMAX, output-feedback, and
strict-feedback [39–43].

Conversely, the discrete-time backstepping approach was initially presented in [44]
and subsequently extended in later studies [45–47] to achieve robust adaptive control.
However, when the control gains are not known, the effectiveness of discrete backstepping
is compromised. To solve this problem, approaches with an n-step ahead predictor were
created for n-th order output-feedback or strict-feedback nonlinear systems [48]. But the
presence of prediction errors can lead to instability in systems of this nature. An augmented
error, combining the prediction errors and the tracking error, is thus introduced.

In an attempt to extend the nonlinear adaptive control results, this paper focuses on
investigating adaptive tracking in a specific category of nonlinear discrete-time systems,
incorporating input feed-forward and output feedback mechanisms. In the adaptive control
framework applied to these nonlinear systems, the input feed-forward links can not only
avoid the predictions of future outputs, but can also speed up the response time to enhance
the stability of nonlinear systems. However, we find that the difficulty lies in unknown
feed-forward gain, associated with the first subsystem state. Lacking knowledge of the
gain’s sign makes it unattainable to deduce the updating direction for parameter estimation.
Taking the same idea of discrete Nussbaum gain into the updating law and introducing
an extended adaptive tuning factor into the update law, a recently introduced adaptive
control approach is used for systems of this nature in the absence of noise. The assurance
of boundedness for all closed-loop signals is accompanied by the accomplishment of
asymptotical output tracking.

In addition, the existence of input and output noise within systems may lead to a
considerable degradation in the tracking performance of adaptive control. According to the
Kalman filter [49–52], a novel nonlinear filter is proposed, by designing the corresponding
time update and measurement update equations. Thus, a novel nonlinear filter-based
adaptive control method is developed to obtain good robustness.

The rest of the paper is organized as follows. The system representation and trans-
formation are shown in Section 2. In Section 3, without disturbance, an adaptive control
scheme is proposed, and the corresponding stability analysis is conducted. A novel non-
linear filter-based adaptive control method, in the presence of external disturbances, is
proposed in Section 4. Illustrative examples are shown in Section 5. Finally, conclusions are
drawn in Section 6.

2. System Representation and Transformation
2.1. System Representation

Consider nonlinear SISO discrete-time systems in the following input feed-forward
and output feedback form:

x1(k + 1) = ΘT
1 Φ1(x1(k)) + g1x2(k) + c1(u(k) + wu(k)),

x2(k + 1) = ΘT
2 Φ2(x1(k)) + g2x3(k) + c2(u(k) + wu(k)),

...
xn−1(k + 1) = ΘT

n−1Φn−1(x1(k)) + gn−1xn(k) + cn−1(u(k) + wu(k)),
xn(k + 1) = ΘT

n Φn(x1(k)) + gn(u(k) + wu(k)),
y(k) = x1(k) + wy(k)

(1)
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where Θi ∈ Rqi are unknown parameter vectors, and Φi(·) : R → Rqi are known nonlin-
ear vector functions, gi ∈ R are unknown control gains, ci ∈ R are unknown feed-forward
gains, xi(k) ∈ R are system states, and n ≥ 1 is system order. Output y(k) ∈ R consists of
two parts: the first subsystem state x1(k) and the output noise wy(k). This proves that the
name of the output feedback form is correct. The terms wu(k) represents the input noise.
We assume that the input noise and output noise are affected by some known constants,
i.e.,

∣∣wy(k)
∣∣ ≤ wy, |wu(k)| ≤ wu.

If the feed-forward gains equal zero, i.e., c1 = · · · = cn−1 = 0, this kind of system be-
comes the output feedback form suitable for the no noise case, as studied in [41]. The name
“input feed-forward and output feedback” is deduced using block diagram in Figure 1,
which, except for the unit delay operators, contains both feed-forward and feedback paths.
In the theory of adaptive control, the input feed-forward links in nonlinear models avoid
the predictions of future outputs or future states. In practice, the input feed-forward links
improve the response speed and thus enhance the stability of nonlinear systems.
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Figure 1. A third-order nonlinear system with input feed-forward and output feedback.

