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Abstract: We proposed a novel detection method for identifying joint defects in the brazing process
between copper tubes and stainless steel using a convolutional neural network (CNN) model. The
brazing joints were created using high-frequency induction heating equipment, and infrared thermal
imaging cameras were employed to capture the thermal data generated during the jointing process.
The experiments involved 15.88 mm diameter copper tubes commonly used in plate heat exchangers,
stainless-steel tubes, and filler metal containing 20% Ag. The thermal data were obtained with
a resolution of 80 × 80 pixels per frame, resulting in 4796 normal joint data and 5437 defective
joint data collected over 100 high-frequency induction-heating brazing experiments. A total of
10,233 thermal imaging data were categorized into 6548 training data, 1638 validation data, and
2047 test data for the development of the predictive model. We designed CNN models with varying
hyperparameters, specifically the number of kernel filters and nodes, to evaluate their impact on
detection performance. A comparative analysis revealed that a CNN model structure, exhibiting
98.53% accuracy and 99.82% recall on test data, was the most effective. The selected CNN-based
defect prediction model demonstrated the potential of using CNN models to discern joint defects in
tube configurations that are challenging to identify visually. This study opens avenues for applying
CNN-based models for detecting imperfections in complex tube structures.

Keywords: brazing; high-frequency Induction heating; defect identification; infrared thermal image;
convolutional neural network

1. Introduction

The continued consumption of fossil fuel poses a serious problem in the fields of
energy and the environment. Modern society demands more measures for environmental
protection, and some of these issues can be addressed by reducing energy dependence
and increasing energy efficiency. In the industrial sector, one solution to enhance energy
efficiency and decrease dependence on fossil fuels is to increase the efficiency of heat ex-
change [1,2]. Plate heat exchangers, known for their wide heat-exchange area, as compared
to other heat exchangers, are compact and lightweight. They facilitate easy expansion
of heat-exchange capacity, making them widely used in various heat-exchange applica-
tions [3–5]. Plate heat exchangers typically join copper tubes to bodies made of stainless
steel. Although the joints between the copper tubes and the stainless-steel bodies are
typically brazed, inspections of the joint quality are essential due to potential defects, such
as cracks and insufficient penetration. These defects can lead to a rapid decline in the heat
efficiency of the heat exchanger [6–8]. Generally, the joint region between the copper tube
and the stainless-steel materials is situated internally, making it challenging to visually
inspect for defects. An assessment of joint quality typically relies on water immersion and
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non-destructive testing. However, water immersion requires time for drying the wet tubes
post-inspection, and non-destructive testing involves expensive equipment and specialized
personnel, resulting in significant costs and time consumption. Therefore, there is an urgent
need for research in defect detection that can save costs and time in order to enhance
product quality and productivity [9].

Recent research in the field of welding and joining has observed the continuous use of
algorithms, such as those used in machine learning, to predict defects and characteristics.
Mishra et al. [10] conducted a characteristic prediction study using machine learning to
predict the maximum tensile strength of joints in resistance spot welding. Chen et al. [11]
predicted joint quality in resistance spot welding using a machine-learning parallel-strategy
algorithm based on the processing of feature data from the welding process. Kaiser et al. [12]
employed deep neural networks (DNN) and random forests (RF) to predict damage modes
and failure strength in single-lap joints (SLJs). Elsheikh et al. [13] provided a comprehensive
review of the application of various machine-learning methods in friction stir welding (FSW)
and demonstrated superior performance in machine-learning techniques, as compared to
traditional statistical methods. While previous studies have utilized machine learning to
predict joint quality in various joining methods, the research into predicting internal defects
is limited. Perri et al. [14] presented a CNN model named WelDeNet that was based on
images obtained by transmitting radiation to the welding bead and showed it could classify
99.5% of welding defects. Munir et al. [15] compared the prediction performance of DNN
and CNN models on the noisy ultrasonic signatures found in detecting welding defects
through ultrasonic testing, confirming that the CNN models performed better, even with
noisy signals. Through several previous studies, it was recognized that technologies like
machine learning offered potential benefits in accurately classifying defects while reducing
inspection costs. It was established that machine-learning models, such as CNNs, could
be applied to predict internal defects [16–19]. Furthermore, utilizing predictive models in
the process was recognized for its quantitative reduction in the time required, as well as
improved reliability in accuracy, as compared to conventional manual fault-classification
methods, as evidenced by numerous studies [20–23]. However, a fundamental challenge
has remained as the data used in the prediction models were based on data obtained
through non-destructive testing, which presented a significant inherent cost issue.