Assumption 1. The nonlinear vectors Φi(·) are Lipschitz functions, i.e., ∥Φi(ξ1)− Φi(ξ2)∥ ≤
Li|ξ1 − ξ2|, ∀ξ1, ξ2 ∈ R, 1 ≤ i ≤ n, where Li is the Lipschitz coefficient. The control gains
gi ̸= 0 and the feed-forward gains ci ̸= 0.

In presence of input noise and output noise, the objective of this paper is to design an
adaptive control input u(k) so that the output y(k) tracks a bounded reference trajectory
ya(k), and all the signals in the closed-loop system are bounded.

2.2. System Transformation

By introducing a state transformation εi(k) = xi(k)·∏i−1
j=0 gj with g0 = 1, the nonlinear

system model of Equation (1) can be rewritten:

ε1(k + 1) = ΘT
f Φ f 1(ε1(k)) + ε2(k) + d1(u(k) + wu(k)),

ε2(k + 1) = ΘT
f Φ f 2(ε1(k)) + ε3(k) + d2(u(k) + wu(k)),

...
εn−1(k + 1) = ΘT

f Φ f (n−1)(ε1(k)) + εn(k) + dn−1(u(k) + wu(k)),
εn(k + 1) = ΘT

f Φ f n(ε1(k)) + dn(u(k) + wu(k)),
y(k) = ε1(k) + wy(k),

(2)

where

Θ f =
[
ΘT

f 1, . . . , ΘT
f n

]T
, Θ f i = Θi·∏i−1

j=0 gj, Φ f i =
[
0T, ΦT

i (·), 0T
]T

,

dn = ∏n
j=0 gj, di = ci·∏i−1

j=0 gj, i = 1 , 2, . . . , n − 1.
(3)
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3. Adaptive Control Design without Disturbance
3.1. Adaptive Control and Parameter Estimation

The adaptive control scheme is considered in the no noise case, i.e., wy(k) = 0,
wu(k) = 0. If there is no input noise and no output noise, by iteratively substituting and
combining all the equations in (2) together, the following system equations can be obtained:

y(k + n) = ΘT
f

n

∑
i=1

Φ f i(y(k + n − i)) +
n

∑
i=1

diu(k + n − i). (4)

At epoch k + 1, the no noise output is obtained:

y(k + 1) = ΘT
f

n

∑
i=1

Φ f i(y(k − i + 1)) + d1u(k) +
n

∑
i=2

diu(k − i + 1) (5)

Since d1 = c1g0 ̸= 0, we can get

ψ(k) =
n
∑

i=1
Φ f i(y(k − i + 1)), Θ f d = d−1

1 Θ f , d f = d−1
1 ·[d2, . . . , dn]

T,

u f (k) = [u(k − 1), u(k − 2), . . . , u(k − n + 1)]T.

Thus, yielding

e(k + 1) = y(k + 1)− ya(k + 1)
= d1·(ΘT

f d·ψ(k) + u(k) + dT
f ·u f (k)− d−1

1 ya(k + 1)). (6)

It is evident that the tracking error e(k + 1) can be reduced to zero by appropriately
selecting u(k)

u(k) = −ΘT
f d·ψ(k)− dT

f ·u f (k) + d−1
1 ya(k + 1). (7)

However, due to the unknown parameters in nonlinear systems, replacing the un-
known terms with their recursive estimates produces the following formula:

u(k) = −Θ̂T
f d(k)·ψ(k)− d̂T

f (k)·u f (k) + d̂I(k)·ya(k + 1). (8)

where Θ̂T
f d(k), d̂T

f (k) and d̂I(k) are the estimates of ΘT
f d, dT

f and d−1
1 . Then, Equations (5)–(8),

e(k + 1) can be obtained:

e(k + 1) = y(k + 1)− ya(k + 1)
= d1·

(
−Θ̃T

f d(k)·ψ(k)− d̃T
f (k)·u f (k) + d̃I(k)·ya(k + 1)

)
.

(9)

where Θ̃ f d(k), d̃ f (k) and d̃I(k) can be defined as

Θ̃ f d(k) = Θ̂ f d(k)− Θ f d, d̃ f (k) = d̂ f (k)− d f , d̃I(k) = d̂I(k)− d−1
1 . (10)

In Equation (9), there is an unknown feedforward gain d1, making recursive param-
eter estimation challenging without prior knowledge of d1, and determining the update
direction of parameter estimation is a challenge.

Therefore, to address this limitation, the discrete Nussbaum gain [38] is introduced.
According to [38], the discrete Nussbaum gain N(p(k)) can be described as

N(p(k)) = ps(k)·sN(p(k)), ps(k) = sup
k′≤k

{p(k′)}, (11)

where the term sN(p(k)) is the sign function of the discrete nonlinear gain. Letting

Z(p(k)) ≜
k
∑

k′=0
(N(p(k′))·∆p(k′)) these lemmas are proved.
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Lemma 1 ([38]). Assuming ps(k) increases without bound,

sup
ps(k)≥τ0

1
ps(k)

Z(p(k)) = +∞, inf
ps(k)≥τ0

1
ps(k)

Z(p(k)) = −∞ (12)

Lemma 2 ([38]). If ps(k) ≤ τ1 , then |Z(p(k))| ≤ τ2, where τ1 and τ2 are some positive constants.

Therefore, by introducing the discrete Nussbaum gain to parameter estimation, we
obtain the following update law:

e(k) = y(k)− ya(k), υ(k) = e(k)
G(k) ,

Θ̂ f d(k) = Θ̂ f d(k − 1) + N(p(k))
D(k) ψ(k − 1)υ(k), Θ̂ f d(0) = 0,

d̂ f (k) = d̂ f (k − 1) + N(p(k))
D(k) u f (k − 1)υ(k), d̂ f (0) = 0,

d̂I(k) = d̂I(k − 1)− N(p(k))
D(k) ya(k)υ(k), d̂I(0) = 0,

G(k) = 1 + |N(p(k))|,

D(k) = G(k)·
(

1 + ∥ψ(k − 1)∥2 +
∥∥∥u f (k − 1)

∥∥∥2
+ y2

a(k) + υ2(k)
)

,

∆p(k) = p(k + 1)− p(k) = G(k)υ2(k)
D(k) , p(0) = 0,

(13)

where υ(k) is augmented error, and D(k) is normalization sequence. According to p(k), we
determine 0 ≤ ∆p(k) ≤ 1 and p(k) ≥ 0. Thus, sequence p(k) is well satisfied.

In order to expedite the parameter updating process, a modified adaptive tuning factor
γ(k) is used to update the law. Based on the non-decreasing non-negative sequence p(k),
the tuning factor can be described by

γ(k) = 4 − 3·e−p(k) (14)

where γ(k) is a monotonic increasing function of p(k), and its values range from 1 to 4, i.e.,
γ(k) ∈ [1, 4]. Thus, it is concluded that γ(k) is a non-decreasing, bounded, and positive
tuning factor. Then, by introducing the extended adaptive tuning factor γ(k), the parameter
updating process in (13) can be modified as follows:

e(k) = y(k)− ya(k), γ(k) = 4 − 3·e−p(k), υ(k) = γ(k)e(k)
G(k) ,

Θ̂ f d(k) = Θ̂ f d(k − 1) + γ(k)N(p(k))
D(k) ψ(k − 1)υ(k), Θ̂ f d(0) = 0,

d̂ f (k) = d̂ f (k − 1) + γ(k)N(p(k))
D(k) u f (k − 1)υ(k), d̂ f (0) = 0,

d̂I(k) = d̂I(k − 1)− γ(k)N(p(k))
D(k) ya(k)υ(k), d̂I(0) = 0,

G(k) = 1 + |N(p(k))|,

D(k) = G(k)·
(

1 + ∥ψ(k − 1)∥2 +
∥∥∥u f (k − 1)

∥∥∥2
+ y2

a(k) + υ2(k)
)

,

∆p(k) = p(k + 1)− p(k) = G(k)υ2(k)
D(k) , p(0) = 0.