To address these issues, there is a need for methods that can predict internal defects at a
lower cost. In this study, we proposed a method for predicting joint defects in brazing joints,
which are predominantly applied to small components and have had relatively few studies
conducted, as compared to various welding and joining methods. While research has been
conducted on predicting welding defects using CNN-based predictive models, there has
been no research on predicting joint defects using thermal imaging data acquired during the
brazing of tube-shaped joints. Therefore, to predict defects in joints, we utilized real-time
data acquired through infrared thermal imaging cameras during the brazing joint process
between copper tubes and stainless-steel bodies using high-frequency induction heating.
Thermal imaging data measured the temperature changes across the entire joint, and the
presence of defective joints was determined by examining a cut section of the completed
specimen. To develop a high-performance predictive model, we compared the predictive
performance based on hyperparameters and derived a CNN model that exhibited the
optimal performance on the test data. The results of this study are expected to lay the
foundation for low-cost, real-time detection of brazing joint defects in practical applications.

2. Experimental Method and Design
2.1. Experimental Setup

To facilitate a brazing joint between copper and stainless-steel tubes, a high-frequency
induction heating system was configured using a power source (Osung hitech (Daegu,
Republic of Korea), 75~100 KW), chiller (Osung hitech (Republic of Korea)), and jig system.
Infrared thermal imaging data used for training the predictive model were acquired through
an infrared thermal camera (Micro epsilon (Sant’Antonio, Italy), Thermo IMAGERTIM-
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40) and a self-developed monitoring system. Figure 1 illustrates the configuration of the
high-frequency induction heating brazing joint system used in this study.
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Figure 1. Experimental setup for brazing joint system.

The copper tube used in the experiment was a 15.88 mm diameter copper tube made of
phosphorus deoxidized copper (C1220), commonly used in plate heat exchangers. The STS
tube, made of austenitic stainless-steel material (STS304), was designed to accommodate
the insertion of the copper tube at the top. A total of 100 sets of STS tubes and copper tubes
had been prepared. For the brazing joint, a 1 mm thick spring-type copper with 20% Ag as
the filler metal was used. The filler metal for the brazing joint was 1 mm thick spring-type
copper containing 20% Ag, SK Brazing’s H-type, high-temperature flux was applied to the
joint area for oxidation prevention and reduced cooling speed.

The brazing joint experiment of copper–stainless-steel tubes using high-frequency
induction heating was conducted after impurities were removed. The experiment aimed
to secure training data for both normal and defective joints by varying the parameters of
the brazing experiment in order to induce various temperature changes at the joint. The
key parameters selected for the experiment were the brazing time (8~15 s) and the center
height of the high-frequency electrode (−6~6 mm), which would have an influence on
the temperature changes at the joint. The experiment was carried out by altering these
parameters according to the experimental plan. Using a full factorial-design method,
we conducted five repeated experiments with variations in current, voltage, the center
height of the high-frequency electrode, and brazing time. The remaining samples were
adjusted by modifying parameters to match the quantities of results under defective and
satisfactory brazing conditions. In Figure 2a, a schematic diagram represents the brazing
joint of copper–stainless-steel tubes using high-frequency induction heating in a plate
heat exchanger. Figure 2b provides a schematic description of the center height of the
high-frequency electrode, used as a parameter. Table 1 lists the parameters used in the
high-frequency induction-heating brazing experiment, and Table 2 presents the chemical
composition of the copper tube, stainless-steel tube, and filler metal used in the experiment.
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Table 1. Process parameters for brazing experiments.

Variable Level

Current(A) 32
Voltage(V) 259

Brazing time(sec) 8–15

Fixed variable

Filler metal: Spring-type
Filler metal point: 0 mm

Electrode center point: 0 mm
Outside temperature: 27.2 ◦C

Humidity 68%

Table 2. Chemical composition.

Material Cu P Cr Ni Si Mn N C S Ag Zn In Sn Fe

Copper tube Bal. 0.04

Filler metal Bal. 20 35 0.5 0.5

STS tube 0.045 18.0 8.0 7.5 2.0 0.1 0.08 0.03 Bal.