(15)

3.2. Asymptotic Tracking and Stability Analysis

Definition 1 ([39]). Let x1(k) and x2(k) be two discrete scalar or vector signals, ∀k > k0 and
x1(k) = O[x2(k)], if positive constants m1, m2 and k0 exist, to acquire
∥x1(k)∥ ≤ m1maxk′≤k∥x2(k′)∥+ m2, ∀k > k0.

Theorem 1. For the nonlinear discrete-time system (1) under Assumption 1, consider the adaptive
control (8) with recursive parameter update law (15). If there is no input noise and no output noise,
all the closed-loop signals are bounded, and the tracking error e(k) will converge to zero.
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Proof. From Equation (9), we obtain

γ(k)·
(

Θ̃T
f d(k − 1)·ψ(k − 1) + d̃T

f (k − 1)·u f (k − 1)− d̃I(k − 1)·ya(k)
)

= − 1
d1

γ(k)e(k) = − 1
d1

υ(k)G(k).
(16)

Define a non-negative function V(k), we use

V(k) =
∥∥∥Θ̃ f d(k)

∥∥∥2
+
∥∥∥d̃ f (k)

∥∥∥2
+
(

d̃I(k)
)2

. (17)

The equation of V(k) can be described as

∆V(k) = V(k)− V(k − 1)

=
[
Θ̃ f d(k)− Θ̃ f d(k − 1)

]T[
Θ̃ f d(k)− Θ̃ f d(k − 1)

]
+ 2Θ̃T

f d(k − 1)
[
Θ̃ f d(k)− Θ̃ f d(k − 1)

]
+2d̃T

f (k − 1)
[
d̃ f (k)− d̃ f (k − 1)

]
+
[
d̃ f (k)− d̃ f (k − 1)

]T[
d̃ f (k)− d̃ f (k − 1)

]
+
(

d̃I(k)− d̃I(k − 1)
)2

+ 2d̃I(k − 1)
(

d̃I(k)− d̃I(k − 1)
)

=
γ2(k)N2(p(k))·

(
ψT(k−1)·ψ(k−1)+uT

f (k−1)·u f (k−1)+y2
a(k)

)
D2(k) υ2(k)

+2γ(k)N(p(k))·
Θ̃T

f d(k−1)·ψ(k−1)+d̃T
f (k−1)·u f (k−1)−d̃I (k−1)·ya(k)

D(k) υ(k).

(18)

According to (15) and (16), we obtain

∆V(k) ≤ γ2(k)G(k)υ2(k)
D(k) + 2N(p(k))·−1/d1·υ(k)G(k)

D(k) ·υ(k)
≤ 42·∆p(k)− 2

d1
N(p(k))∆p(k).

(19)

Then, we sum up the above equations to obtain

V(k) ≤ 16·p(k + 1) + (−2/d1)·
(

k

∑
k′=0

N(p(k′))∆p(k′)

)
. (20)

Assuming that p(k) is unbounded, due to p(k) ≥ 0, ps(k) must increase without an
upper bound. Hence, a constant k0 must exist to give

∆p(k) ≤ 1 ≤ ps(k), ∀k ≥ k0,
p(k + 1) = p(k) + ∆p(k) ≤ 2ps(k), ∀k ≥ k0.