2.2. Joint Defect Discrimination Method

Through high-frequency induction heating, brazing joints were performed on copper–
stainless-steel tubes, and the penetration depth of the joints was measured using acquired
infrared thermal imaging data to develop a CNN model for detecting joint defects. To
measure the penetration depth of the filler metal in the copper–stainless-steel tube joints
performed according to parameters, axial cutting was performed using a high-speed cutter
(Allied (Compton, CA, USA), Techcut5). The cut surface was polished (R&B (Daejeon,
Republic of Korea), RB 204 METPOL-II) to the extent where the penetration depth could be
confirmed. The measurement of penetration depth was carried out using a digital optical
microscope (Leetech, portable welding microscope) with a resolution of 2 megapixels,
without etching the specimen. In this study, the joint between the copper tube and stainless-
steel tube was designed with a length of 10 mm, and according to the regulations of
ISO 18279, a joint was considered satisfactory if the depth of penetration overlapped more
than 70%. Therefore, joint-experiment results with a filler metal penetration depth of
7 mm or more, without apparent issues, were considered satisfactory joints. Problems
that could occur in welding and joining areas generally included the influx of external
impurities, bubbles, and cracks, which could act as factors reducing the strength of the
joint. However, in the brazing joint of the copper–stainless-steel tube conducted in this
study, even if external impurities and bubbles occurred, as long as the filler metal showed
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a penetration depth of 70% or more, it indicated sufficient joint strength, as suggested by
ISO 18279. Therefore, in this study, the judgment of joint defects was based on whether the
penetration depth of the filler metal was 70% or more and on the integrity of the internal
and external shape. Figure 3 illustrates the locations for measuring the penetration depth
of brazing joints.
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3. CNN Model Design
3.1. Infrared Thermal-Imaging-Data Collection

In order to detect defects in the brazing joints of copper–stainless-steel tubes using
an infrared thermal imaging camera, this study collected thermal imaging data during
the brazing process based on the selected parameters. The collection of thermal imaging
data commenced as the high-frequency induction-heating brazing-joint-experiment began,
with the jig fixed in place according to the selected electrode-center-height parameter. The
thermal imaging data were saved as 80 × 80-pixel images, with a frame rate of 10 frames
per second. To utilize the temperature changes during the cooling process after the joint had
been made, the thermal imaging data were collected for an additional 3 s (30 frames) after
the end of the brazing joint time. A total of 100 high-frequency induction-heating brazing
experiments were conducted for the collection of thermal imaging data on copper–stainless-
steel tube brazing joints, resulting in 47 sets of normal joint data and 53 sets of defective
joint data. Figure 4 illustrates the results of the brazing joints in copper–stainless-steel
tubes. In this study, the presence of joint defects was determined based on the filler metal’s
penetration depth in the completed copper–stainless-steel tube joints, and the thermal
imaging data results were presented accordingly. Figure 5 depicts the thermal imaging
data collected during the process of brazing joints of copper–stainless-steel tubes.
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3.2. Infrared Thermal Imaging Data Preprocessing

In general, image data fed into CNN models were represented in RGB-color format,
consisting of three channels. However, the infrared thermal imaging data used in this
study were employed as single-channel images. Over the course of 100 high-frequency
induction-heating brazing experiments, 10,233 frames of 80 × 80-pixel thermal imaging
data were acquired. Each frame of thermal imaging data represented a unique temperature
change, and thus, the labeling was performed at a rate of 1 label per frame. The labeling of
the thermal imaging data was evaluated based on the joint-defect-discrimination method
presented in Section 2.2. The normal joint thermal imaging data were classified as 0, and
the defective joint thermal imaging data were classified as 1. Before feeding the thermal
imaging data into the convolutional layers, data-labeling preprocessing was carried out. As
a result, a total of 4796 sets of normal joint data and 5437 sets of defective joint data were
obtained. Figure 6 illustrates the preprocessing method for the collected infrared thermal
imaging data from high-frequency induction-heating brazing experiments.
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Figure 6. Storage structure of thermal image data.

A total of 10,233 thermal imaging data, after labeling preprocessing, were categorized
into training data, validation data, and test data, for the development and performance
evaluation of the brazing-joint-defect prediction model. The data-categorization process
ensured that the normal-joint data and the defective-joint data were not biased, and no
human intervention was involved, except for this aspect. The training data and test data
were divided into an 8:2 ratio of the entire dataset, and within the separated training data,
the training data and validation data were further divided into an 8:2 ratio. As a result,
10,233 thermal imaging data were categorized into 6548 training data, 1638 validation data,
and 2047 test data.

3.3. Data Normalization

The infrared thermal-imaging data collected from the copper–stainless-steel tube
brazing joint experiments using high-frequency induction heating were captured in an
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80 × 80-pixel format. This meant that in addition to the joint area, it also included tempera-
ture information from the surrounding environment and the high-frequency electrodes,
which were unnecessary for the prediction model and could potentially slow down the
training process by widening the temperature range of the data within the 80 × 80-pixel
area. In this study, we applied the max-normalization method to normalize the thermal
imaging data to a range between 0 and 1. Data normalization was performed based on the
highest recorded temperature among the 10,233 frames collected during the experiments.
The normalized data were then reshaped into a one-channel dimension before being used
as training data for developing the CNN model.

3.4. CNN Model Concept Design

The convolutional layer used in this study included a convolution kernel, and the
principle that the kernel would be affected by the weight coefficient and bias is expressed
by Equation (1) [24].

Fl+1(i, j) =
[
Fl ⊗ wl+1

]
(i, j) + b

∑n1

n=1 ∑k
x=1 ∑k

y=1

[
F1

n(s1 × i + x, s1 × j + y)wl+1
n (x, y)

]
+ b

(1)

where Fl is the input image of the convolutional layer of the l + 1 layer, Fl+1 is the output
image of the convolutional layer of the l + 1 layer, and ⊗ is the convolutional operation.
F(i, j) represents the pixel of the corresponding feature map, wl+1 is the convolution kernel
weight coefficient of the l + 1 layer, and b is the bias vector. Additionally, k is the convolution
kernel size, s1 is the convolution stride, and n1 is the number of convolution kernels [25].
When the convolutional operation was complete, F(i, j) underwent an activation function
to obtain A(i, j). In this study, the ReLU function was used as the activation function and is
represented by Equation (2).

A(i, j) = ReLU(F(i, j)) = max(0, F(i, j)) (2)

After the convolutional layer, a pooling layer was applied, which reduced the com-
plexity of the model by removing images of relatively low importance. In this study, the
feature was extracted using max-pooling and is represented by Equation (3).

Pl(i, j) =

[
d

∑
x=1

d

∑
y=1

Al(s2 × i + x, s2 × j + y)
m
] 1

m

(3)

where Pl(i, j) is the output feature map of the lth pooling layer, d is the pooling window
size, s2 is the translation stride of the pooling window, and m converges to ∞. In this study,
the data that has passed through the convolution layer and pooling layer is utilized in the
Fully Connected (FC) layer. The CNN-based prediction model for brazing joint defects
using thermal imaging data involved 80× 80-pixel thermal images. The CNN-based defect-
detection and -prediction model for brazing joints using thermal imaging data employed
80 × 80-pixel thermal images and utilized two convolutional layers. It used a 3 × 3 kernel
size for convolution, which was known for its optimal functional efficiency [9]. The same
padding was used to maintain image size, and the ReLU function was used as the activation
function. The resulting images were down-sampled using 2 × 2 max-pooling and passed
to the FC layer, which consisted of three layers in total after being flattened. Dropout was
introduced between layers to prevent overfitting during the image-transfer process. The
activation function used in the 1st and 2nd FC layers was ReLU, and the Adam (adaptive
moment assessment) optimizer was employed to minimize the loss function and update
the model weights. Finally, the 3rd FC layer utilized a sigmoid function to predict the
occurrence of defects in the joint, classifying them as 0 or 1. Figure 7 represents a schematic
of the CNN model developed to predict the occurrence of defects in a brazing joint using
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thermal imaging data obtained from the copper–stainless-steel tube brazing experiments
conducted with high-frequency induction heating.
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3.5. CNN Model Training