(21)

Using Equations (20) and (21), the following inequality can be satisfied, ∀k ≥ k0,

0 ≤ V(k)
ps(k)

≤ b
ps(k)

·
(

k
∑

k′=0
N(p(k′))∆p(k′)

)
+ 16·p(k+1)

ps(k)

≤ b
ps(k)

·Z(p(k)) + 32,
(22)

where b = −2/d1. According to Lemma 1, 1
ps(k)

Z(p(k)) is unbounded because ps(k)
increases without an upper bound, i.e.,

sup
ps(k)≥1

1
ps(k)

Z(p(k)) = +∞, inf
ps(k)≥1

1
ps(k)

Z(p(k)) = −∞.

Therefore, it can be inferred that Equation (22) yields a contradiction, no matter if
b > 0 or b < 0. As a result, p(k) is bounded, as well as ps(k). Based on Lemma 2,
Z(p(k)), N(p(k)), and V(k) are bounded, this means that G(k), Θ̂ f d(k), d̂ f (k), and d̂I(k)
are bounded.
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Since e(k) = y(k)− ya(k) and the reference trajectory ya(k) is bounded, it is easy to
obtain y(k) = O[e(k)]. And the Lipschitz condition of ψ(·) indicates that

ψ(k − 1) = O[e(k − 1)] = O[e(k)], ψ(k) = O[e(k)]. (23)

Substituting k = 1 into Equation (8), we have

u(1) = −Θ̂T
f d(1)·ψ(1)− d̂T

f (1)·u f (1) + d̂I(1)·ya(2). (24)

where u f (1) = [u(0), u(−1), . . . , u(−n + 2)]T = 0. From the boundedness of the parame-
ter estimates from the above equation, we obtain u(1) = O[e(1)]. Considering that k = 2,
we can deduce that u(2) = O[e(2)] and u f (2) = O[e(2)]. Continuing the procedure, we can
finally obtain u(k) = O[e(k)] and u f (k) = O[e(k)].

Due to the augmented error υ(k) = γ(k)e(k)
G(k) = O[e(k)], it is not difficult to obtain

the relationship between D(k) and e(k), i.e., D(k) = O[e2(k)]. Since the term p(k) is a
non-decreasing non-negative sequence, the boundedness of p(k) implies that

∆p(k) =
G(k)υ2(k)

D(k)
=

γ2(k)e2(k)
D(k)G(k)

→ 0 (25)

Since D(k) = O[e2(k)] and the term G(k) is bounded, according to the Lemma in [39],
we conclude that e(k) → 0 . Then, the inputs and outputs in the nonlinear system are
bounded. Further, for the system in Equation (2), in the no noise case, the states εi(k) are
also bounded. This proves Theorem 1. □

4. A Novel Nonlinear Filter-Based Adaptive Control Method in the Presence
of Disturbances

In this section, a novel nonlinear filter is proposed for the nonlinear discrete-time
systems in presence of input noise and output noise, i.e., wy(k) ̸= 0, and wu(k) ̸= 0. A more
accurate filtered output is obtained via this nonlinear filter. Based on the theory of Kalman
filter equations [50], an effective estimation technique is investigated for state estimation in
nonlinear systems.

Generally, the equations for Kalman filters [50] are divided into two kinds: the time
update equation plays a crucial role in advancing the current state and error covariance
estimation and can be used to derive prior estimates for subsequent time steps. Conversely,
the measurement update equations are introduced to assimilate a new measurement into
an a priori estimate, leading to a more accurate posteriori estimate. According to the
Kalman filter, the time update and measurement update equations can also be extended
to our nonlinear filter, which is used as a state observer, in the presence of noise. For
transformation (2) under Assumption 1, a nonlinear filter is designed.

The time update equations for the nonlinear filter are:
ε1(k|k − 1) = Θ̂T

f (k − 1)·Φ f 1(ε1(k − 1|k − 1)) + ε2(k − 1|k − 1) + d̂1(k − 1)u(k − 1),
ε2(k|k − 1) = Θ̂T

f (k − 1)·Φ f 2(ε1(k − 1|k − 1)) + ε3(k − 1|k − 1) + d̂2(k − 1)u(k − 1),
...