In order to select the hyperparameters for a CNN-based prediction model designed to
discriminate brazing joint defects in copper–stainless-steel tubes, the model was trained,
and the prediction results were compared. For the purpose of hyperparameter selection,
the first convolutional layer and the second fully connected layer were maintained with
fixed structures. A sigmoid function was used as the activation function for discerning the
presence of defects in the joints. The hyperparameters were chosen based on the number of
kernel filters in the second convolutional layer and the number of nodes in the first fully
connected layer. To observe clear differences in the results based on the hyperparameters,
the values with a two-fold difference were selected. Six different CNN-based prediction
models with varying structures were compared using the same training, test, and validation
data, all obtained during the data-preprocessing stage. The number of epochs was set to
100 across all models. Table 3 illustrates the structures of these six different CNN models.
The computer configuration used for training the CNN-based prediction model for brazing
joint defects was as follows: Python programming language, Windows 10 OS, 11th Gen
Intel (R) Core (TM) i7-1165G7 2.80 GHz 2.80 GHz, 16.0 GB RAM.

Table 3. CNN model structure for selection of hyperparameters.

CNN Model Conv. 1 Layer
(Kernel Filter)

Conv. 2 Layer
(Kernel Filter)

FC 1 Layer
(Node)

FC 2 Layer
(Node)

Activation
Function

model-1 64 32 256 128 Sigmoid
model-2 64 32 512 128 Sigmoid
model-3 64 32 1024 128 Sigmoid
model-4 64 64 256 128 Sigmoid
model-5 64 64 512 128 Sigmoid
model-6 64 64 1024 128 Sigmoid

4. Brazing Joint Defect-Discrimination-Model Prediction Results
4.1. Performance of CNN Models

The performances of copper–stainless-steel tube brazing-joint-defect prediction mod-
els, designed with different hyperparameter structures, were compared. To evaluate the
performances of these prediction models, we used validation data and test data, which had
been pre-allocated to avoid issues, such as overfitting, when the models were re-evaluated
on the training data. In Figure 8, the results of these prediction models are presented,
demonstrating the utilization of the validation data and test data for the models with the
selected hyperparameters. The performance comparison based on accuracy revealed that
there was little difference in the accuracy achieved using the validation data versus the test
data. This suggested that all six prediction models were appropriately designed. When
using test data, CNN model-3 exhibited the highest accuracy performance, reaching 99.12%,
while CNN model-5 showed the lowest accuracy performance at 98.53%.
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4.2. Selection of CNN Model Structure

To compare the predictive performance of the six different CNN models with varying
architectures, an analysis was conducted using f1_score and recall to ensure that the
result data were not biased. The test data predictions from the six CNN models yielded
results consistent with the earlier performance evaluation. CNN model-3 exhibited the
highest f1_score at 0.9918, while CNN model-5 had the lowest f1_score at 0.9864. However,
in terms of the recall for predicting faulty joints, CNN model-5 demonstrated the best
performance at 99.82%, whereas CNN model-4 had the lowest recall at 98.9%. In typical
predictive models, a superior model has often been selected based on the excellence of the
f1_score when assessing predictive performance and ensuring unbiased data representation.
However, in this study, the critical concern was not only predicting the performance of
the brazing joints but also avoiding the misclassification of actual faulty results as normal
joints. Hence, recall performance became the most crucial factor. The recall of the CNN
models represented the proportion of correctly predicted faults among the actual faulty
conditions. Particularly in situations where misjudging actual faulty data as normal could
lead to substantial damage, the importance of recall would be heightened. In industrial
settings, predicting actual normal joint results as faulty would be less problematic than
incorrectly classifying actual faulty results as normal joints, which could lead to significant
product failure and defects. Considering the prediction task of identifying faults in the
brazing joints of tubing conducted in this study, misclassifying actual faulty results as
normal was a more significant issue than predicting normal joints as faulty. Therefore, the
importance of recall was paramount. Despite CNN model-3 exhibiting the best overall
predictive performance and f1_score, CNN model-5, with its relatively lower predictive
performance but superior recall, aligned better with the goals of this study. As a result,
CNN model-5 was selected as the final model structure. Figure 9 illustrates the f1_score
and recall performances of different CNN model structures using the test data.
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To analyze the research results presented in Figure 9, we conducted a confusion matrix
analysis. A confusion matrix analysis has commonly been used to help evaluate a model’s
performance by comparing the model’s predictions with the actual result data and can
help identify any bias in the data analysis. In this study, since a sigmoid function was
used as the activation function for discriminating the presence of defects in the joints,
a 2 × 2 matrix of the confusion matrix results was used. All six structurally different
predictive models did not show any bias in the use of normal joint data and defective
joint data, confirming the absence of bias in the data analysis. Furthermore, as revealed by
the results of the confusion matrix analysis, the sum of the FNs (false negatives) and FPs
(false positives), which represented the model’s accuracy performance, was the lowest for
CNN model-3. However, when considering the cases in which defective joints had been
incorrectly predicted as normal joints (FN), CNN model-5′s structure showed even lower
values than CNN model-3′s structure, making the recall performance superior in CNN
model-5. Figure 10 illustrates the results of the confusion matrix analysis for the CNN
prediction models.
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Figure 10. Results of confusion matrix analysis.

In this study, CNN model-5 was selected as the final CNN model structure for pre-
dicting defects in copper–stainless-steel tube brazing joints using infrared thermal imaging
data. CNN model-3′s structure used 64 kernel filters in the first convolutional layer, and 64
kernel filters in the second convolutional layer. In the fully connected layer, the first layer
had 512 nodes, the second layer had 128 nodes, and finally, the model used a sigmoid func-
tion as the activation function to predict the occurrence of defects in copper–stainless-steel
tube brazing joints utilizing high-frequency induction heating.

In Figure 11, the performance and losses of CNN model-5 as a function of epochs
using test data are presented. It was observed that as the number of epochs and accuracy
increased, the losses decreased, indicating that overfitting had not occurred during the
training process using the training data. Furthermore, these results demonstrated that
a CNN-based predictive model using the infrared thermographic data was capable of
predicting defects in the joints.
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Figure 11. Prediction performance of CNN models that improve with increasing epoch.

Figure 12 illustrates the average defect-detection-time performance of the different
CNN models. The results comparing the detection-time performance of joint defects using
the test data indicated that model-1 had exhibited the fastest detection time. While there
was a tendency for the defect-detection time to increase with an increase in the number
of kernel filters in the selected convolutional layer and the number of nodes in the second
fully connected layer, as hyperparameters, the differences were deemed very marginal.
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All six different CNN models showed defect-detection-time performances in the range
of the 2 s mark. Based on these results, it was inferred that the CNN models for defect
discrimination could be used in real-time applications.
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5. Conclusions

In this study, we proposed a system for detecting defects in the brazing joints of copper
and stainless-steel tubes using high-frequency induction heating. We developed a defect
prediction model based on CNNs using the collected infrared thermographic data for
discerning defects in copper–stainless-steel tube brazing joints. The results of the validation
of the prediction performance are summarized as follows:

We obtained 4796 normal joint data and 5437 defective joint data in the form of
80 × 80-pixel infrared thermographic data during 100 high-frequency induction-heating
brazing experiments. A total of 10,233 infrared thermographic data were classified into
6548 training data, 1638 validation data, and 2047 test data, for model development.

The CNN-based predictive model for brazing-joint defects selected six combinations of
hyperparameters, including the number of kernel filters in the convolutional layer and the
number of nodes in the fully connected layer, and compared their predictive performance.
Although there were differences in the accuracy performance depending on the model, an
overall excellent accuracy performance was observed, ranging from a minimum of 98.53%
to a maximum of 99.12%.

Predicting defects in the brazing joints of copper tubes and stainless-steel tubes priori-
tized recall performance over accuracy since predicting the actual defects as normal joints
could lead to significant issues in the final product. The final selected model demonstrated
the most outstanding recall performance, reaching 99.82% for brazing joint defects.

As the number of kernel filters in the selected convolutional layer and the number
of nodes in the second fully connected layer increased as hyperparameters, there was
an increase in defect detection time. However, all six different CNN models exhibited
defect-detection-time performance in the range of 2 s, indicating the capability for real-time
prediction of joint defects.

Through a study on the prediction of defects in brazing joints using a CNN-based
approach with infrared cameras, this research demonstrates a method and its feasibility
for discerning hard-to-observe joint defects in tube structures. The proposed method
provides a novel idea for improving the efficiency of defect detection in industrial sectors
where welding and joining processes are performed, offering the potential for enhanced
productivity in identifying defects that are challenging to confirm visually.
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