εn(k|k − 1) = Θ̂T
f (k − 1)·Φ f n(ε1(k − 1|k − 1)) + d̂n(k − 1)u(k − 1).

(26)


Pε1 (k|k − 1) = Θ̂T

f (k − 1)Θ̂ f (k − 1)·L1
2Pε1 (k − 1|k − 1) + Pε2 (k − 1|k − 1) + d̂1

2wu
2,

Pε2 (k|k − 1) = Θ̂T
f (k − 1)Θ̂ f (k − 1)·L2

2Pε1 (k − 1|k − 1) + Pε3 (k − 1|k − 1) + d̂2
2wu

2,
...

Pεn (k|k − 1) = Θ̂T
f (k − 1)Θ̂ f (k − 1)·Ln

2Pε1 (k − 1|k − 1) + d̂n
2wu

2.

(27)

In Equations (26) and (27), the equations project forward the previous states
εi(k − 1|k − 1) and error covariance estimates Pεi (k − 1|k − 1) to obtain priori estimates
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εi(k|k − 1) and Pεi (k|k − 1) for the current epoch k. The initial terms of the nonlinear filter
are set to εi(0|0) = 0 , Pεi (k

∣∣k − 1) = 10−2 . Meanwhile, the parameter estimates Θ̂T
f (k − 1)

and d̂i are given by the specific recursive parameter update law, which will be constructed
and described below. In Equation (27), the terms Li, i = 1, . . . , n, are the minimum Lips-
chitz coefficients, which can be given using the numerical computation for the inequality
∥Φ f i(ξ1)−Φ f i(ξ2)∥

|ξ1−ξ2|
≤ Li = min{Li}.

Next, the measurement update equations for our nonlinear filter must be designed.
However, for the system transformation (2), the difficulty lies in the observation equation
y(k) = ε1(k) + wy(k), which only contains measurement values for the first subsystem
state. This means that the measurement values for other states εi(k), i = 2, . . . , n, are
not available. For these other states, their a posteriori estimates are set to be equal to the
corresponding priori estimates in the measurement update equations.

The measurement update equations for our nonlinear filter are:

Kε1(k) =
Pε1(k|k − 1)

Pε1(k
∣∣k − 1) + α·wy2 , (28)


ε1(k|k) = ε1(k|k − 1) + Kε1(k)·(y(k)− ε1(k|k − 1)),
ε2(k|k) = ε2(k|k − 1),

...
εn(k|k) = εn(k|k − 1),

(29)


Pε1(k|k) = (1 − Kε1(k))·Pε1(k|k − 1),
Pε2(k|k) = Pε2(k|k − 1),

...
Pεn(k|k) = Pεn(k|k − 1).

(30)

computing the nonlinear gain Kε1(k) for the first subsystem state. According to [49],
this nonlinear gain is constructed based on the Kalman gain, and an adaptive factor α
is designed to balance the output noise and the error covariance estimates. Then, the a
posteriori estimates, as shown in Equation (29), can be generated. The final step is to
calculate the a posteriori error covariance estimates via Equation (30). According to the
design of an adaptive factor in [49], the term α can be chosen as

α =


1, ∆ ≤ r0
r0
∆ ·
(

r1−∆
r1−r0

)2
, r0 < ∆ ≤ r1

0, ∆ > r1

, (31)

where ∆ := |y(k)−ε1(k|k−1)|
|ε1(k|k−1)| represents the relative output prediction error, and the terms r0

and r1 are constants, which are found to have the values r0 = 1 and r1 = 3.
Therefore, the nonlinear filtering algorithm in (26)–(31) is complete for state estimation

in nonlinear systems. In order to obtain a more accurate filtered output, which is expected
to track the reference trajectory, the output of the nonlinear filter is set to the first filtered
subsystem state. From ε1(k|k) , the filtered output at epoch k is described as

⌢
y (k) = ε1(k

∣∣∣k) (32)

To develop the adaptive control of filtered output, we define

⌢
e (k) =

⌢
y (k)− ya(k),

⌢
υ (k) =

γ(k)
⌢
e (k)

G(k)
,

⌢
ψ(k) =

n

∑
i=1

Φ f i(
⌢
y (k − i + 1)).
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Then, the adaptive control (8) can be rewritten as

u(k) = −Θ̂T
f d(k)·

⌢
ψ(k)− d̂T

f (k)·u f (k) + d̂I(k)·ya(k + 1) (33)

In addition, the recursive parameter update law (15) must be modified. Using the
dead zone method in [42], the term l(k) is used to set the threshold for the updating process.
Thus, the parameter update law using the filtered output can be shown as follows:

⌢
e (k) =

⌢
y (k)− ya(k), γ(k) = 4 − 3·e−p(k),

⌢
υ (k) = γ(k)

⌢
e (k)

G(k) ,

Θ̂ f d(k) = Θ̂ f d(k − 1) + γ(k)l(k)N(p(k))
D(k)

⌢
ψ(k − 1)

⌢
υ (k), Θ̂ f d(0) = 0,

d̂ f (k) = d̂ f (k − 1) + γ(k)l(k)N(p(k))
D(k) u f (k − 1)

⌢
υ (k), d̂ f (0) = 0,

d̂I(k) = d̂I(k − 1)− γ(k)l(k)N(p(k))
D(k) ya(k)

⌢
υ (k), d̂I(0) = 0,

G(k) = 1 + |N(p(k))|,

D(k) = G(k)·
(

1 + ∥ψ(k − 1)∥2 +
∥∥∥u f (k − 1)

∥∥∥2
+ y2

a(k) +
⌢
υ

2
(k)
)

,

∆p(k) = p(k + 1)− p(k) = l(k)G(k)
⌢
υ

2
(k)

D(k) , p(0) = 0,

d̂1(k) = d̂I
−1(k),

[
d̂2(k), . . . , d̂n(k)

]T
= d̂1(k)·d̂ f (k), Θ̂ f (k) = d̂1(k)·Θ̂ f d(k),

l(k) =
{

1, i f |υ(k)| > σ,
0, oThers.

(34)

where σ is the threshold value determined by the designer. Using the nonlinear filtering
algorithm in (26)–(31) and applying the adaptive control (33) with parameter update law (34)
gives a complete nonlinear filter-based robust adaptive control method. The adaptive
nonlinear filtering proposed in this paper is very preliminary, and further theoretical and
practical studies are needed. A flowchart of the robust adaptive control scheme, according
to nonlinear filter, is depicted in Figure 2.
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5. Illustrative Examples

Example 1. Consider the following no noise second-order discrete-time nonlinear system:
x1(k + 1) = a1x1(k) cos(x1(k)) + a2

x2
1(k)

1+x2
1(k)

+ g1x2(k) + c1u(k),

x2(k + 1) = b1 sin(x1(k)) + b2
x3

1(k)
2+x2

1(k)
+ g2u(k),

y(k) = x1(k),

(35)

where a1 = 0.2, a2 = 0.1, b1 = 0.3, b2 = −0.6, g1 = 1, g2 = −0.2, and c1 = ∓0.4.
The initial states are [x1(0), x2(0)] = [1.2, 2.0]. The ya(k) = 1.5 sin(π

5 kT) + 1.5 cos( π
10 kT),

T = 0.05, is the desired reference trajectory. The extended adaptive tuning sequence is taken as
γ(k) = 4 − 3·e−p(k).
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By using the general adaptive control (8) with recursive parameter update law (15),
the simulation is implemented twice to prove that the adaptability of the control system
remains unaffected by variations in the feed-forward gain direction c1, which is associated
with the first subsystem state. Thus, the term c1 is assumed to be a negative value in the
first time. Then, a positive c1 is assumed in the second run of the simulated system. The
results are shown in Figures 3–5. Figure 3 not only displays a comparison of the output
and the reference, but also presents a comparison of the tacking error and benchmark 0. It
is clear that, with either a negative or positive gain c1, the adaptive method is effective in
the no noise case. The boundedness of the control input is illustrated in Figure 4. Finally,
the discrete Nussbaum gain N(x(k)) is shown in Figure 5. It is easy to see that the discrete
Nussbaum gain searches within two directions to detect the parameter updating direction.
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Example 2. In the presence of input noise and output noise, consider a similar discrete nonlinear system:
x1(k + 1) = a1x1(k) cos(x1(k)) + a2

x2
1(k)

1+x2
1(k)

+ g1x2(k) + c1(u(k) + wu(k)),

x2(k + 1) = b1 sin(x1(k)) + b2
x3

1(k)
2+x2

1(k)
+ g2(u(k) + wu(k)),

y(k) = x1(k) + wy(k).

(36)
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where a1 = 0.2, a2 = 0.1, b1 = 0.3, b2 = −0.6, g1 = 1, g2 = −0.2, and c1 = −0.4. In
Equation (36), the input noise and the output noise satisfy{

wu(k) = 0.1 cos(0.1k) cos(x2(k))− 0.05,
wy(k) = 0.1 sin(0.1k) sin(x1(k)) + 0.07.

The initial states and the desired reference trajectory are the same as in Example 1. By
using the nonlinear filtering method in (26)–(31), and by applying the adaptive control (33)
with recursive parameter update law (34), we can obtain the tracking performance of the
filtered output

⌢
y (k). It should be noted that the extended adaptive tuning sequence and

the threshold value are taken as γ(k) = 4 − 3·e−p(k) and σ = 0.1, respectively.
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Example 3. Consider the case with the positive term c1 = 0.4. In the presence of the same
input noise and the same output noise as Example 2, the simulation model and all the other system
parameters also remain the same as Example 2. The initial states and the desired reference trajectory
are the same as Example 1. By using the nonlinear filter and the corresponding adaptive control
scheme, the tracking performance of the filtered output

⌢
y (k) can be obtained. The threshold value

is set to σ = 0.1.

Similar to Example 2, the comparative results of different adaptive control schemes
are presented in Figures 9–11. A comparison of tracking performance is shown in Figure 9.
Further, Figure 10 illustrates the results of input boundedness. A comparison of the discrete
Nussbaum gain is described in Figure 11. From Examples 2 and 3 and Figures 6–11, we can
draw the following conclusions:

1. No matter if c1 > 0 or c1 < 0, the nonlinear filter-based adaptive control method can
show tracking performance more accurately than the general adaptive control scheme;

2. In order to track the reference trajectory, both the small overshoot and the short
settling time are realized via the nonlinear filter-based adaptive control method;

3. The control inputs are bounded in all of the comparative examples;
4. Discrete Nussbaum gains, adopted in the proposed identification algorithm, can be

designed to detect the direction of model parameters within two direction.
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6. Conclusions

In this paper, a novel nonlinear filter-based adaptive control method is proposed and
introduced to a subset of nonlinear discrete-time systems subject to input and output noise.
The method incorporates both input feed-forward and output feedback. To address the
issue of determining the direction of parameter estimation updates, the discrete Nussbaum
gain is utilized, along with an extended adaptive tuning sequence to expedite the updating
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process. This method is also applicable to noise-free systems, and the convergence of
noise-free systems is proven. In the presence of input and output noise interference, in-
spired by the Kalman filter equations, the time update and measurement update equations
are extended to nonlinear filters, and the convergence of the algorithm is demonstrated.
Compared to general adaptive control methods without filtering, this approach exhibits
adaptive control rate changes alongside parameter model variations during identification.
It offers better parameter trajectory tracking and timeliness. In contrast, traditional iden-
tification methods maintain a fixed control rate that does not change with the estimated
parameters. The nonlinear filter-based adaptive control provides more accurate filtered
output and better tracking of reference trajectories. The theoretical findings are validated
through simulation results. This method can be applied in engineering practices to achieve
robust adaptive control of such nonlinear systems.
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